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Abstract

A set D C V of vertices is said to be a (connected) distance k-dominating set
of G if the distance between each vertex u € V — D and D is at most k (and
D induces a connected graph in G). The minimum cardinality of a (connected)
distance k-dominating set in G is the (connected) distance k-domination number
of G, denoted by v4(G) (v7(G), respectively). The set D is defined to be a total
k-dominating set of G if every vertex in V is within distance k& from some vertex
of D other than itself. The minimum cardinality among all total k-dominating sets
of G is called the total k-domination number of G and is denoted by ~v;(G). For
r € X CV,if NF[lz] — N¥[X — 2] # 0, the vertex z is said to be k-irredundant
in X. A set X containing only k-irredundant vertices is called k-irredundant. The
k-irredundance number of G, denoted by iri(G), is the minimum cardinality taken
over all maximal k-irredundant sets of vertices of G. In this paper we establish
lower bounds for the distance k-irredundance number of graphs and trees. More
precisely, we prove that %irk(G) > 74(G) + 2k for each connected graph G' and
(2k + 1)irg(T) > ~vi(T) + 2k > |V| + 2k — kni(T) for each tree T = (V, E) with
n1(T") leaves. A class of examples shows that the latter bound is sharp. The second
inequality generalizes a result of Meierling and Volkmann [9] and Cyman, Lemariska
and Raczek [2] regarding ~; and the first generalizes a result of Favaron and Kratsch
[4] regarding ir1. Furthermore, we shall show that v£(G) < 354t (G) — 2k for
each connected graph G, thereby generalizing a result of Favaron and Kratsch [4]
regarding k = 1.
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1 Terminology and introduction

In this paper we consider finite, undirected, simple and connected graphs G = (V, E') with
vertex set V and edge set £. The number of vertices |V| is called the order of G and is
denoted by n(G). For two distinct vertices u and v the distance d(u,v) between u and v is
the length of a shortest path between u and v. If X and Y are two disjoint subsets of V,
then the distance between X and Y is defined as d(X,Y) = min{d(z,y) |z € X, y € Y}.
The open k-neighborhood N¥(X) of a subset X C V is the set of vertices in V \ X
of distance at most k from X and the closed k-neighborhood is defined by N*[X] =
NF(X)UX. If X = {v} is a single vertex, then we denote the (closed) k-neighborhood of
v by N*(v) (N*[v], respectively). The (closed) 1-neighborhood of a vertex v or a set X of
vertices is usually denoted by N(v) or N(X), respectively (N[v] or N[X], respectively).
Now let U be an arbitrary subset of V and u € U. We say that v is a private k-neighbor
of u with respect to U if d(u,v) < k and d(u',v) > k for all v € U — {u}, that is
v € N¥[u] — N*¥[U — {u}]. The private k-neighborhood of u with respect to U will be
denoted by PN*[u, U] (PN*[u] if U = V).

For a vertex v € V' we define the degree of v as d(v) = |[N(v)|. A vertex of degree one
is called a leaf and the number of leaves of G will be denoted by n,(G).

A set D C V of vertices is said to be a (connected) distance k-dominating set of G
if the distance between each vertex u € V' — D and D is at most k£ (and D induces a
connected graph in ). The minimum cardinality of a (connected) distance k-dominating
set in G is the (connected) distance k-domination number of G, denoted by v(G) (75(G),
respectively). The distance 1-domination number 7, (G) is the usual domination number
Y(G). A set D C V of vertices is defined to be a total k-dominating set of G if every
vertex in V is within distance k from some vertex of D other than itself. The minimum
cardinality among all total k-dominating sets of GG is called the total k-domination number
of G and is denoted by ~vi(G). We note that the parameters v¢(G) and ~i(G) are only
defined for connected graphs and for graphs without isolated vertices, respectively.

For v € X C V, if PN¥[z] # 0, the vertex z is said to be k-irredundant in X. A
set X containing only k-irredundant vertices is called k-irredundant. The k-irredundance
number of G, denoted by iry(G), is the minimum cardinality taken over all maximal
k-irredundant sets of vertices of G.

In 1975, Meir and Moon [10] introduced the concept of a k-dominating set (called a
‘k-covering’ in [10]) in a graph, and established an upper bound for the k-domination
number of a tree. More precisely, they proved that v, (7)) < [V(T)|/(k + 1) for every tree
T. This leads immediately to v4(G) < |V(G)|/(k + 1) for an arbitrary graph G. In 1991,
Topp and Volkmann [11] gave a complete characterization of the class of graphs G that
fulfill the equality v+(G) = |V(G)|/(k + 1).

The concept of k-irredundance was introduced by Hattingh and Henning [5] in 1995.
With £ = 1, the definition of an k-irredundant set coincides with the notion of an irre-
dundant set, introduced by Cockayne, Hedetniemi and Miller [1] in 1978. Since then a lot
of research has been done in this field and results have been presented by many authors
(see [5]).
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In 1991, Henning, Oellermann and Swart [8] motivated the concept of total distance
domination in graphs which finds applications in many situations and structures which
give rise to graphs.

For a comprehensive treatment of domination in graphs, see the monographs by
Haynes, Hedetniemi and Slater [6], [7].

In this paper we establish lower bounds for the distance k-irredundance number of
graphs and trees. More precisely, we prove that 22ir,(G) > 7£(G) + 2k for each con-
nected graph G and (2k + 1)irg(T) > w(T) + 2k > |V| 4+ 2k — kny(T) for each tree
T = (V, E) with ny(T) leaves. A class of examples shows that the latter bound is sharp.
Since x(G) > ir,(G) for each connected graph G, the latter generalizes a result of Meier-
ling and Volkmann [9] and Cyman, Lemanska and Raczek [2] regarding -y, and the former
generalizes a result of Favaron and Kratsch [4] regarding ir;. In addition, we show that
if G is a connected graph, then v£(G) < (2k 4+ 1)3(G) — 2k and 7(G) < 2=q1H(G) — 2k
thereby generalizing results of Duchet and Meyniel [3] for £ = 1 and Favaron and Kratsch
[4] for k = 1, respectively.

2 Results

First we show the inequality 75 < (2k + 1)y, — 2k for connected graphs.

Theorem 2.1. If G is a connected graph, then
Ye(G) < (2k + 1)(G) — 2k.

Proof. Let G be a connected graph and let D be a distance k-dominating set. Then G[D]
has at most |D| components. Since D is a distance k-dominating set, we can connect two
of these components to one component by adding at most 2k vertices to D. Hence, we
can construct a connected k-dominating set D’ O D in at most |D| — 1 steps by adding
at most (|D| — 1)2k vertices to D. Consequently,

(@) < [D] < [DI+(ID] = 1)2k = (2k + 1)| D] — 2k
and if we choose D such that |D| = 7,(G), the proof of this theorem is complete. O
The results given below follow directly from Theorem 2.1.
Corollary 2.2 (Duchet & Meyniel [3] 1982). If G is a connected graph, then
Y(G) < 3(G) - 2.

Corollary 2.3 (Meierling & Volkmann [9] 2005; Cyman, Lemanska & Raczek
[2] 2006). If T is a tree with ny leaves, then

|V(T)| — k"l‘bl + 2k

>
w(T) = % + 1
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Proof. Since v¢(T') > |V(T')| — kny for each tree T, the proposition is immediate. O
The following lemma is a preparatory result for Theorems 2.5 and 2.7.

Lemma 2.4. Let G be a connected graph and let I be a maximal k-irredundant set such
that iry(G) = |I|. If I, = {v € I | v € PN¥[v]} is the set of vertices that have no
k-neighbor in I, then

|1 — L

IH(G) < (2K + Din(G) — 2k + (k — ).

Proof. Let G be a connected graph and let I C V' be a maximal k-irredundant set. Let

I ={vel|ve PN}
be the set of vertices in I that have no k-neighbors in I and let
IQ =1 — ]1

be the complement of I, in I. For each vertex v € I, let u, € PN¥[v] be a k-neighbor of
v such that the distance between v and u, is minimal and let

B :=A{u, |velL}

be the set of these k-neighbors. Note that |B| = |[I3|. If w is a vertex such that w ¢
N¥[TUB], then TU{w} is a k-irredundant set of G’ that strictly contains I, a contradiction.
Hence I U B is a k-dominating set of G.

Note that G[I U B] has at most |I U B| = ||+ 2|I5| components. From I U B we shall
construct a connected k-dominating set D O I U B by adding at most

Bl =1+ nl+ |15 = n2ker [ -
vertices to [ U B.

We can connect each vertex v € I, with its corresponding k-neighbor u, € B by adding
at most k — 1 vertices to I U B.

Recall that each vertex v € I, has a k-neighbor w # v in I,. Therefore we need to
add at most k — 1 vertices to I U B to connect such a pair of vertices.

By combining the two observations above, we can construct a k-dominating set D" D
IT'UB from I UB with at most |I;|+ [|/2|/2] components by adding at most (k —1)|2| +
(k —1)[|1]/2] vertices to I U B. Since D’ is a k-dominating set of G, these components
can be joined to a connected k-dominating set D by adding at most (|I1|+ [|l2|/2] —1)2k
vertices to D’.

All in all we have shown that there exists a connected k-dominating set D of G such
that

|D| < |Il| +2‘I2‘ "‘(k?— 1)’[2‘ —|—(k;_ 1) ’V%—‘ +2k(|11‘ + \‘%J _ 1)

I
< (2k+1)|I| — 2k + (k — 1)%.
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Hence, if we choose the set I such that |I| = iri(G), the proof of this lemma is complete.
]

Since |Io| < |I| for each k-irredundant set I, we derive the following theorem.

Theorem 2.5. If G is a connected graph, then

S5k+1.

%(G) £ 2 =in(G) — 2k

The next result follows directly from Theorem 2.5.

Corollary 2.6 (Favaron & Kratsch [4] 1991). If G is a connected graph, then
vU(G) < 3ir(G) — 2.
For acyclic graphs Lemma 2.4 can be improved as follows.
Theorem 2.7. IfT is a tree, then
V(1) < (2k + 1)irg(T') — 2k.
Proof. Let T be a tree and let I C V' be a maximal k-irredundant set. Let
I, :={vel|ve PN}
be the set of vertices in I that have no k-neighbors in I and let
Iy:=1—-1

be the complement of I, in I. For each vertex v € I, let u, € PN¥[v] be a k-neighbor of
v such that the distance between v and u, is minimal and let

B :={u, | velL}

be the set of these k-neighbors. Note that |B| = |I3|. If w is a vertex such that w ¢
N¥[TUB], then TU{w} is a k-irredundant set of G’ that strictly contains I, a contradiction.
Hence I U B is a k-dominating set of G.

Note that T'[/ U B] has at most |/ U B| = |I;| 4 2|I2| components. From [ U B we shall
construct a connected k-dominating set D O I U B by adding at most

(2k — 1)|Io| + 2k(|I,| — 1)

vertices to I U B. To do this we need the following definitions. For each vertex v € I5 let
P, be the (unique) path between v and w, and let z, be the predecessor of w, on P,. Let
I, = S U L; U Ly be a partition of I such that

S={vel|duvu, =1}

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R35 )



is the set of vertices of I that are connected by a ‘short’ path with w,,
Ll = {U € IQ | Nk(xv)ﬂll 7é @}

is the set of vertices of I, that are connected by a ‘long’ path with u, and the vertex x,
has a k-neighbor in I; and
Ly=1,— (SUL)

is the complement of SU L; in I5. In addition, let L = Ly U Ly. We construct D following
the procedure given below.

Step 0: Set 7 :=1,, S:= S and L := L.
Step 1: We consider the vertices in S.

Step 1.1: If there exists a vertex v € S such that d(v,w) < k for a vertex
w € L, we can connect the vertices v, u,, w and u, to one component by
adding at most 2(k — 1) vertices to I U B.

Set Z:=7 — {v,w}, S :=8 — {v} and L := L — {w} and repeat Step 1.1.

Step 1.2: If there exists a vertex v € S such that d(v,w) < k for a vertex
w € § with v # w, we can connect the vertices v, u,, w and wu, to one
component by adding at most £ — 1 vertices to I U B.

Set Z:=7 —{v,w} and § :== S — {v,w} and repeat Step 1.2.

Step 1.3: If there exists a vertex v € S such that d(v,w) < k for a vertex
w € I, —(SUL), we can connect the vertices v and u, to w by adding at most
k — 1 vertices to I U B.

Set Z:=7 — {v} and § := S — {v} and repeat Step 1.3.

Note that after completing Step 1 the set S is empty and there are at most
|I1| + 2|I5| — 3(ry + r9) — 2r3 components left, where r; denotes the number
of times Step 1.i was repeated for ¢ = 1,2, 3. Furthermore, we have added at
most (k — 1)(2r; + 72 + r3) vertices to I U B.

Step 2: We consider the vertices in L.

If there exists a vertex v € L1 N L, let w € I; be a k-neighbor of z,. We can
connect the vertices v, u, and w to one component by adding at most 2(k —1)
vertices to [ U B.

Set 7 :=7 —{v} and L := L — {v} and repeat Step 2.

Note that after completing Step 2 we have £ C Lo and there are at most |I;|+
2|I|—3(r1+1ry) —2r3—2s components left, where s denotes the number of times
Step 2 was repeated and the numbers r; are defined as above. Furthermore,
we have added at most (k — 1)(2ry + ro + 73 + 2s) vertices to I U B.

Step 3: We consider the vertices in Lo. Recall that for each vertex v € Lo the
vertex x, has a k-neighbor w € I, besides v.
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Let v be a vertex in L, N L such that x, has a k-neighbor w € I, —Z. We can

connect the vertices v, u, and w by adding at most 2(k — 1) vertices to I U B.
Set Z:=7Z — {v} and L := £ — {v} and repeat Step 3.

Note that after completing Step 3 the sets Z and £ are empty and there are at
most |I1| + 2|lo| — 3(ry + r2) — 213 — 2s — 2t components left, where ¢ denotes
the number of times Step 3 was repeated and the numbers r; and s are defined
as above. Furthermore, we have added at most (k —1)(2r; 4+ 72+ 13+ 2s + 2t)
vertices to I U B.

Step 4: We connect the remaining components to one component.

Let D’ be the set of vertices that consists of I U B and all vertices added in
Steps 1 to 3. Since D’ is a k-dominating set of (G, the remaining at most
|I1| + 2|I5] — 3(ry + 12) — 2r3 — 2s — 2t components can be connected to one
component by adding at most (|;| + 2|lo| — 3(r1 +7r2) — 2r3 — 2s — 2t — 1)2k
vertices to D’.

After completing Step 4 we have constructed a connected k-dominating set
D D I'U B by adding at most

(k—1)(2r1+ro+r3+25+2t) + (|I1] + 2|15| — 3(ry +1r2) —2r3 — 25 — 2t — 1)2k
vertices to [ U B.

We shall show now that the number of vertices we have have added is less or equal
than (2k — 1)|I5| + 2k(|I1| — 1). Note that |Iy| = 2r; 4+ 2ry + 73+ s+ t. Then

(k—1)(2r1 +ro+rs+2s+2t) + (| [1| + 2|L2] — 3(ry +1r2) — 2r3 — 25 — 2t — 1)2k
— 2k = D[] = 2k(|L] - 1)
=2k + 1)|Lo] —3k(2ry +2ry+r3+s+1t) — k(rs + s+ 1)
+ (k—1)(2ry + 72+ 15+ 25 + 2t)
=—(k—1)2r +2ro+rs+s+1t)—k(rs+s+t)+ (k—1)(2r + 12+ r3 + 25+ 2t)
=—(k—1)ro—krg—s—t
0.

IN

If we choose |I| such that |I| = irg(T), it follows that

V(T) < |D| < |[I| + 2| | + 2k| | + (2k — 1)|Iy| — 2k
= (2k + 1)|I| — 2k
= (2k + 1)iry(T) — 2k

which completes the proof of this theorem. O

As an immediate consequence we get the following corollary.
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Corollary 2.8. If T is a tree with ny leaves, then

. |V(T)| - k"l‘bl + 2k
> .
k(@) 2 2%k + 1

Proof. Since ~¢(T) > |V(T)| — kny for each tree T, the result follows directly from
Theorem 2.7. 0

Note that, since v (G) > ir,(G) for each graph G, Corollary 2.8 is also a generalization
of Corollary 2.3. The following theorem provides a class of examples that shows that the
bound presented in Theorem 2.7 is sharp.

Theorem 2.9 (Meierling & Volkmann [9] 2005; Cyman, Lemanska & Raczek
[2] 2006). Let R denote the family of trees in which the distance between each pair of
distinct leaves is congruent 2k modulo (2k + 1). If T is a tree with ny leaves, then

|V(T)| — k"l‘bl + 2k
2k +1

w(T) =

if and only if T' belongs to the family R.

Remark 2.10. The graph in Figure 1 shows that the construction presented in the proof
of Theorem 2.7 does not work if we allow the graph to contain cycles. It is easy to see
that I = {vy,ve} is an irg-set of G and that D = {uy,us, x1, T2, 23} is a ¥5-set of G.
Following the construction in the proof of Theorem 2.7, we have Iy = 0, Iy = {v1,v2}
and B = {uy,us} and consequently, D' = Iy U B U {x1,x9,23}. But |[D'| =7 £ 6 =
(2-241)|I] —2-2 and D contains none of the vertices of I.

U1 Iy Uy
0/0 L} L ®
T9 e
[ J @ { { @
(%) T3 U2
Figure 1.

Nevertheless, we think that the following conjecture is valid.

Conjecture 2.11. If G is a connected graph, then
7e(G) < (2k + 1)ir,(G) — 2k.

Now we analyze the relation between the connected distance domination number and
the total distance domination number of a graph.
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Theorem 2.12. If G' is a connected graph, then

. 3k + 1
WG < —; Y(G) — 2k.

Proof. Let G be a connected graph and let D be a total k-dominating set of G of size
7(G). Each vertex x € D is in distance at most k of a vertex y € D —{z}. Thus we get a
dominating set of G with at most ||D|/2] components by adding at most [|D|/2](k — 1)
vertices to D. As in the proof of Lemma 2.4, the resulting components can be joined to a
connected k-dominating set | D’| by adding at most (||D|/2]—1)2k vertices. Consequently,

, D D 3k+1 3k+1
216 < D1 < D1+ 2] - (| | -vw < E g - 2 g -
and the proof is complete. O

For distance k = 1 we obtain the following result.

Corollary 2.13 (Favaron & Kratsch [4] 1991). If G is a connected graph, then
7(G) < 29(G) — 2.
The following example shows that the bound presented in Theorem 2.12 is sharp.

Example 2.14. Let P be the path on n = (3k + 1)r vertices with r € N. Then ~;(P) =

n — 2k, vi(P) = 2r and thus, v5(P) = %A (P) — 2k.
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