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Abstract

The distinguishing number ∆(X) of a graph X is the least positive integer n for
which there exists a function f : V (X) → {0, 1, 2, · · · , n−1} such that no nonidentity
element of Aut(X) fixes (setwise) every inverse image f−1(k), k ∈ {0, 1, 2, · · · , n −
1}. All infinite, locally finite trees without pendant vertices are shown to be 2-
distinguishable. A proof is indicated that extends 2-distinguishability to locally
countable trees without pendant vertices. It is shown that every infinite, locally
finite tree T with finite distinguishing number contains a finite subtree J such that
∆(J) = ∆(T ). Analogous results are obtained for the distinguishing chromatic

number, namely the least positive integer n such that the function f is also a proper
vertex-coloring.

1 Introduction

The distinguishing number ∆(X) of a graph X is the least positive integer n for which
there exists a function f : V (X) → {0, 1, 2, · · · , n− 1} such that every element of Aut(X)
fails to fix (setwise) at least one of the inverse images f−1(k), k ∈ {0, 1, 2, · · · , n − 1}.
Intuitively, ∆(X) is the least number of colors with which V (X) can be colored so that no
automorphism preserves all of the color classes. We call X n-distinguishable if ∆(X) ≤ n.
The notion of distinguishability is originally due to Albertson and Collins [1] and has been
pursued in [6].
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The distinguishing chromatic number of a graph G was proposed by Collins and Trenk
[3]. Denoted by χ∆(G), it is the least positive integer n for which there exists a function
f : V (G) → {0, 1, · · · , n − 1} such that, in addition to the above condition, also satisfies
the condition that, for all u, v ∈ V (G), f(u) 6= f(v) whenever u and v are adjacent.

The purpose of this paper is to determine the distinguishing number and the dis-
tinguishing chromatic number for all infinite, locally finite trees. Determination of the
distinguishing number is accomplished by two main results. First we show that all in-
finite, locally finite trees without pendant vertices are 2-distinguishable. We then show
that any locally finite tree with finite distinguishing number contains a finite subtree with
the same distinguishing number. The latter result requires a two-pronged attack. First
we deal with multiended trees; trees without pendant vertices fall in this category. Then
we resolve the matter for one-ended trees.

Minor adaptations of these proofs yield analogous results for (1) the distinguishing
chromatic number for infinite, locally finite trees and (2) the distinguishing number of
locally countable trees. Our work thus extends the work of Cheng [2] and Collins and
Trenk [3] for finite trees.

2 Preliminaries

Throughout this article, except in the concluding section §6, the symbol T denotes an
infinite locally finite tree, i.e., all valences are finite. A 1-valent vertex is called a pendant
vertex. The usual graph metric is denoted by δ(·, ·).

In 1964, R. Halin [4] introduced the notion of ends of graphs, an analogue to ends
of groups: two rays (one-way infinite paths) in a graph belong to the same end if the
intersection of some third ray with each of the given rays is infinite. For a locally finite
graph X, the number of these equivalence classes of rays can also be defined to be the
supremum of the number of infinite components of X − Y as Y ranges over all finite
subgraphs of X. Every infinite, locally finite graph contains a ray (König’s Theorem) and
hence has at least one end. A graph is multiended if it has more than one end. In a tree,
two rays are end-equivalent if and only if their intersection is a common subray. Figure
1 shows two examples of locally finite trees: the first one is called a double ray and it has
two ends; the second tree has only one end.

Proposition 2.1 If a tree has no pendant vertex, then it is multiended.

Proof. Suppose that T is one-ended, and let v ∈ V (T ). If v is not a pendant vertex or
adjacent to a pendant vertex, then T − v has a component F which is a nontrivial finite
tree. Since nontrivial finite trees have at least two pendant vertices, at least one vertex
of F is not adjacent to v and hence is a pendant vertex of T . �

For each vertex v ∈ V (T ), Hv will denote the subtree of T consisting of the union
of all the finite components of T − v together with the vertex v and the edges joining v
to the union of these finite components. Since v has finite valence, Hv is finite. Such a
finite subtree will be called by the botanical term epiphyte, and we say that Hv is joined
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Figure 1: Examples of locally finite trees.

at v. For any vertex v of T , at most one nonempty epiphyte is joined at v. Clearly T has
nonempty epiphytes if and only if T has pendant vertices.

Let W be the set of vertices w ∈ V (T ) such that T − w has at least two infinite
components. The induced subgraph T c = 〈W 〉 is called the core of T . By definition, if T
is one-ended if and only if W = ∅.

Suppose that w ∈ W , and let T1 and T2 be two infinite components of T − w. For
i = 1, 2, let ti be the vertex of Ti adjacent to w. Then T − t1 also has at least two
infinite components, one of which contains T2 + w. Because T is locally finite, T − t1 has
only finitely many components, and so one of them must contain an infinite connected
subgraph of T1 − t1. With a similar argument for t2, we conclude that every vertex in
W has at least two neighbors in W , and so the induced subgraph 〈W 〉 has no pendant
vertex. This implies that W is infinite.

Now let w, w′ ∈ W and let P = 〈w = p0, p1, . . . , pk = w′〉 be the (unique) ww′-path in
T . Since p1 belongs to one of (at least) two infinite components of T − w, the argument
of the previous paragraph implies that p1 ∈ W . By induction, V (P ) ⊂ W . Hence 〈W 〉 is
connected. We have shown:

Proposition 2.2 For any infinite, locally finite tree T , the core T c of T is either empty
or is an infinite, locally finite tree without pendant vertices. In the latter case, T is
multiended and T c is the unique maximal subtree without pendant vertices. Furthermore,
T has exactly one end if and only if it has an empty core.

A rooted tree is a pair (T, z), where z ∈ V (T ) is its root. The distinguishing num-
ber ∆(T, z) is defined in the same way as ∆(T ) except that only automorphisms in the
stabilizer Autz(T ) are considered. Thus ∆(T, z) ≤ ∆(T ).

In a rooted tree (T, z), the level of any vertex v is its distance from the root z, the root
itself being at level zero. If v 6= z, then the parent of v is the neighbor of v on the zv-path
in T . If v is the parent of w, then w is an offspring of v. Vertices having a common parent
are siblings. (These terms are borrowed from [3].)
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3 Multiended Trees

Theorem 3.1 Every locally finite infinite tree without pendant vertices is 2-distinguishable.

Proof. Let (T, z) be a rooted tree, where T has no pendant vertices. For ` ≥ 0, let S`

denote the `-sphere about z, i.e., the set of vertices at level `. Since T has no pendant
vertices, clearly |S`| ≤ |S`+1| for all ` ≥ 0.

We establish a lexicographic ordering of the set V (T ). The ordering is first by level:
z at level 0 is the first element, and then the elements of S1 are ordered arbitrarily.
Assuming that S` has been ordered, if y, y′ ∈ S` and y′ is the successor of y, then the
offsprings of y are ordered arbitrarily followed immediately by the offsprings of y ′ also
ordered arbitrarily. In this manner, the set S`+1 is ordered.

Let β1 denote the binary sequence

β1 := 101021031 · · ·10k10k+11 · · · ,

where 0k indicates k consecutive 0s. Let βm be the tail of β1 beginning with the mth 1;
thus

βm = 10m10m+110m+21 · · · . (m ∈ N).

We now define a coloring f : V (T ) → {0, 1}. To begin, let f(z) = 1. Suppose that
S1 = {y1, · · · , yr}, where the indices are consistent with above-described ordering. For
m = 1, . . . , r, let Rm denote the ray emanating from ym that proceeds next to ym’s first
offspring ym1, then to that offspring’s first offspring, ad infinitum. (Such a ray exists
because there are no pendant vertices.) Use βm to color this ray: the jth vertex on the
ray Rm is assigned the jth digit of βm.

We next complete the coloring of S2, noting that the first offspring ym1 of each ym ∈ S1

has been colored by the first 0 of βm (m = 1, . . . , r). If y1 has a second offspring y12, let
R12 be the ray emanating from y12 that proceeds to y12’s first offspring, then to that
offspring’s first offspring, ad infinitum, and use βr+1 to color the vertices of R12 in the
same manner. Thus each of the s siblings of y11 is the initial vertex of a ray colored via
βr+1, . . . , βr+s, respectively. We then move on the second offspring of y2.

In general, as the vertices are encountered in lexicographic order, they become the
initial vertices of rays colored via the next available sequence βm with two exceptions to
this rule:

1. Vertices already colored (because they lie on a ray defined at a lower level) are
skipped over;

2. Suppose that a vertex x′ is the second offspring of a parent v which is already
colored 0, while the first offspring x of v is already colored 1. Suppose further that
the number of consecutive vertices following x on the already-colored ray through
v and x that have been colored 0 is n, that the next unused sequence is βm, and
that m ≤ n. In this case skip over the sequences βm, βm+1, . . . , βn, and let the ray
emanating from x′ be colored via βn+1.
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(This second exception is not vacuous, as illustrated in Figure 2, in particular if there
are many 2-valent vertices closer to the root. In the figure, the vertices assigned to 0 are
colored white, and those assigned to 1 are colored black. Note that β4 and β6 must be
skipped over.)

y

y

z

y
2

3

1 xv

x’

Figure 2: the second exception.

We now show that no automorphism of T fixes the color class f−1(1), but first we
make some observations.

1. The root z is the only vertex colored 1, all of whose neighbors are also colored 1.
Hence z is a fixed point of any automorphism fixing the set f−1(1).

2. If a vertex other than z is colored 1, then exactly one of its offsprings, namely its
first offspring, is colored 0.

3. If a vertex is colored 0, then at most one of its offsprings is colored 0.

Let ϕ be a non-identity element of Aut(T ) and suppose that ϕ fixes f−1(1) setwise.
Noting that, if ϕ fixes a vertex v, then it fixes each vertex of the (unique) zv-path, pick
the largest ` such that ϕ fixes S` pointwise. Let v ∈ S`. It suffices to prove that ϕ fixes
each of v’s offsprings.

If v has only one offspring, the conclusion is obvious, so suppose that x and x′ are
offsprings of vwith x immediately preceding x′ is the lexicographic order. In the light of
observations 2 and 3 above, we may assume that f(x) = f(x′) = 1 and that each of x and
x′ has a unique offspring colored 0. Let n be the length of the longest path starting at x
such that all its vertices except x are colored 0. Then there are exactly two possibilities:

Case 1: x is v’s first offspring. In this case the second exception applies. The sequence
βn+1 was used to color a ray emanating from x′, and so n + 1 is the length of the longest
path starting at x′ such that all its vertices except x′ are colored 0. Not only must f not
map x onto x′, but a fortiori f cannot map x onto any of its siblings.

Case 2: x is not v’s first offspring. In this case the “generic” coloring rule applies: x
and x′ are initial vertices of rays colored via βn and βn+1, respectively, and the argument
proceeds as in Case 1. �
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Remark. The 2-coloring described in the foregoing theorem has an additional property.
Not only is there no automorphism that fixes each color class (setwise), but we can require
as well that no automorphism interchange the two color classes. If T is simply a double
ray, then one easily verifies that the 2-coloring given in the proof of the theorem yields the
desired result. Otherwise, one may select any vertex of valence ≥ 3 to be the root. The
root is then the only vertex of valence ≥ 3 to receive the same color as all of its neighbors.

Theorem 3.2 Let T be an infinite, locally finite, multiended tree. Unless T is asymmet-
ric,

∆(T ) = sup{2, {∆(Hv, v) : v ∈ V (T c)}}.

Proof. If all epiphytes of T are empty, i.e., if T = T c, then ∆(T ) = 1 if T is asymmetric.
Otherwise ∆(T ) = 2 by Theorem 3.1.

The restriction to T c of any automorphism of T is clearly an automorphism of T c.
Let v ∈ V (T c), and consider its orbit O(v) = {ϕ(v) : ϕ ∈ Aut(T )}. Let A(v) denote
the permutation group on O(v) induced by Aut(T ). For every vertex w ∈ O(v), Hw is
isomorphic to Hv. Thus Aut(T ) contains a wreath product Autv(Hv) o A(v). (Clearly if
Hv is empty, then the first factor of the wreath product is trivial.) Aut(T ) is itself some
sort of product over the orbits of Aut(T ) of these wreath products. If the color classes of
a coloring of V (T ) are preserved by none of these wreath products, then they will also be
preserved by no nonidentity element of Aut(T ). We describe such a coloring.

First let T c be 2-colored exactly as in the proof of Theorem 3.1. If ϕ ∈ Aut(T ) fixes
the two color classes in V (T c), then ϕ is the identity when restricted to T c. Furthermore,
the restriction ϕ|Hv

belongs to the stabilizer Av(Hv). Now let V (Hv) be colored with the
least number of colors so that no automorphism in Autv(Hv) preserves all of the color
classes. It follows that ∆(T ) ≥ ∆(Hv, v) for any vertex v of T c.

For each vertex v ∈ V (T c), a permutation of the colors of Hv is possible so that, in
that epiphyte, the vertex v is assigned the same color 0 or 1 that v was assigned in T c.
This completes the coloring of V (T ). It follows that, if there exists some n such that
2 ≤ ∆(Hv, v) ≤ n whenever Hv is not empty, then ∆(T ) ≤ n, completing the proof. �

Of the two graphs in Figure 1, the double ray has distinguishing number 2 by Theorem
3.1. The second graph has infinite distinguishing number because the distinguishing
numbers of its epiphytes are not bounded.

Corollary 3.3 Let T be an infinite, locally finite, multiended tree. If ∆(T ) = n < ∞,
then T contains a finite subtree J such that ∆(J) = n.

Proof. By Theorem 3.1, if all epiphytes of T are empty, then ∆(T ) = 1 or 2, in which
case we note that T contains copies of K1 and K2. Otherwise, by Theorem 3.2, T has an
epiphyte Hv such that v ∈ V (T c) and ∆(T ) = ∆(Hv, v) = n. If Aut(Hv) = Autv(Hv),
then we’re done. If Aut(Hv) 6= Autv(Hv), then rather than attempt to destroy any
automorphism of Hv that does not fix v, we consider instead the finite subgraph J obtained
by adjoining to Hv a path in T c beginning at v of length |V (H)|+ 1. (Such a path exists
by Proposition 2.2.) Then ∆(J) = ∆(Hv, v) = n as required. �
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4 One-Ended Locally Finite Trees

One-ended trees have properties that require a different approach. Unlike in multiended
trees, the intersection of any two rays is a common subray. By a result of Halin ([5],
Theorem 7), the automorphism group of a one-ended tree T admits no translation. Thus
every automorphism of T admits only orbits of finite length, although an automorphism
may have infinitely many orbits and there need be no upper bound to their lengths. In
fact, with an empty core, one-ended trees are nothing but an infinite union of epiphytes
within epiphytes.

Lemma 4.1 Every automorphism of a one-ended locally finite tree has a fixed point.

Proof. Suppose that T is a one-ended locally finite tree, let α ∈ Aut(T ), and suppose
that α has no fixed point.

Claim 1: If α fixes a path P in T , then α fixes P pointwise.
If α fixes P setwise but not pointwise, then α swaps the two terminal vertices of P .

Since α has no fixed point, P has odd length and α must fix a unique edge e = [u, v] on
P . Since T is one-ended, T − e has exactly one infinite component, and that component
must contain exactly one of u and v. Although α fixes e, α cannot then swap u and v, a
contradiction, proving Claim 1.

Arbitrarily choose x ∈ V (T ). Since α(x) 6= x, let P denote the unique path from x
to α(x). Since α admits only orbits of finite length, there exists a least integer n > 1
such that αn(x) = x. If n = 2, then α would fix P setwise but not pointwise, contrary to
Claim 1. Hence n ≥ 3.

Let z be the vertex of P ∩ α(P ) that is nearest to x. Then α(z) is the vertex in
α(P ) ∩ α2(P ) that is nearest to α(x). By assumption, α(z) 6= z.

Claim 2: α(z) /∈ V (P ).
Suppose α(z) ∈ V (P ). Then α(z) is on the subpath of P joining α(x) and z. Since

z ∈ α(P ), there exits u ∈ V (P ) such that α(u) = z. Since δ(u, z) = δ(α(u), α(z)) =
δ(z, α(z)), either u = α(z), in which case α would fix the path from z to α(z) contrary to
Claim 1, or u is on the subpath of P joining x and z. This, too, is a contradiction since
δ(x, u) = δ(α(x), z) > δ(α(x), α(z)) = δ(x, z), yielding Claim 2.

Now let Q be the path from z to α(z). It is easily checked that
⋃n−1

i=0 αi(Q) is a
nontrivial cycle, contrary to the assumption that T is a tree. �

Since for every vertex z of a one-ended tree, there exists a unique ray emanating from
z, we immediately have the following result.

Corollary 4.2 Each automorphism of a one-ended, locally finite tree fixes some ray point-
wise.

For any graph X, an m-coloring of X is called destructive if no element of Aut(G)
fixes setwise every color class.

Theorem 4.3 Let T be a one-ended locally finite tree, and let n be a positive integer.
∆(T ) = n if and only if max{∆(Hz, z) : z ∈ V (T )} exists and equals n.
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Proof. Assume that ∆(T ) = n. For any z ∈ V (T ), Autz(Hz) is the restriction to Hz of
Autz(T ). Hence ∆(Hz, z) ≤ ∆(T, z) ≤ ∆(T ) = n. Let m := max{∆(Hz, z) : z ∈ V (T )}
(which clearly exists), and so m ≤ n.

We may choose an epiphyte H0 joined at z0 such that ∆(H0, z0) = m. Let R with
V (R) = {z0, z1, z2, . . .} be the ray emanating from z0 and let Hi denote the epiphyte
joined at zi. Since T is one-ended, Hi is a subtree of Hi+1 and Autzi

(Hi) is isomorphic to
a subgroup of Autzi+1

(Hi+1) for all i ≥ 0. Thus m ≤ ∆(Hi, zi) ≤ ∆(Hi+1, zi+1) ≤ m, and
so equality holds for all i ≥ 0.

We now define inductively a coloring f : V (T ) → {0, 1, . . . , m − 1}. First choose
any destructive m-coloring of (H0, z0). This is possible since ∆(H0, z0) = m; let w0

be the number of distinct destructive m-colorings of (H0, z0). Since ∆(H1, z1) = m,
in the epiphyte H1, there are (including H0) at most w0 copies of (H0, z0) attached to
z1 by an edge between z1 and the root of the copy; otherwise (H1, z1) would have no
destructive m-coloring. Therefore, any destructive m-coloring of (H0, z0) can be extended
to a destructive m-coloring of (H1, z1). Choose such a destructive m-coloring of (H1, z1)
and proceed inductively to (H2, z2). Thus we have defined an m-coloring f of T such that
for any integer i ≥ 0, the restriction of f |Hi

is a destructive m-coloring of (Hi, zi). We
now show that f is a destructive coloring of T .

Suppose α ∈ Aut(T ) is not the identity. By Corollary 4.2, there exists a ray R′ fixed
pointwise by α. Choose k large enough such that zk ∈ V (R ∩ R′) and the restriction of
α to (Hk, zk) is not the identity. Since f |(Hk,zk) is a destructive coloring of (Hk, zk), and
α|(Hk,zk) is not the identity of Aut(Hk, zk), there exists a color class, say f−1

|Hk
(j), of Hk,

that is not fixed by α. It follows that α does not fix the color class f−1(j) of T . Hence
m ≥ n. �

Combining Corollary 3.3 and Theorem 4.3, we obtain

Corollary 4.4 Every infinite, locally finite tree with finite distinguishing number contains
a finite subtree with the same distinguishing number.

5 Distinguishing Chromatic Numbers of Locally Fi-

nite Trees

Every nontrivial tree T admits a unique bipartition of its vertex set, thereby determining
a proper 2-coloring (of the vertex set) up to interchanging the colors of its two color
classes. Thus χ∆(T ) ≥ 2. Since every automorphism of T either fixes or interchanges
these color classes, the set of automorphisms that fix each class forms a subgroup of
Aut(T ) of index 2.

Theorem 5.1 Let T be an infinite locally finite tree without pendant vertices. Then
2 ≤ χ∆(T ) ≤ 3. Moreover, χ∆(T ) = 2 if and only if either of the following holds:

(1) T is asymmetric; or
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(2) Aut(T ) = {1, σ} is a group of order 2 and σ interchanges the two color classes of
the proper 2-coloring of T .

Proof. The proof that χ∆(T ) ≤ 3 is essentially that of Theorem 3.1: replace each
instance of βm by the ternary sequence γm = 1(02)m1(02)m+11(02)m+21 · · ·, where (02)1 ≡
02 and (02)k+1 ≡ 02(02)k for k ≥ 1.

Now assume that χ∆(T ) = 2. Hence the subgroup of Aut(T ) that fixes the color
classes is trivial. It follows that |Aut(T )| = 1 or 2. The former corresponds to T being
asymmetric. The latter corresponds to the existence of a unique automorphism that
interchanges the color classes. (This argument is similar to the proof of Theorem 3.1 in
[3].) �

The next two propositions are analogues of Theorems 3.2 and 4.3, respectively.

Proposition 5.2 Let T be a locally finite tree with a nonempty core and pendant vertices.
Then

χ∆(T ) = sup{χ∆(T c), {χ∆(Hv, v) : v ∈ V (T c)}}.

Proposition 5.3 Let T be an infinite locally finite one-ended tree. Then

χ∆(T ) = sup{χ∆(Hv, v) : v ∈ V (T )}.

6 Locally Countable Trees

A reasonable direction for generalization of the foregoing work would be to drop the
assumption of local finiteness, or at least to bound the valences by the first infinite cardinal
ℵ0. In this situation, epiphytes need not be finite!

On the other hand, the statement of Theorem 3.1 is extendable: Every multiended,
locally countable tree without pendant vertices is 2-distinguishable. However, the lexico-
graphic ordering of the vertices used in the proof is superseded by a Cantor diagonal
ordering for the purpose of selecting initial vertices of rays to be colored via the sequences
βm. The ordering is done in the following way. Suppose that v is the kth vertex in S` ac-
cording to the lexicographic ordering. If |S`−1| > k, then the successor of v is the (k+1)st
vertex of S`−1. Otherwise, v’s successor is the first vertex of S`+k+1. Certainly the list
of “exceptions” becomes more complicated. The authors graciously leave this task to the
reader.
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