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Abstract

The known bijections on Dyck paths are either involutions or have notoriously
intractable cycle structure. Here we present a size-preserving bijection on Dyck
paths whose cycle structure is amenable to complete analysis. In particular, each
cycle has length a power of 2. A new manifestation of the Catalan numbers as labeled
forests crops up en route as does the Pascal matrix mod 2. We use the bijection to
show the equivalence of two known manifestations of the Motzkin numbers. Finally,
we consider some statistics on the new Catalan manifestation and the identities they
interpret.

1 Introduction

There are several bijections on Dyck paths in the literature [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11], usually introduced to show the equidistribution of statistics: if a bijection sends
statistic A to statistic B, then clearly both have the same distribution. Another aspect
of such a bijection is its cycle structure considered as a permutation on Dyck paths.
Apart from involutions, this question is usually intractable. For example, Donaghey
[7] introduces a bijection, obtains some results on a restriction version, and notes its
apparently chaotic behavior in general. In similar vein, Knuth [8] defines a conjugate
(R) and transpose (T ), both involutions, on ordered forests, equivalently on Dyck paths,
and asks when they commute [8, Ex. 17, 7.2.1.6], equivalently, what are the fixed points of
(RT )2? This question is still open. (Donaghey’s bijection is equivalent to the composition
RT .)
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In this paper, after reviewing Dyck path terminology (§2), we recursively define a new
bijection F on Dyck paths (§3), analyze its cycle structure (§4-§8), and present some
applications (§9-§10). Section 4 treats the restriction of F to primitive paths that avoid
the subpath DUU , and involves an encounter with the Pascal matrix mod 2. Section
5 deals with arbitrary primitive paths. Section 6 introduces so-called LCO forests, a
Catalan manifestation that permits an explicit description of F and its orbits. We show
that each orbit has size (length) a power of 2 and characterize orbits of given size in
terms of subpath avoidance. In particular, the fixed points of F are those Dyck paths
that avoid DUDD and UUP +DD where P + denotes a nonempty Dyck path. Section 7
finds generating functions and explains a divisibility property of the orbit sizes. Section 8
uses the bijection F to show the equivalence of two known manifestations of the Motzkin
numbers. Finally, Section 9 considers some statistics on LCO forests and the identities
they interpret.

2 Dyck Path Terminology

A Dyck path, as usual, is a lattice path of upsteps U = (1, 1) and downsteps D =
(1,−1), the same number of each, that stays weakly above the horizontal line, called
ground level, that joins its initial and terminal points (vertices). A peak is an occurrence
of UD, a valley is a DU .
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A Dyck 7-path with 2 components, 2DUDs, and height 3

The size (or semilength) of a Dyck path is its number of upsteps and a Dyck path
of size n is a Dyck n-path. The empty Dyck path (of size 0) is denoted ε. The number
of Dyck n-paths is the Catalan number Cn, sequence A000108 in OEIS. The height of a
vertex in a Dyck path is its vertical height above ground level and the height of the path
is the maximum height of its vertices. A return downstep is one that returns the path to
ground level. A primitive Dyck path is one with exactly one return (necessarily at the
end). Note that the empty Dyck path ε is not primitive. The returns of a nonempty Dyck
path split it into one or more primitive Dyck paths, called its components. Upsteps and
downsteps come in matching pairs: travel due east from an upstep to the first downstep
encountered. More precisely, D0 is the matching downstep for upstep U0 if D0 terminates
the shortest Dyck subpath that starts with U0. We use P to denote the set of primitive
Dyck paths, Pn for n-paths, P(DUU) for the subset that avoid DUU as a subpath,
and P[DUU ] for the subset that contain at least one DUU . A path UUUDUDDD, for
example, is abbreviated U 3DUD3.
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3 The Bijection F

Define a size-preserving bijection F on Dyck paths recursively as follows. First, F (ε) =
ε and for a non-primitive Dyck path P with components P1, P2, . . . , Pr (r ≥ 2), F (P ) =
F (P1)F (P2) . . . F (Pr) (concatenation). This reduces matters to primitive paths. From a
consideration of the last vertex at height 3 (if any), every primitive Dyck path P has the
form UQ(UD)iD with i ≥ 0 and Q a Dyck path that is either empty (in case no vertex
is at height 3) or ends with DD; define F (P ) by

F (P ) =

{
U i+1F (R)UDDi+1 if Q is primitive, say Q = URD, and

U i+1F (Q)Di+1 if Q is not primitive.

Schematically,
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definition of F on primitive Dyck paths (1)

Note that R = ε in the top left path duplicates a case of the bottom left path but no
matter: both formulas give the same result.

The map G, defined as follows, serves as an inverse of F and hence F is indeed
a bijection. Again, G(ε) = ε and for a non-primitive Dyck path P with components
P1, P2, . . . , Pr (r ≥ 2), G(P ) = G(P1)G(P2) . . . G(Pr). By considering the lowest valley
vertex, every primitive Dyck path has the form U i+1QDi+1 with i ≥ 0 and Q a non-
primitive Dyck path (Q = ε in case valley vertices are absent); define G(P ) by

G(P ) =

{
UUG(R)D(UD)iD if Q ends with UD, say Q = RUD, and

UG(Q)(UD)iD otherwise.

The bijection F is the identity on Dyck paths of size ≤ 3, except that it interchanges
U3D3 and U2DUD2. Its action on primitive Dyck 4-paths is given in the Figure below.
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action of F on primitive Dyck 4-paths

4 F on Primitive DUU -avoiding Paths

To analyze the structure of F a key property, clear by induction, is that it preserves
# DUUs, in particular, it preserves the property “path avoids DUU”. A DUU -avoiding
Dyck n-path corresponds to a composition c = (c1, c2, . . . , ch) of n via ci = number of Ds
ending at height h− i, i = 1, 2, . . . , h where h is the height of the path:
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3

1

3

2

DUU -avoiding path P ↔ composition (3, 1, 3, 2)

Under this correspondence, F acts on compositions of n : F is the identity on com-
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positions of length 1, and for c = (ci)
r
i=1 with r ≥ 2, F (c) is the concatenation of

IncrementLast
(
F (c1, . . . , cr−2)

)
, 1cr−1−1, cr where IncrementLast means “add 1 to the

last entry” and the superscript refers to repetition. In fact, F can be described explicitly
on compositions of n (increment means “increase by 1”) :

Proposition 1. For a composition c of n, F (c) is given by the following algorithm. For
each entry c in even position measured from the end (so the last entry is in position 1),
replace it by c− 1 1s and increment its left neighbor.

For example, 4 2 1 5 2 3 =
6

4
5

2
4

1
3

5
2

2
1

3→ 1 13 3 10 6 11 3 = 14 3 6 1 3.
Primitive DUU -avoiding Dyck n-paths correspond to compositions of n that end with

a 1. Let Cn denote the set of such compositions. Thus |C1| = 1 and for n ≥ 2, |Cn| = 2n−2

since there are 2n−2 compositions of n− 1.
Denote the length of a composition c by #c. The size of c is the sum of its entries.

The parity of c is the parity (even/odd) of #c. There are two operations on nonempty
compositions that increment the size: P = prepend 1, and I = increment first entry.
For example, for c = (4, 1, 1) we have size(c) = 6, #c = 3, the parity of c is odd,
P(c) = (1, 4, 1, 1), I(c) = (5, 1, 1).

Lemma 2. P changes the parity of a composition while I preserves it.

We will call P and I augmentation operators on Cn and for A an augmentation operator,
A′ denotes the other one.

Lemma 3. Let A be an augmentation operator. On a composition c with #c ≥ 2,
A ◦ F = F ◦ A if #c is odd and A ◦ F = F ◦ A

′ if #c is even.

This follows from Proposition 1.
Using Lemma 3 to determine Ai for i ≥ 2, an F -orbit (c1, . . . , cm) in Cn together with

an augmentation operator A1 ∈ {P, I} yields part of an F -orbit in Cn+1 via a “commutative
diagram” as shown:

c1
F−−−→ c2

F−−−→ . . .
F−−−→ ci

F−−−→ ci+1
F−−−→ . . .

F−−−→ cm
F−−−→ c1yA1

yA2

yAi

yAi+1

yAm

yAm+1

d1
F−−−→ d2

F−−−→ . . .
F−−−→ di

F−−−→ di+1
F−−−→ . . .

F−−−→ dm
F−−−→ dm+1

Let B(c1, A1) denote the sequence of compositions (d1, . . . ,dm) thus produced. By
Lemma 3, Ai+1 = Ai or A

′
i according as #ci is odd or even (1 ≤ i ≤ m). Hence, if

the orbit of c1 contains an even number of compositions of even parity, then Am+1 = A1

and so dm+1 = d1 and B(c1, A1) is a complete F -orbit in Cn+1 for each of A1 = P and
A1 = I. On the other hand, if the orbit of c1 contains an odd number of compositions
of even parity, then Am+1 = A′

1 and the commutative diagram will extend for another m
squares before completing an orbit in Cn+1, consisting of the concatenation of B(c1, P)
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and B(c1, I), denoted B(c1, P, I). In the former case orbit size is preserved; in the latter
it is doubled.

Our goal here is to generate F -orbits recursively and to get induction going, we now
need to investigate the parities of the compositions comprising these “bumped-up” orbits
B(c, A) and B(c, P, I). A bit sequence is a sequence of 0s and 1s. In the sequel all

operations on bit sequences are modulo 2. Let S denote the partial sum operator
on bit sequences: S

(
(ε1, ε2, . . . , εm)

)
= (ε1, ε1 + ε2, . . . , ε1 + ε2 + . . . + εm). Let em denote

the all 1s bit sequence of length m and let e denote the infinite sequences of 1s. Thus
Se = (1, 0, 1, 0, 1, . . .). Let P denote the infinite matrix whose ith row (i ≥ 0) is Sie (Si

denotes the i-fold composition of S). The (i, j) entry pij of P satisfies pij = pi−1,j + pi,j−1

and hence P is the symmetric Pascal matrix mod 2 with (i, j) entry =
(

i+j

i

)
mod 2.

P =




1 1 1 1 1 1 1 1 . . .
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
...

. . .




The following lemma will be crucial.

Lemma 4. Fix k ≥ 1 and let Pk denote the 2k × 2k upper left submatrix of P. Then the
sum modulo 2 of row i in Pk is 0 for 0 ≤ i ≤ 2k − 1 and is 1 for i = 2k − 1.

First Proof The sum of row i in Pk is, modulo 2,

2k−1∑

j=0

pij =
2k−1∑

j=0

(
i + j

i

)
=

(
i + 2k

i + 1

)
=

(
i + 2k

i + 1, 2k − 1

)

and for i < 2k − 1 there is clearly at least one carry in the addition of i + 1 and 2k − 1 in

base 2 so that, by Kummer’s well known criterion, 2 |
(

i+2k

i+1,2k−1

)
and the sum of row i is 0

(mod 2). On the other hand, for i = 2k − 1 there are no carries, so 2 -
(

i+2k

i+1,2k−1

)
and the

sum of row i is 1 (mod 2).
Second Proof The matrix Pk is the 2× 2 block matrix

(
Pk−1 Pk−1

Pk−1 0

)

for k ≥ 2, and the lemma follows immediately by induction.
Now let p(c) denote the mod-2 parity of a composition c : p(c) = 1 if #c is odd, = 0 if

#c is even. For purposes of addition mod 2, represent the augmentation operators P and
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I by 0 and 1 respectively so that, for example, p(A(c)) = p(c) + A + 1 for A = P or I by
Lemma 2. Then the parity of di+1 above can be obtained from the following commutative
diagram (all addition modulo 2)

p(ci) −−−→ p(ci+1)yA

yp(ci)+A+1

. . . −−−→ p(ci+1) + p(ci) + A

The parity vector for a list of compositions (ci)
m
i=1 is (p(ci))

m
i=1. This leads to

Lemma 5. Let p denote the parity vector for the F -orbit (ci)
m
i=1 of the composition c1.

Then the parity vector for B(c1, A) is

Sp + Sem + (A + 1)em.

Now we are ready to prove the main result of this section concerning the orbits of F on
primitive DUU -avoiding Dyck n-paths identified with the set Cn of compositions of n that
end with a 1. The parity of an orbit is the sum mod 2 of the parities of the compositions
comprising the orbit, in other words, the parity of the total number of entries in all the
compositions.

Theorem 6. For each n ≥ 1,

(i ) all F -orbits on Cn have the same length and this length is a power of 2, and

(ii ) all F -orbits on Cn have the same parity.

The powers in (i ) and the parities in (ii ) are given as follows:
The power (i.e. the exponent) is 0 for n = 1 and increases monotonically with n,

staying constant except for a jump of 1 when n is of the form 2k + 2, k ≥ 0. The parity
is 1 if n is 1 or has the form 2k + 1, k ≥ 1, and is 0 otherwise.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
power 0 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5
parity 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

Proof We consider orbits generated by the augmentation operators P and I and
proceed by induction on n. No orbits are missed because all compositions, in par-
ticular those ending 1, can be generated from the unique composition of 1 by suc-
cessive application of P and I. The base cases n = 1, 2, 3 are clear from the orbits
(1) → (1), (1, 1) → (1, 1), (2, 1) → (1, 1, 1) → (2, 1). To establish the induction step,
suppose given an orbit, orb(c), in C2k+1 (k ≥ 1) of length 2k with parity vector p and
(total) parity 1. Then, using Lemma 5 twice, the next orbit B(c, P, I) has parity vector

p1 = (Sp, Sp + e2k) + Se2k+1
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with parity (Sp’s cancel out) 1 + 1 + . . . + 1︸ ︷︷ ︸
2k

+ 1 + 0 + 1 + 0 + . . . + 1 + 0︸ ︷︷ ︸
2k+1

= 0 for k ≥ 1.

Successively “bump up” this orbit using A = ε1, ε2, . . . , in turn until the parity hits 1
again. With Sum(v) denoting the sum of the entries in v, the successive parity vectors
p1,p2, . . . are given by

pi =
(
S

ip, Sip +

i−2∑

j=1

Sum(Sjp)Si−1−je2k + S
i−1e2k

)
+

S
ie2k+1 + S

i−1e2k+1 +

i−2∑

j=1

εjS
i−1−je2k+1 + (εi−1 + 1)e2k+1 .

Applying Lemma 4 we see that, independent of the εi’s, pi has sum 0 for i < 2k − 1
and sum 1 for i = 2k − 1. This establishes the induction step in the theorem.

Corollary 7. For n ≥ 3 the length of each F -orbit in Pn(DUU) is 2k, where k is the
number of bits in the base-2 expansion of n− 2. (For n = 1 or 2, | Pn(DUU) | = 1.)

Proof This is just a restatement of part of the preceding Theorem.

5 F on Primitive DUU -containing Paths

The preceding section analyzed F on P(DUU), primitive Dyck paths avoiding DUU .
Now we consider F on P[DUU ], the primitive Dyck paths containing a DUU . Every
P ∈ P[DUU ] has the form AQB where

(i) A consists of one or more Us

(ii) The concatenation AB ∈ P(DUU)

(iii) Q is a nonempty Dyck path, Q /∈ P and Q ends with DD (and hence Q contains a
DUU at its ground level).

To see this, locate the rightmost of the lowest DUUs in P , say at height h. Then
A = Uh, Q starts at step number h + 1 and extends through the matching downstep of
the middle U in this rightmost lowest DUU , and B consists of the rest of the path.
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The AQB decomposition of a path containing a DUU
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Call the path AB the (DUU -avoiding) skeleton of P and Q the (DUU -containing)
body of P . In case P ∈ P(DUU), its skeleton is itself and its body is empty. If the
skeleton of P is UD, then P is uniquely determined by its skeleton and body. On the
other hand, a skeleton of size ≥ 2 and a nonempty body determine precisely two paths P
in P[DUU ], obtained by inserting the body at either the top or the bottom of the first
peak upstep in the skeleton, as illustrated.
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two possible P s

Recapturing a path P ∈ P[DUU ] from a skeleton S and body B

Thus paths in P[DUU ] correspond bijectively to triples (S, B, pos) where S ∈ P(DUU)
is the skeleton, B 6= ε is the body, and pos = top or bot according as B is positioned at the
top or bottom of the first peak upstep in S, with the proviso that pos = top if S = UD.
For pos ∈ {top, bot}, pos′ denotes the other one.

In these terms, F can be specified recursively on P[DUU ] as follows.

Proposition 8.

F
(
(S, B, pos)

)
=

{
(F (S), F (B), pos ) if height(S) is odd, and

(F (S), F (B), pos′ ) if height(S) is even.

Proof For a Dyck path P containing a DUU , let h(P ) denote the height of the
lowest valley vertex occurring in a DUU . Thus, if P ends with DD, then h(P ) = 0⇔ P
is not primitive. Now suppose P ∈ P[DUU ]. The result holds for h(P ) = 1 (second
case in Diagram 1 of §3). If h(P ) ≥ 2 (first case in Diagram 1), then P has the form
U2P ′(UD)aD(UD)bD with a, b ≥ 0 and P ′ a Dyck path that ends with DD. So F (P ) =
U b+1F (P ′)(UD)a+1Db+1 and h(P ′) = h(P )− 2. These two facts are the basis for a proof
by induction that begins as follows. If h(P ′) = 0, then the body of F (P ) has position =
bottom, while the body of P has position bottom or top according as a ≥ 1 or a = 0. In
the former case, the skeleton of P has height 3 and position has been preserved, while in
the latter it has height 2 and position has been reversed.

6 LCO Forests and the Orbits of F

Iterating the skeleton-body-position decomposition of §5 on each component, a Dyck
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path has a forest representation as illustrated below. Each vertex represents a skeleton
and is labeled with the corresponding composition. When needed, a color (top or bot) is
also applied to a vertex to capture the position of that skeleton’s body.
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11 11
1

1 1 11

21

11 11, bot

A Dyck path and corresponding LCO forest

The 3 trees in the forest correspond to the 3 components of the Dyck path. The skeleton
of the first component is UD and its body has 2 identical components, each consisting
of a skeleton alone, yielding the leftmost tree. The skeleton of the third component is
UUDD and its body is positioned at the bottom of its first peak upstep, and so on. Call
this forest the LCO (labeled, colored, ordered) forest corresponding to the Dyck path.
Here is the precise definition.

Definition 9. An LCO forest is a labeled, colored, ordered forest such that

1. the underlying forest consists of a list of ordered trees (a tree may consist of a root
only)

2. no vertex has outdegree 1 (i.e., exactly one child )

3. each vertex is labeled with a composition that ends with a 1

4. each vertex possessing children and labeled with a composition of size ≥ 2 is also
colored top or bot

5. each childless vertex that has a parent and is the rightmost child of its parent has
label composition of size ≥ 2.

The size of an LCO forest is the sum of the sizes of its label compositions. The corre-
spondence Dyck path ↔ LCO forest preserves size, and primitive Dyck paths correspond
to one-tree forests. Thus we have

Proposition 10. The number of LCO forests of size n is the Catalan number Cn, as is
the number of one-tree LCO forests of size n + 1.
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The C4 = 14 one-tree LCO forests corresponding to primitive Dyck 5-paths are shown,
partitioned into F -orbits.

→ → →
15 221 311 41
• • • • →→→

121111212111131
••••

→ →
11, bot 11, top

1 11 1 11 1 21 1 111 1 1 11 1111

1 1 1 1

@@�� @@�� @@�� @@�� @@�� @@��
•

•
• •

•

• •

•
• •

•
• • •

•
• • •

•

The LCO one-tree forests of size 5, partitioned into F -orbits

We can now give an explicit description of F on Dyck paths identified with LCO
forests. By Proposition 8, F acts as follows on an LCO forest:

• the underlying list of ordered trees is preserved

• each label c becomes F (c) as defined in Prop. 1

• each color (top/bot) is preserved or switched according as the associated label c has
odd or even length.

From this description and Corollary 7, the size of the F -orbit of a Dyck path P can
be determined as in the following Proposition. In an LCO forest, call a childless vertex a
leaf; in particular, an isolated root is a leaf. Recall that the labels in an LCO forest are
compositions that end with a 1, and the size of a composition is the sum of its entries.

Proposition 11. In the LCO forest for a Dyck path P , let ` denote the maximum size
of a leaf label and i the maximum size of a non-leaf label. Let k denote the number of bits
in the base-2 expansion of max{`− 2, i− 1} (with k := 0 if max{`− 2, i− 1} ≤ 0). Then
the F -orbit of P has size 2k.

It is also possible to specify orbit sizes in terms of subpath avoidance. For Dyck paths
Q and R, let Q top R (resp. Q bot R) denote the Dyck path obtained by inserting R
at the top (resp. bottom) of the first peak upstep in Q. Then the F -orbit of a Dyck
path P has size ≤ 2k iff P avoids subpaths in the set {Q top R, Q bot R : R 6= ε, Q ∈
Pi(DUU), 2k−1 + 1 < i ≤ 2k + 1}. For k ≥ 1, listing these Qs explicitly would give
22k − 22k−1

proscribed patterns of the form Q top R, R 6= ε (and the same number of
the form Q bot R). For k = 0, that is, for fixed points of F , the proscribed patterns
are UP +UDD and UUP +DD with P+ a nonempty Dyck path, and avoiding the first of
these amounts to avoiding the subpath DUDD.

7 Generating Functions

The preceding section concludes with a negative characterization of Dyck paths that
lie in an F -orbit of size ≤ 2k—they must avoid certain subpaths. More useful for finding
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generating functions is a positive (and recursive) characterization for primitive Dyck paths
in terms of the skeleton-body decomposition. Recall that the body of a Dyck path is either
empty or a non-primitive Dyck path that ends with DD. Consider primitive Dyck paths
that lie in an orbit of size ≤ 2k. For k = 0 (fixed points), these paths are UD, UUDD
and URD where R is a non-primitive Dyck path that ends with DD and is a fixed point
for F ; in other words, primitive Dyck paths whose skeleton is of size ≤ 2 and whose body
is empty, together with primitive paths that have a skeleton of size 1 and a nonempty
body that is a fixed point for F . In general, for k ≥ 0, the primitive Dyck paths that
lie in an orbit of size ≤ 2k consist of two disjoint classes: (i) primitive Dyck paths whose
skeleton is of size ≤ 2k + 1 and whose body is empty, (ii) primitive Dyck paths that have
a skeleton of size ≤ 2k and a nonempty body lying in an orbit of size ≤ 2k.

From this characterization we can derive the generating function for the number of
Dyck paths lying in an orbit of size ≤ 2k as follows. Let Fk(x), Gk(x), Hk(x) denote
the respective generating functions for general Dyck paths, primitive Dyck paths, and
non-primitive Dyck paths that end with DD (x always marking size). We find

Fk(x) = 1︸︷︷︸
empty
path

+ Gk(x)︸ ︷︷ ︸
primitive

path

Fk(x)︸ ︷︷ ︸
arbitrary

path

,

Gk(x) = x + x2 + 2x3 + 4x4 + . . . + 22k−1x2k+1

︸ ︷︷ ︸
skeleton size ≤ 2k + 1, body empty

+

Hk(x)︸ ︷︷ ︸
nonempty

body

(
x︸︷︷︸

skeleton
size 1

+ 2︸︷︷︸
place
body

(x2 + 2x3 + 4x4 + . . . + 22k−2x2k

︸ ︷︷ ︸
2 ≤ skeleton size ≤ 2k

)
)
,

Hk(x) = (Fk(x)− 1)︸ ︷︷ ︸
nonempty

path

(Gk(x)− x︸ ︷︷ ︸
primitive,

ends with DD

)

After eliminating Gk and Hk from this system of equations and simplifying, we obtain

Fk(x) =
1− ak −

√
1− 4x +

ak(2− ak)x
1− x

2x− ak

,

where ak = (2x)2k+1. With Fk in this form it is clear, as expected, that limk→∞ Fk(x) =
1−

√
1−4x

2x
, the generating function for the Catalan numbers.

It follows that the generating function for the number of orbits of (exact) size 2k is




F0(x) if k = 0, and

Fk(x)− Fk−1(x)
2k if k ≥ 1.

(2)

This yields Table 1 wherein a divisibility property is evident in the columns on the
right.
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n \ k 0 1 2 3 4 5
1 1
2 2
3 3 1
4 6 2 1
5 12 7 4
6 26 23 11 2
7 59 71 41 8
8 138 224 151 30
9 332 709 550 114
10 814 2253 1993 406 16
11 * 7189 7211 1564 64
12 * * 26221 6010 240
13 * * 95583 23062 912
14 * * * 88530 3504
15 * * * * 13536
16 * * * * 52432
17 * * * * 203440
18 * * * * 786320 2048

Table 1: Number of orbits of size 2k of F on Dyck n-paths

Proposition 12. On Dyck n-paths, the number of F -orbits of size 2k is divisible by 22k−1−k

for all n, k ≥ 1.

Proof The expression Fk(x)−Fk−1(x)

2k in (2) simplifies to

(2x− 1)b−
√

S1 + (1 + b)
√

S2

2k+1x(1− b2)
(3)

where b = (2x)2k−1

, S1 = 1− 4x + 4x2b2(1−b2x)
1−x

, S2 = 1− 4x + 4x2b(1−bx)
1−x

. The numerator
in (3) vanishes for b = 0. Hence its series expansion in b has no constant term and so, in
its series expansion in x (with b a fixed indeterminate), every coefficient is divisible by b.
Every coefficient is also divisible by 2 because the numerator can be expressed

(2x− 1)b−
√

1− 4X + (1 + b)
√

1− 4Y (4)

where X and Y are integer-coefficient power series in b and x. Since
√

1− 4Z = 1 −
2
∑

n≥0 CnZn+1, (4) becomes

(2x− 1)b−
(

1− 2
∑

n≥0

CnXn+1

)
+ (1 + b)

(
1− 2

∑

n≥0

CnY n+1

)

which reduces to 0 mod 2; hence the coefficients are also divisible by 2. Divisibility by
2b now implies that when b is replaced by its actual value (2x)2k−1

the expansion of the
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numerator in (3) as a power series in x has every coefficient divisible by (2)2k−1+1. Taking
account of the 2k+1 factor in the denominator (the “x” cancels), the net result is that

every coefficient in the series expansion of
Fk(x)−Fk−1(x)

2k is divisible by 22k−1−k.
But more is true. The sequences obtained by dividing each column in Table 1 by its

top entry approach a limit sequence 1,4,15,57,. . . . We can explain this combinatorially as
follows. The first nonzero entry in column k (k ≥ 2) is in row n = 2k−1 +2 and this entry
is 22k−1−k since the number of LCO forests of 2k−1 + 2 lying in an orbit of size k is 22k−1

.
This is because Prop. 11 implies such forests are necessarily one-tree forests consisting
only of a root labeled with c ∈ C2k−1+2 and | Cn | = 2n−2. Fix k ≥ 1 and let ci denote a
composition of size 2k−1 +2+ i. We will need to allow i = −1 but for 0 ≤ i < 2k−1, Prop.
11 implies ci lies in an orbit of size 2k. Now for i in this range, the criterion of Prop. 11
implies that the LCO forests of size 2k−1 + 2 + i lying in an orbit of size 2k are precisely
those satisfying the properties: (i) one label is cj, j ≥ −1, (ii) if j = −1, then the vertex
with label cj has children, (iii) the sum of all label sizes is 2k−1 + 2 + i. These forests can
be represented as modified LCO forests.

Define a modified LCO forest to be an LCO forest whose composition labels include
11 (of size 2), one of which is circled, and with an additional integer label j ≥ −1 on the
vertex whose label is circled subject to the restriction j ≥ 0 if this vertex is a leaf. The
circled label represents the cj label and is taken to be 11 simply to capture the fact that
cj has size ≥ 2. Define the size of a modified LCO forest to be the sum of the non-circled
labels plus j, and define its weight to be 2j.

• •

� � �

� � �

�31 11 1

1 1 11

11 , bot, j = −1

121, top

A modified LCO forest of size 15− 1 = 14 and weight 1
2

Because incrementing the subscript in cj doubles the number of possibilities for the

composition cj and recalling that the number of possibilities for cj with j = 0 is 22k−1

,
we see that the number of orbits of size 2k involving LCO forests of size 2k−1 + 2 + i
(0 ≤ i < 2k) is 22k−1−k times the total weight of all modified LCO forests of size i, and
this total weight is independent of k.

The generating function for the total weight of modified LCO forests, with x marking
size, can be found by the recursion method used above to obtain the generating function
Fk(x) for Dyck paths counted by orbit size. It turns out to be

1− 2x

2x3

(
1− 3x

(1− x)
√

1− 4x
− 1

)
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with coefficient sequence 1, 4, 15, 57, 219, 846, 3277, . . . . (It can also be extracted analyti-
cally from Fk(x)− Fk−1(x).)

We have shown that the sequence obtained from column k agrees with the limit se-
quence in its first 2k−1 entries for k ≥ 1, and thus the convergence is quite rapid.

Summing the columns in Table 1 above gives the total number of orbits of F on Dyck
n-paths, A127384 in OEIS.

n 1 2 3 4 5 6 7 8 9 10
# orbits 1 2 4 9 23 62 179 543 1705 5482

number of orbits of F on Dyck n-paths

The counting sequence for fixed points of F , with generating function F0(x), is se-
quence A086625.

8 An Application

Ordered trees and binary trees are manifestations of the Catalan numbers A000108.
Donaghey and Shapiro [12] and Donaghey [13] list several types of restricted tree counted
by the Motzkin numbers A001006. In particular, the following result is implicit in item
IIIC of [13].

Proposition 13. The Motzkin number Mn counts right-planted binary trees on n + 1
edges with no erasable vertices.

Here, planted means the root has only one child, and erasable refers to a vertex incident
with precisely 2 edges both of the same slope—the vertex could then be erased, preserving
the slope, to produce a smaller binary tree. The M3 = 4 such trees on 4 edges are shown.
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•
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•

•

•

•

•

•

•

•

•

•

•

•

The right-planted binary 4-trees with no erasable vertices

Translating right-planted binary trees to Dyck paths using the bijections illustrated
below (essentially Knuth’s “natural correspondence” [14], due to Harary, Prins, and Tutte
[15] and explicated by de Bruijn and Morselt [16]), Prop. 13 is equivalent to

Proposition 14. Mn counts Dyck (n + 1)-paths that end with DD and avoid subpaths
DUDU and UUP +DD with P + denoting a nonempty Dyck subpath.
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right-planted
binary tree

left-planted
binary tree

ordered
tree

Dyck
path

(1) rotate 45◦

(2) swing down horizontal edges
(3) burrow up the edges and open out accordion-style

binary tree ↔ Dyck path correspondence

We will use F to give a bijective proof of Prop. 14 based on the fact [17] that Mn also
counts DUD-avoiding Dyck (n + 1)-paths. (Of course, path reversal shows that # UDUs
and # DUDs are equidistributed on Dyck paths.) Using the Iverson notation: [statement ]
= 1 if statement is true, = 0 if statement is false, define statistics X and Y on Dyck paths
by X = # DUDs and Y = # DUDUs + # UUP +DDs + [paths ends with UD] so that
the paths in Prop. 14 are those with Y = 0. Prop. 14 then follows from

Proposition 15. On Dyck n-paths with n ≥ 2, F sends the statistic X to the statistic
Y .

Proof Routine by induction from the recursive definition of F . However, using the
explicit form of F , it is also possible to specify precisely which DUDs correspond to each
of the three summands in Y . For this purpose, given a DUD in a Dyck path P , say
D1U2D3 (subscripts used simply to identify the individual steps), let S(D1U2D3) denote
the longest Dyck subpath of P containing D1U2D3 in its skeleton and let h denote the
height at which D1U2D3 terminates in S(D1U2D3). If h is odd, D1U2D3 is immediately
followed in P by D4 or by UD4 (it cannot be followed by UU). In either case, let U4 be
the matching upstep for D4. Then the steps D1, U2, D3, U4 show up in F (P ) as part of
a subpath U4U2P

+D3D4 with P+ a Dyck path that ends with D1. On the other hand,
if h is even, D1U2D3 either (i) ends the path (here S(D1U2D3) = P and h = 0) or is
immediately followed by (ii) U4 or (iii) D. In case (iii), let U4 be the matching upstep.
Then D1, U2, D3, U4 show up in F (P ) as a subpath in that order (cases (ii) and (iii)) or
F (P ) ends with U2D3 (case (i)). The details are left to the reader.

9 Statistics Suggested by LCO Forests

There are various natural statistics on LCO forests, some of which give interesting
counting results. Here we present two such. First let us count one-tree LCO forests by
size of root label. This is equivalent to counting primitive Dyck paths by skeleton size.
Recall that the generalized Catalan number sequence

(
C

(j)
n

)
n≥0

with C
(j)
n := j

2n+j

(
2n+j

n

)
is

the j-fold convolution of the ordinary Catalan number sequence A000108. (See [18] for a
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nice bijective proof.) And, as noted above, in the skeleton-body-position decomposition
of a primitive Dyck path, if the body is nonempty it contains a DUU at (its own) ground
level and ends with DD.

Lemma 16. The number of Dyck n-paths that contain a DUU at ground level and end
with DD is C

(4)
n−3.

Proof In such a path, let U0 denote the middle U of the last DUU at ground level.
The path then has the form AU0BD where A and B are arbitrary nonempty Dyck paths,
counted by C

(2)
n−1. So the desired counting sequence is the convolution of

(
C

(2)
n−1

)
with

itself and, taking the U0D into account, the lemma follows.
The number of primitive DUU -avoiding Dyck k-paths is 1 if k = 1, and 2k−2 if k ≥ 2.

But if k ≥ 2, there are two choices (top/bottom) to insert the body. So the number of

primitive Dyck (n + 1)-paths with skeleton size k is 2k−1C
(4)
n−k−2 for 1 ≤ k ≤ n− 2 and is

2n−1 for k = n + 1. Since there are Cn primitive Dyck (n + 1)-paths altogether, counting
by skeleton size yields a combinatorial interpretation of the following identity.

Proposition 17.

Cn = 2n−1 +
n−2∑

k=1

2k

n− k

(
2n− 2k

n− 2− k

)
.

Recall that an isolated root in an LCO forest is considered a leaf. Counting by number
of leaves yields a pretty generating function.

Proposition 18. The generating function for LCO forests by number of leaves (x marks
size, y marks number of leaves ) is

1−
√

1− 4x 1− x
1− xy

2x
.

The first few values are given in Table 2.
For example, the LCO forests of size 3 are •

111
, •

21
, •

1
•
11

, •
11
•
1
, •

1
•
1
•
1

with 1,1,2,2,3

leaves respectively.

Proof Observe that deleting the root from a one-tree LCO forest leaves an LCO
forest that is either (i) empty, or (ii) consists of at least 2 trees (condition 2 in Definition
9 of §6) and if the last tree consists of a root only then its composition label has size
≥ 2 (condition 5). So let F (x, y) denote the desired generating function, G(x, y) the
generating function for 1-tree LCO forests, and H(x, y) the generating function for the
LCO forests satisfying condition (ii).

We need three equations to determine F, G, H:

1. An LCO forest is either empty or consists of a 1-tree LCO forest followed by an
arbitrary LCO forest. Hence

F = 1 + GF
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n \ k 1 2 3 4 5 6 7 8
1 1
2 1 1
3 2 2 1
4 4 6 3 1
5 8 17 12 4 1
6 16 46 44 20 5 1
7 32 120 150 90 30 6 1
8 64 304 482 370 160 42 7 1

Table 2: number of LCO forests of size n with k leaves

2. Partition 1-tree LCO forests into four classes with respective contributions to G as
shown

@@�� @@��
.....

.....
• • • •

→

→

1-tree LCO
forest

contribution
to G

deg(root)=0 deg(root)=0

k := size(c) ≥ 2

deg(root)≥ 2 deg(root)≥ 2

k := size(c) ≥ 2

1 c 1 c, pos

xy 2k−2xky xH 2k−22xkH

(Recall a label composition ends with a 1 and there are 2k−2 such of size k.) This
yields

G = xy +
x2y

1− 2x
+

xH

1− 2x

3. An LCO forest counted by H consists of a nonempty LCO forest followed by a 1-
tree LCO forest such that the tree does not consist of a single vertex labeled 1 (this
vertex would be a root and a leaf). Hence

H = (F − 1)(G− xy)

Eliminating G and H from these three equations yields a quadratic for F from which the
Proposition follows.
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