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Abstract

Let k3(n) denote the minimal cardinality of a ternary code of length n and
covering radius one. In this paper we show k3(7) ≥ 156 and k3(8) ≥ 402 improving
on the best previously known bounds k3(7) ≥ 153 and k3(8) ≥ 398. The proofs
are founded on a recent technique of the author for dealing with systems of linear
inequalities satisfied by the number of elements of a covering code, that lie in k-
dimensional subspaces of F

n
3 .

1 Introduction

Let F3 = {0, 1, 2} denote the finite field with three elements. The Hamming distance
d(λ, µ) between λ = (x1, ..., xn) ∈ Fn

3 and µ = (y1, ..., yn) ∈ Fn
3 is defined by

d(λ, µ) = |{i ∈ {1, ..., n} : xi 6= yi}|.

The subset C ⊂ Fn
3 is called a ternary code with covering radius (at most) one, if

∀λ ∈ Fn
3 ∃µ ∈ C with d(λ, µ) ≤ 1 (1)

holds. For a monograph on covering codes see [1]. The problem to determine k3(n), the
minimal cardinality of a ternary code with covering radius one is known as the “football
pool problem” and was widely studied during the last decades. Updated bounds for k3(n)
are contained in an internet table by Kéri [7].

The easy bound

k3(n) ≥
3n

2n + 1
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is known as the sphere covering bound. In the recent papers [2], [3] the author developed
a new technique (based on a method of Habsieger [4]) to improve on the sphere covering
bound by dealing with systems of linear inequalities satisfied by the number of elements
of C, that lie in k-dimensional subspaces of Fn

3 . The method presented in [3] is limited
by k ≈ n

2
. The reason is, that for larger values of k the “irregular” solutions of the linear

inequalities no longer yield a negligible amount in the necessary estimations.
The aim of this paper is to present a first method to deal with these irregularities. We

consider the cases n = 7 and n = 8 (with k = 4 resp. k = 5). In the case n = 7 the best
previously known lower bound k3(7) ≥ 153 is due to Habsieger [5]. We show

Theorem 1. k3(7) ≥ 156.

For the case of 8 matches the best lower bound k3(8) ≥ 398 is due to Habsieger, Plagne
[6] and the author [3]. Here we show

Theorem 2. k3(8) ≥ 402.

In section 2 we state the system of linear inequalities mentioned above (Lemma 1) and
limit the degree of irregularity of its solutions (Lemma 2). In section 3 we start with some
preliminaries. Section 4 contains a proof of k3(7) ≥ 155. The more detailed considerations
needed to prove Theorem 1 are contained in section 5. In section 6 we prove Theorem 2.

We remark, that the proofs in this paper do not use any computer calculations.

2 The covering inequalities

The definitions in this section are used in the whole paper. We say that µ ∈ Fn
3 1-covers

λ ∈ Fn
3 if d(λ, µ) ≤ 1. For σ ∈ Fk

3 and 1 ≤ j ≤ k (≤ n) we define one-dimensional
subspaces of Fk

3 (lines) by

L(σ, j) = {ρ ∈ Fk
3 : ρ and σ differ at most in the jth coordinate},

L = {L(σ, j) : σ ∈ Fk
3, 1 ≤ j ≤ k}.

It is clear, that |L| = 3 holds for all L ∈ L. Apparently L(σ2, j2) = L(σ1, j1) is equivalent
to j2 = j1 and σ2 ∈ L(σ1, j1). This implies

|{L ∈ L : σ ∈ L}| = k for each σ ∈ Fk
3 (2)

and
|L| = k3k−1. (3)

If xσ is a nonnegative integer for each σ ∈ Fk
3, we say that the triple (xσ, xρ, xτ ) is the

value distribution of the line L = {σ, ρ, τ} ∈ L. We write

g(L) =
∑

σ∈L

xσ for each L ∈ L,
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Li = {L ∈ L : max
σ∈L

xσ = i}, L≥i =
⋃

j≥i

Lj for i ≥ 0. (4)

For λ ∈ Fn
3 we define hk(λ) ∈ Fk

3 (1 ≤ k ≤ n) by

hk(λ) = (x1, ..., xk) if λ = (x1, ..., xk, ..., xn).

Now assume C ⊂ Fn
3 is a ternary code. For σ ∈ Fk

3 (1 ≤ k ≤ n) we set

Aσ = {λ ∈ Fn
3 : hk(λ) = σ}, nσ = |C ∩ Aσ|. (5)

Finally we set
ki = |{σ ∈ Fk

3 : nσ = i}| for i ≥ 0.

Lemma 1A (Habsieger [4]) If C ⊂ Fn
3 has covering radius one and k = n − 3 we

have
7nσ +

∑

ρ∈F
k
3 ,d(ρ,σ)=1

nρ ≥ 27 for σ ∈ Fk
3. (6)

Proof. By (1) the 27 elements of Aσ have to be 1-covered by C. This can be done
only by the elements of C ∩ Aσ and C ∩ Aρ with ρ ∈ Fk

3, d(ρ, σ) = 1. Since each element
of C ∩ Aσ 1-covers 7 elements of Aσ and each element of C ∩ Aρ one, (6) follows.

Lemma 1B If C ⊂ Fn
3 has covering radius one and k = n − 3 we have

∑

L∈L:σ∈L

g(L) ≥ 27 − (7 − k)nσ for σ ∈ Fk
3

concerning the numbers nσ defined in (5).

Proof. By (2) we have

∑

L∈L:σ∈L

g(L) = knσ +
∑

ρ∈F
k
3 ,d(ρ,σ)=1

nρ = 7nσ +
∑

ρ∈F
k
3 ,d(ρ,σ)=1

nρ − (7 − k)nσ

for σ ∈ Fk
3 and Lemma 1B follows from Lemma 1A.

We now show, that large values of nσ cannot occur “too often”.

Lemma 2 Assume C ⊂ Fn
3 is a ternary code with covering radius one and k =

n − 3. Moreover assume that, after a suitable permutation of the coordinates of the code,
whenever ρ ∈ Fk

3 with nρ ≥ 5, then the set C∩Aρ 1-covers at most s from the 27 elements
of Aρ. Then

k4 +
∑

i≥5

(7i − s)ki ≤ 6|C| − 3

⌊

3n − |C|

n

⌋

− min

{

3, 3n − |C| − n

⌊

3n − |C|

n

⌋}

.
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Proof. For 1 ≤ i ≤ n we set

Ci = {λ ∈ Fn
3 \ C : ∃µ ∈ C (λ and µ differ exactly in the ith coordinate)}.

By (1) we have Fn
3 \ C =

⋃

1≤i≤n Ci. We choose pairwise disjoint sets C ′
i (1 ≤ i ≤ n)

satisfying C ′
i ⊂ Ci (1 ≤ i ≤ n) and

⋃

1≤i≤n C ′
i =

⋃

1≤i≤n Ci. After a suitable permutation of
the coordinates of the code we may assume |C ′

1| ≤ |C ′
2| ≤ ... ≤ |C ′

n|. Write 3n−|C| = qn+r
with integers q, r and 0 ≤ r < n. We find

3q + min{3, r} ≤ |Cn−2 ∪ Cn−1 ∪ Cn|. (7)

Assume to the contrary |Cn−2∪Cn−1∪Cn| < 3q+min{3, r}. Then |C ′
n−2|+|C ′

n−1|+|C ′
n| ≤

|Cn−2 ∪Cn−1 ∪Cn| < 3q + 3 implying |C ′
n−2| ≤ b(|C ′

n−2|+ |C ′
n−1|+ |C ′

n|)/3c ≤ q and thus
qn+ r = |Fn

3 \C| = |
⋃

1≤i≤n Ci| = |C ′
1|+ ...+ |C ′

n| ≤ (n− 3)|C ′
n−3|+ |Cn−2∪Cn−1 ∪Cn| <

(n − 3)q + 3q + min{3, r} ≤ qn + r, a contradiction.
Now for σ ∈ Fk

3 we set

S(σ) = {λ ∈ Aσ \ C : λ is 1-covered by C ∩ Aσ}.

We then have Cn−2 ∪ Cn−1 ∪ Cn =
⋃

σ∈F
k
3
S(σ). Since µ ∈ C ∩ Aσ 1-covers at most 6

elements from Aσ \ C and |Aσ| = 27 we have |S(σ)| ≤ min{6nσ, 27 − nσ}. Moreover, if
nσ ≥ 5, by the proposition of the Lemma we may use the estimation |S(σ)| ≤ s−nσ. We
now find

|Cn−2 ∪ Cn−1 ∪ Cn| ≤
∑

σ∈F
k
3

|S(σ)| =
∑

1≤i≤3

∑

σ∈F
k
3

nσ=i

|S(σ)| +
∑

σ∈F
k
3

nσ=4

|S(σ)| +
∑

i≥5

∑

σ∈F
k
3

nσ=i

|S(σ)|

≤ 6
∑

1≤i≤3

iki + 23k4 +
∑

i≥5

(s − i)ki

= 6
∑

i≥1

iki − k4 −
∑

i≥5

(7i − s)ki = 6|C| − k4 −
∑

i≥5

(7i − s)ki

and Lemma 2 follows by (7), q = b 3n−|C|
n

c and r = 3n − |C| − qn.

Lemma 3 If C ⊂ F7
3 is a ternary code with covering radius one, |C| ≤ 155 and

k = 4, then without loss of generality we may assume

k5 + 2k6 + 3
∑

i≥7

ki ≤ 7.

Proof. After a suitable permutation of the coordinates of the code (which does not affect
the covering radius) we may apply Lemma 2 with n = 7 and s = 27 and get

8k5 + 15k6 + 22k7 + 29
∑

i≥8

ki ≤ 58. (8)

Multiplication with 3/22 and rounding off yields Lemma 3.
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3 Some preliminaries

Assume C ⊂ Fn
3 is a ternary code with covering radius one and k = n − 3. We set

Bi = {σ ∈ Fk
3 : nσ = i} for i = 0, 1,

B = B0 ∪ B1

and
Ki = {L ∈ L : |L ∩ B| = i} for 0 ≤ i ≤ 3.

Let c be a constant integer with c ∈ {5, 6}. We set

g∗(L) = g(L) − c for L ∈ L. (9)

We find

∑

L∈L

g∗(L) =
∑

0≤i≤3

∑

L∈Ki

g∗(L) (10)

=
1

2

∑

1≤i≤3

i
∑

L∈Ki

g∗(L) +
1

2

∑

L∈K1

g∗(L) −
1

2

∑

L∈K3

g∗(L) +
∑

L∈K0

g∗(L)

=
1

2

∑

σ∈B

∑

L∈L,σ∈L

g∗(L) +
1

2

∑

σ∈B

∑

L∈K1,σ∈L

g∗(L) −
1

2

∑

L∈K3

g∗(L) +
∑

L∈K0

g∗(L),

because in the sum
∑

σ∈B

∑

L∈L,σ∈L g∗(L) every g∗(L) with L ∈ L and |L ∩ B| = i
(1 ≤ i ≤ 3) is counted exactly i times. We now set

B∗ =

{

σ ∈ B :
∑

L∈L,σ∈L

g∗(L) +
∑

L∈K1,σ∈L

g∗(L) < 0

}

. (11)

By c ∈ {5, 6} we have g∗(L) ≤ −2 for L ∈ K3 and g∗(L) ≥ 0 for L ∈ K0. Thus from (10)
and (11) now follows

∑

L∈L

g∗(L) ≥
1

2

∑

σ∈B∗

{

∑

L∈L,σ∈L

g∗(L) +
∑

L∈K1,σ∈L

g∗(L)

}

. (12)

4 Proof of k3(7) ≥ 155

Assume C ⊂ F7
3 is a ternary code of covering radius one with |C| ≤ 155. We set k = 4

and choose c = 6 in (9). In this section we show

∑

L∈L

g∗(L) ≥ −28. (13)
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This suffices for a proof of the bound k3(7) ≥ 155. Assume (for the moment) |C| ≤ 154.
We have

4|C| = 4
∑

σ∈F
4
3

nσ =
∑

σ∈F
4
3

nσ

∑

L∈L,σ∈L

1 =
∑

L∈L

g(L)

=
∑

L∈L

g∗(L) + 6
∑

L∈L

1 ≥ −28 + 6 · 108

by (2), (3), (9) and (13) and thus |C| ≥ 155, a contradiction. In the same way we get the
bound k3(7) ≥ 156 if we are able to show that equality cannot hold in (13). This requires
a more detailed analysis and is postponed to the next section. The reader interested
in this bound should keep track about some consequences of assumed equality in (13)
throughout this and the previous section. These consequences are listed in the beginning
of section 5.

We now show (13). From Lemma 1B and (2) we get

∑

L∈L,σ∈L

g∗(L) ≥ 0 for σ ∈ B1, (14)

∑

L∈L,σ∈L

g∗(L) ≥ 3 for σ ∈ B0. (15)

Now assume σ ∈ B∗ ∩ B1. If L ∈ K1 with σ ∈ L and g∗(L) < 0, then L has value
distribution (1,2,2) and g∗(L) = −1. By (14) this can be satisfied for at most three of the
four lines L ∈ L with σ ∈ L. Thus by (11) and (14) we may write

B∗ ∩ B1 = B∗
1 ∪ B∗

2 ∪ B∗
3 with (16)

B∗
i =

{

σ ∈ B∗ ∩ B1 :
∑

L∈K1,σ∈L

g∗(L) = −i

}

for 1 ≤ i ≤ 3.

Moreover

if σ ∈ B∗
i (1 ≤ i ≤ 3), then there exist at least i lines L ∈ K1 (17)

with σ ∈ L and value distribution (1, 2, 2) (i.e. g∗(L) = −1).

If σ ∈ B∗ ∩ B0 we have g∗(L) ≥ −2 for L ∈ K1 with σ ∈ L. Like above by (15) at most
three of the four lines L ∈ L with σ ∈ L satisfy g∗(L) < 0. Therefore

∑

L∈K1,σ∈L

g∗(L) ≥
∑

L∈K1,σ∈L

g∗(L)<0

g∗(L) ≥ −2
∑

L∈K1,σ∈L

g∗(L)<0

1 ≥ −6.

This, together with (12), (14), (15) and (16) implies

∑

L∈L

g∗(L) ≥ −
1

2
|B∗

1 | − |B∗
2 | −

3

2
|B∗

3 | −
3

2
|B∗ ∩ B0|. (18)
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Lemma 4 a) If σ ∈ B∗
1 , then there exists L ∈ L≥5 (see (4)) with σ ∈ L.

b) If σ ∈ B∗
2 , then either there exists L ∈ L≥6 with σ ∈ L or distinct L1, L2 ∈ L5 with

σ ∈ L1 ∩ L2.
c) If σ ∈ B∗

3 , then there exists L ∈ L≥7 with σ ∈ L.
d) If σ ∈ B∗ ∩ B0, then there exists L ∈ L≥8 with σ ∈ L.

Proof. a) If σ ∈ B∗
1 , then by (14) and (16) there exists L ∈ L \ K1 with σ ∈ L

and g∗(L) ≥ 1, i.e. g(L) ≥ 7. Suppose L = {σ, ρ, τ}. By σ ∈ B and L 6∈ K1 we have
|L ∩ B| ≥ 2. Therefore we may assume that, say ρ ∈ B and thus nσ + nρ ≤ 2. But by
g(L) = nσ + nρ + nτ ≥ 7 we find nτ ≥ 5, which means L ∈ L≥5 and a) follows.

b) If σ ∈ B∗
2 , then by (14) and (16) there exists either L ∈ L \ K1 with σ ∈ L and

g∗(L) ≥ 2 or distinct L1, L2 ∈ L \ K1 with σ ∈ L1 ∩ L2 and g∗(L1) = g∗(L2) = 1. In the
first case like in a) we find L ∈ L≥6 and in the second case L1, L2 ∈ L5 (if L1, L2 6∈ L≥6)
and b) follows.

c) If σ ∈ B∗
3 , then by (2), (14), (16) and (17) there exists a line L ∈ L\K1 with σ ∈ L

and g∗(L) ≥ 3 and thus L ∈ L≥7 like in a).
d) If σ ∈ B∗ ∩ B0, then by (11) and (15) we have

∑

L∈K1,σ∈L g∗(L) ≤ −4 and
∑

L∈L\K1,σ∈L g∗(L) ≥ 7. By (2)
∑

L∈L\K1,σ∈L 1 ≤ 3 and thus there exists L ∈ L \ K1

with σ ∈ L and g∗(L) ≥ 3. Like above L ∈ L≥8 follows by nσ = 0.

From Lemma 4 now follows

1

2
|B∗

1 | + |B∗
2 | +

3

2
|B∗

3 | +
3

2
|B∗ ∩ B0|

≤
1

2

∑

L∈L≥5

|B∗
1 ∩ L| +

∑

L∈L≥6

|B∗
2 ∩ L| +

1

2

∑

L∈L5

|B∗
2 ∩ L|

+
3

2

∑

L∈L≥7

|(B∗
3 ∪ (B∗ ∩ B0)) ∩ L|

=
1

2

∑

L∈L5

|(B∗
1 ∪ B∗

2) ∩ L| +
∑

L∈L6

{

1

2
|B∗

1 ∩ L| + |B∗
2 ∩ L|

}

+
3

2

∑

L∈L≥7

{

1

3
|B∗

1 ∩ L| +
2

3
|B∗

2 ∩ L| + |(B∗
3 ∪ (B∗ ∩ B0)) ∩ L|

}

≤
1

2

∑

L∈L5

|B∗ ∩ L| +
∑

L∈L6

|B∗ ∩ L| +
3

2

∑

L∈L≥7

|B∗ ∩ L|

≤ |L5| + 2|L6| + 3|L≥7| by |B∗ ∩ L| ≤ 2 for L ∈ L≥5

≤ 4(k5 + 2k6 + 3
∑

i≥7

ki) by (2)

≤ 28 by Lemma 3

and (13) follows by (18).
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5 Proof of Theorem 1

Let C ⊂ F7
3 be a ternary code of covering radius one with |C| = 155. Assume equality in

(13). Then the following facts are necessarily satisfied (see the sections 3 and 4):
A) g∗(L) = 0 whenever L ∈ K0.
B) σ ∈ B∗ ∩ B1 implies

∑

L∈L,σ∈L g∗(L) = 0.
C) L ∈ L5 implies |(B∗

1 ∪ B∗
2) ∩ L| = 2.

D) L ∈ L6 implies |B∗
2 ∩ L| = 2.

E) L ∈ L≥7 implies |(B∗
3 ∪ (B∗ ∩ B0)) ∩ L| = 2.

F) k5 + 2k6 + 3
∑

i≥7 ki = 7.

We now use these facts to derive further properties of C with the intention to get a
contradiction.

G) ki = 0 for i ≥ 8.
Assume to the contrary that

∑

i≥8 ki > 0 holds. From F) follows
∑

i≥8 ki ≤ 2. If
equality holds, then by (8) k5 = k6 = k7 = 0 and thus k5+2k6+3

∑

i≥7 ki = 6 contradicting
F). If

∑

i≥8 ki = 1, then by (8) we have 8k5 + 15k6 + 22k7 ≤ 29. Multiplication with 3/22
and rounding off yields k5 + 2k6 + 3k7 ≤ 3 and thus k5 + 2k6 + 3

∑

i≥7 ki ≤ 6 again
contradicting F).

H) B∗ ∩ B0 = ∅.
This immediately follows from G) and Lemma 4 d).

I) 8k5 + 15k6 + 22k7 ≥ 52.
Assume to the contrary 8k5+15k6+22k7 ≤ 51. Multiplication with 3/22 and rounding

off would give k5 + 2k6 + 3k7 ≤ 6 contradicting F) and G).

J) If σ, ρ ∈ F4
3 with nρ ≥ 5 and d(σ, ρ) = 1, then σ ∈ B∗ ∩ B1. Especially nσ = 1.

There exists L ∈ L with σ, ρ ∈ L. By nρ ≥ 5 we have L ∈ L≥5. By C), D), E) and H)
σ ∈ B∗

1 ∪ B∗
2 ∪ B∗

3 = B∗ ∩ B1 (see (16)).

K) If ρ, τ ∈ F4
3 with nρ = 7 and d(ρ, τ) = 2, then nτ = 2.

Choose σ ∈ F4
3 with d(σ, ρ) = 1 and d(σ, τ) = 1. By E) and H) we have σ ∈ B∗

3 .
By (17) and J) the four lines L ∈ L with σ ∈ L have value distribution (1,2,2), (1,2,2),
(1,2,2) and (1,1,7) and K) follows.

L) If σ, ρ ∈ F4
3 with nρ ∈ {5, 6} and d(σ, ρ) = 1, then there exists τ ∈ F4

3 with
d(ρ, τ) = 2, d(σ, τ) = 1 and nτ ≥ 3.

Assume L ∈ L with σ, ρ ∈ L. By J) and nρ ∈ {5, 6} we have σ ∈ B1 and g∗(L) ≤ 2.
By (2) and (14) there exists a line L′ 6= L with σ ∈ L′ and g∗(L′) ≥ 0, i.e. g(L′) ≥ 6. By
nσ = 1 there exists τ ∈ L′ with nτ ≥ 3. We have d(σ, τ) = 1 by σ, τ ∈ L′ and d(ρ, τ) = 2
by L′ 6= L.

M) Whenever ρ ∈ F4
3 with nρ ≥ 5, then C ∩ Aρ 1-covers at most 25 from the 27

elements of Aρ.
To see this, take any L ∈ L with ρ ∈ L. Assume L = {ρ, σ1, σ2}. By J) we have

σ1, σ2 ∈ B∗ ∩ B1. For i = 1, 2 let µi = (σi, κi) ∈ C with κi ∈ F3
3 be the unique
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codeword with hk(µi) = σi. Now µ2 = (σ2, κ2) cannot 1-cover (σ2, κ1) since this would
imply that µ1 = (σ1, κ1) 1-covers (σ1, κ2) and, following the proof of Lemma 1A (with
σ1 instead of σ), we see that µ2 ∈ C ∩ Aσ2 then cannot contribute to the 1-covering of
Aσ1 despite d(σ1, σ2) = 1. This would result in an enlargement of the right-hand side of
(6) to 28, implying

∑

L∈L,σ1∈L g(L) ≥ 25 (see Lemma 1B) and thus
∑

L∈L,σ1∈L g∗(L) ≥ 1
contradicting B). Especially we have κ1 6= κ2. In the same way we see, that (ρ, κ1) ∈ Aρ

cannot be 1-covered by C ∩ Aρ. By reasons of symmetry this also holds for (ρ, κ2) ∈ Aρ

and M) follows.

N) Either k4 = k6 = 0, k5 = 1, k7 = 2 or k4 = k5 = 0, k6 = 2, k7 = 1.
By M) we may apply Lemma 2 with n = 7, s = 25 and |C| = 155. We get k4 +10k5 +

17k6 + 24k7 ≤ 58. Subtracting the inequality from I) yields k4 + 2(k5 + k6 + k7) ≤ 6.
Especially k5 +k6 +k7 ≤ 3. Subtracting this from k5 +2k6 +3k7 = 7 (by F) and G)) yields
k6 + 2k7 ≥ 4. Now k7 = 0 is not possible, since this would imply k6 ≥ 4 contradicting
k5 + k6 + k7 ≤ 3. Also k7 > 2 is not possible by F). The case k7 = 2 gives the first case
and k7 = 1 the second.

O) If ρ, τ ∈ F4
3 with nρ = 6 and d(ρ, τ) = 2, then nτ = 2 or nτ = 3.

Choose σ ∈ F4
3 with d(σ, ρ) = 1 and d(σ, τ) = 1. Let L′ ∈ L be the line containing

σ and ρ. By J) we see, that L′ has value distribution (1,1,6) and L′ ∈ L6. Thus σ ∈ B∗
2

by D). By (17) the four lines L ∈ L with σ ∈ L have value distribution (1,2,2), (1,2,2),
(1,x1, x2) and (1,1,6). Now B) implies x2 + x3 = 5. By N) we have k4 = k5 = 0 if k6 > 0,
thus x1, x2 ∈ {2, 3} and O) follows.

P) d(ρ1, ρ2) = 4 whenever ρ1, ρ2 ∈ F4
3 with 5 ≤ nρ1 , nρ2 ≤ 7 and ρ1 6= ρ2.

By N) either nρ1 ≥ 6 or nρ2 ≥ 6, say nρ1 ≥ 6. J), K) and O) imply d(ρ1, ρ2) ≥ 3. Now
assume d(ρ1, ρ2) = 3. Choose τ ∈ F4

3 with d(ρ1, τ) = 2 and d(ρ2, τ) = 1. Now d(ρ1, τ) = 2
implies nτ > 1 by K) and O), whereas d(ρ2, τ) = 1 implies nτ = 1 by J), a contradiction.
Thus d(ρ1, ρ2) = 4.

We now are in a position to derive a contradiction. Use N) to choose pairwise different
ρ1, ρ2, ρ3 ∈ F4

3 with 5 ≤ nρ1 , nρ2 , nρ3 ≤ 7. Assume nρ1 ≤ nρ2 ≤ nρ3 . By N) we have
nρ1 ≤ 6, nρ2 ≥ 6 and nρ3 = 7. By P) we may assume ρ1 = (0000), ρ2 = (1111) and
ρ3 = (2222). Now consider σ = (2000). By L) there exists τ ∈ F4

3 with d(ρ1, τ) = 2,
d(σ, τ) = 1 and nτ ≥ 3, say τ = (2100) (the case τ = (2200) is excluded by K)).
Now consider the line L = L(τ, 3) = {(2100), (2110), (2120)}. By K) and O) we have
n(2110), n(2120) ≥ 2. Altogether we have L ∈ K0 and g(L) ≥ 7, i.e. g∗(L) ≥ 1 contradicting
A). Thus equality cannot hold in (13). As we have seen in the previous paragraph, this
implies Theorem 1.
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6 Proof of Theorem 2

Assume C ⊂ F8
3 is a ternary code of covering radius one with |C| = 401. We follow section

3 with k = 5 and choose c = 5 in (9). By Lemma 1B (with n = 8), (2) and (9) we have

∑

L∈L,σ∈L

g∗(L) ≥ 0 for σ ∈ B1, (19)

∑

L∈L,σ∈L

g∗(L) ≥ 2 for σ ∈ B0. (20)

If σ ∈ B1 we have g∗(L) ≥ 0 for L ∈ K1 with σ ∈ L. This together with (11) and (19)
implies

B∗ ⊂ B0. (21)

Now assume σ ∈ B∗ and L ∈ K1 with σ ∈ L and g∗(L) < 0. Then g∗(L) = −1.
By (20) and (21) at most four of the five lines L ∈ L with σ ∈ L have this property.
Therefore by (11), (20) and (21) we may write

B∗ = B∗
3 ∪ B∗

4 with (22)

B∗
i = {σ ∈ B∗ :

∑

L∈K1,σ∈L

g∗(L) = −i} for i ∈ {3, 4}.

Altogether now from (12), (20), (21) and (22) follows

∑

L∈L

g∗(L) ≥ −
1

2
|B∗

3 | − |B∗
4 |. (23)

Lemma 5 a) If σ ∈ B∗
3 , then there exists Lσ ∈ L with σ ∈ L, such that either

Lσ ∈ L≥8 or Lσ ∈ L7 and |B∗
3 ∩ L| = 1.

b) If σ ∈ B∗
4 , then there exists Lσ ∈ L with σ ∈ L, such that either Lσ ∈ L≥11 or

Lσ ∈ L10 and |B∗
4 ∩ L| = 1.

Proof. a) If σ ∈ B∗
3 , then

∑

L∈L\K1,σ∈L g∗(L) ≥ 5 by (20), (21) and (22). By (22)

and g∗(L) ≥ −1 for L ∈ K1 at most two of the five lines L ∈ L with σ ∈ L belong to
L \ K1. Therefore there exists Lσ ∈ L \ K1 with σ ∈ Lσ and g∗(Lσ) ≥ 3, i.e. g(Lσ) ≥ 8.
By Lσ 6∈ K1 and σ ∈ B we may assume Lσ = {σ, µ, λ} with µ ∈ B, i.e. nµ ≤ 1. By (21)
we have nσ = 0. If nµ = 0 then from g(Lσ) ≥ 8 we find nλ ≥ 8, i.e. Lσ ∈ L≥8. If nµ = 1
we find |B∗

3 ∩ Lσ| = 1 and Lσ ∈ L7 (if L 6∈ L≥8). This completes the proof of a).
b) If σ ∈ B∗

4 , then we see like in a), that there exists Lσ ∈ L \ K1 with σ ∈ Lσ and
g(Lσ) ≥ 11. The rest of the proof proceeds exactly like in a).

We set L′ = {Lσ ∈ L : σ ∈ B∗}. By Lemma 5 L ∈ L7 ∩ L′ implies |B∗
3 ∩ L| ≤ 1.

Likewise we have |B∗
4 ∩ L| ≤ 1 for L ∈ L10 ∩ L′, and thus 1

2
|B∗

3 ∩ L| + |B∗
4 ∩ L| ≤ 3

2
for
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L ∈ L10 ∩ L′. Using these remarks from Lemma 5 now follows

1

2
|B∗

3 | + |B∗
4 | ≤

1

2

∑

L∈L≥7∩L′

|B∗
3 ∩ L| +

∑

L∈L≥10∩L′

|B∗
4 ∩ L|

=
1

2

∑

L∈L7∩L′

|B∗
3 ∩ L| +

1

2

∑

8≤i≤9

∑

L∈Li∩L′

|B∗
3 ∩ L|

+
∑

L∈L10∩L′

(

1

2
|B∗

3 ∩ L| + |B∗
4 ∩ L|

)

+
∑

L∈L≥11∩L′

(

1

2
|B∗

3 ∩ L| + |B∗
4 ∩ L|

)

≤
1

2
|L7 ∩ L′| +

∑

8≤i≤9

|Li ∩ L′| +
3

2
|L10 ∩ L′| + 2

∑

i≥11

|Li ∩ L′|

(by |B∗ ∩ L| ≤ 2 for L ∈ L≥7)

≤
1

2
|L7| + |L8| + |L9| +

3

2
|L10| + 2

∑

i≥11

|L11|

≤
5

2
k7 + 5k8 + 5k9 +

15

2
k10 + 10

∑

i≥11

ki by (2)

≤
1

5

(

22k7 + 29k8 + 36k9 + 43k10 + 50
∑

i≥11

ki

)

< 20 by Lemma 2 (with n = 8, s = 27, |C| = 401). (24)

We now complete the proof of Theorem 2. We have

5|C| = 5
∑

σ∈F
5
3

nσ =
∑

σ∈F
5
3

nσ

∑

L∈L,σ∈L

1 =
∑

L∈L

g(L)

=
∑

L∈L

g∗(L) + 5
∑

L∈L

1 > −20 + 5 · 405

by (2), (3), (9), (23) and (24) and thus |C| > 401, a contradiction. This completes the
proof of Theorem 2.
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