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Abstract

The distinguishing number D(G) of a graph G is the least cardinal number
ℵ such that G has a labeling with ℵ labels that is only preserved by the trivial
automorphism. We show that the distinguishing number of the countable random
graph is two, that tree-like graphs with not more than continuum many vertices
have distinguishing number two, and determine the distinguishing number of many
classes of infinite Cartesian products. For instance, D(Q � ) = 2, where Q � is the
infinite hypercube of dimension � .

1 Introduction

The distinguishing number is a symmetry related graph invariant that was introduced
by Albertson and Collins [2] and extensively studied afterward. In the last couple of
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years an amazing number of papers have been written on the topic. Let us mention just
those that are directly related to our paper: It was proved independently in [6] and [12]
that for a finite connected graph G, D(G) ≤ ∆ + 1, where ∆ is the largest degree of G,
with equality if and only if G is a complete graph, a regular complete bipartite graph,
or C5. For the computation of the distinguishing numbers of finite trees see [5]. Also,
the distinguishing number of Cartesian products of finite graphs has been widely studied;
see [1, 3, 8, 10, 11, 13].

In this paper we extend the study of the distinguishing number to infinite graphs. The
starting point is the observation in [10] that the distinguishing number of the Cartesian
product of two countable complete graphs is 2. The proof is surprisingly simple, just
as one can easily show that the distinguishing number of the hypercube of countable
dimension is 2 (cf. the first part of the proof of Theorem 5.4).

It turns out that many of the results for finite graphs can easily be generalized to
countably infinite ones and that, with some additional effort, one can consider graphs
with cardinality � , that is, the cardinality of the continuum. For higher cardinalities
things are more complicated and are mainly treated in the last section. We wish to add
that although we use “naive” set theory, it can be easily seen that our proofs remain in
force in ZFC set theory.

In this paper we prove the following results for infinite graphs G: We prove that
the distinguishing number of the (countable) random graph is 2, and prove that tree-like
graphs (comprising all trees without pendant vertices and many other graphs) on at most �

vertices have distinguishing number at most 2. For higher cardinalities we treat products
of complete graphs and show that D(Q � ) = 2 where Q � is the hypercube of arbitrary
infinite dimension.

2 Preliminaries

Let G be a graph and X a set. Then an X-labeling of G is just a mapping V (G) → X.
In most cases X will be a set of numbers, but we will also use the set {black,white} to
label graphs. When X will be clear from the context we will simply speak of labelings of
G. Let g be an automorphism of G and l a labeling of G. Then we say that l is preserved

by g if l(v) = l(g(v)) for any v ∈ V (G). A labeling l of a graph G is distinguishing if
l is only preserved by the trivial automorphism of G. The distinguishing number of a
graph G is the least cardinal number ℵ such that there exists a distinguishing X-labeling
of G with |X| = ℵ. The distinguishing number of a graph G is denoted by D(G). An
X-labeling l1 of a graph G1 and an X-labeling l2 of a graph G2 are isomorphic if there
exists an isomorphism ϕ : V (G1) → V (G2) of G1 and G2 such that l1(v) = l2(ϕ(v)) for
any v ∈ V (G1) (in this case we also say that X-labeled graphs G1 and G2 are isomorphic).

As usual, ℵ0 stands for the cardinality of a countable set and � or 2ℵ0 for the cardinality
of reals. We will use � to denote an arbitrary finite or infinite cardinal.

The Cartesian product G�H of two finite or infinite graphs G and H is a graph with
the vertex set V (G) × V (H), the vertices (g, h) and (g ′, h′) being adjacent if g = g′ and
hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). Let g be a vertex of G. Then the set of vertices
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{(g, h) | h ∈ V (H)} induces a subgraph of G�H isomorphic to H. It is called an H-fiber

and denoted gH. Analogously, for h ∈ V (H), the G-fiber Gh is the subgraph of G�H

induced by {(g, h) | g ∈ V (H)}.
Let Gι, ι ∈ I, be an arbitrary family of graphs. Then the Cartesian product � ι∈IGι

is defined on the set of all functions x : ι 7→ xι, xι ∈ Gι, where two vertices (functions)
are adjacent if there exists an index κ ∈ I such that xκyκ ∈ E(Gκ) and xι = yι for all
ι 6= κ.

We wish to point out that the Cartesian product of infinitely many nontrivial graphs is
disconnected. Therefore, in this case one considers connected components of the Cartesian
product and calls them weak Cartesian products. If all factors have transitive group any
two components are isomorphic. Since we are only interested in connected graphs, for us
a Cartesian product graph will always mean a weak Cartesian product graph.

For instance, the infinite hypercube Q � of dimension � is defined as the Cartesian
product of � copies of K2. Its vertex set is the set of all functions of a set S of cardinality
� into {0, 1}, where the preimage of 1 is finite, and where two vertices f, g are adjacent
if there exists one and only one element x of S such that f(x) 6= g(x). Clearly Q � is
idempotent, that is Q � ∼= Q � �Q � .

Let x be a vertex of a graph G. Then the neighborhood of x in G will be denoted
NG(x) or N(x) if G is clear from the context. In addition, Bx(d) is the set of vertices of
G at distance ≤ d from x.

By a tree-like graph we mean a connected graph G that contains a vertex x with the
following property: for any vertex y there exists an up-vertex z with respect to x (that
is, a vertex with d(x, z) = d(x, y) + 1), such that y is the only vertex from N(z) that
lies in an x, z-geodesic. In other words, for any vertex y there exists a vertex z such that
{y} = N(z) ∩ Bx(d(x, z) − 1).

For terms not defined here, in particular for the Cartesian product of graphs and its
properties, we refer to [9].

We have already mentioned that for a finite connected graph G, D(G) ≤ ∆+1, where
∆ is the largest degree of G. We conclude the section with the following analogue for
infinite graphs.

Theorem 2.1 Let n be a cardinal number, and G a connected, infinite graph such that

the degree of any vertex of G is not greater than n. Then D(G) ≤ n.

Proof. Suppose first that n is a finite cardinal. Then G is an infinite graph of bounded,
finite degree and G contains a one-way infinite isometric path R. Let u0 be the first vertex
of R, and label all vertices of R with ∆, where ∆ is the largest degree of G. No other
vertex will receive the label ∆. Since u0 is labeled ∆ and adjacent to exactly one vertex
labeled ∆, while any other vertex of R is adjacent to two vertices labeled ∆, u0 is fixed
by every automorphism of G. Consequently, R is fixed pointwise by every automorphism.
Construct a BFS-tree of G with root u0 and label the vertices of G in BFS order as
follows: Let x be a vertex in this order, then label its neighbors that are not yet labeled
with different labels from {1, 2, . . . ,∆ − 1}. The BFS order implies that the labeling is
well-defined and that every newly labeled vertex is fixed by every automorphism.
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Assume next that the degree of G is not bounded. The vertex set of G is the union of
the vertices in the BFS-levels of G. Since the number of vertices in every such level is at
most n we have that |G| ≤ � . �

We note that an infinite locally finite graph can have infinite distinguishing number.
For a simple example consider the graph that is obtained from the one-way infinite path
v0, v1, v2, . . . by attaching n pendant vertices to vn for any n ≥ 1.

3 Distinguishing the random graph

In this section we determine the distinguishing number of the countable random graph. So,
let R be the countable random graph defined in [7]. Then (see, for example, Propositions
4.1, 5.1, 8.1 and 3.1 in [4]) R contains any countable graph as an induced subgraph, the
automorphism group Aut(R) of R is a vertex-transitive group of order 2ℵ0, and R has the
following property:

(∗) For any finite disjoint subsets X and Y of V (R), there are infinitely many vertices
z of R such that zx ∈ E(R) for all x ∈ X and zy 6∈ E(R) for all y ∈ Y .

In particular, R is a connected graph of diameter 2 and of countable degree.

Theorem 3.1 Let R be the countable random graph. Then D(R) = 2.

Proof. Since Aut(R) 6= 1, we have D(R) > 1. Let u be a vertex of R, and let N(u) =
{v1, v2, . . .} be the set of neighbors of u in R. Fix a sequence n1, n2, . . . of positive integers
such that ni > n1 + · · · + ni−1 for all i > 1. Define a labeling l : V (R) → {0, 1} in the
following way.

Put l(u) = 0 and l(vi) = 0 for all i ≥ 1. By (∗), there exist (distinct) vertices
w1,1, . . . , w1,n1

in N(v1) \ ({u}∪N(u)). Put l(w1,j) = 0 for all j, 1 ≤ j ≤ n1, and l(w) = 1
for all other vertices w from N(v1) \ ({u} ∪N(u)). Suppose now that, for some positive
integer k, l is defined on ∪k

i=1(N(vi)\({u}∪N(u))) in such a way that, for each i ≤ k, there
are exactly ni vertices in N(vi) \ ({u} ∪ N(u)) labeled 0. Then the number n of vertices
in (N(vk+1) \ ({u} ∪ N(u))) ∩ (∪k

i=1(N(vi) \ ({u} ∪ N(u)))) labeled 0 (by assumption,
l is defined on ∪k

i=1(N(vi) \ ({u} ∪ N(u)))) is ≤ n1 + . . . + nk < nk+1. By (∗), there
exist (distinct) vertices wk+1,1, . . . , wk+1,nk+1−n in N(vk+1) \ (({u}∪N(u))∪ (∪k

i=1N(vi))).
Put l(wk+1,j) = 0 for all j, 1 ≤ j ≤ nk+1 − n, and l(w) = 1 for all other vertices
w from N(vk+1) \ (({u} ∪ N(u)) ∪ (∪k

i=1N(vi))). As a result, for any positive integer
i ≤ k + 1, l is defined on N(vi) \ ({u} ∪ N(u)) and there are exactly ni vertices in
N(vi) \ ({u} ∪ N(u)) labeled 0. Since the diameter of R is 2, continuing in this way we
get a labeling l : V (R) → {0, 1}.

By the definition of l, all vertices in {u} ∪ N(u) = {u, v1, v2, . . .} are labeled 0, and,
for each positive integer i, the number of vertices in N(vi) \ ({u} ∪ N(u)) labeled 0 is
ni. Furthermore, u is the only vertex of R for which all neighbors are labeled 0. In fact,
suppose u′ is another vertex of R for which all neighbors are labeled 0 . By (∗), there
exists a vertex w of R such that wu′, wv1 and ww1,1, . . . , ww1,n1

(where w1,1, . . . , w1,n1
are
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all vertices in N(v1) \ ({u} ∪ N(u)) labeled 0) are edges of R, while wu 6∈ E(R). But
wv1 ∈ E(R) and wu 6∈ E(R) imply w ∈ N(v1) \ ({u} ∪ N(u)). At the same time, for
each j, 1 ≤ j ≤ n1, we have w 6= w1,j by ww1,j ∈ E(R). Thus l(w) = 1 contrary to
wu′ ∈ E(R).

Let g be an automorphism of R preserving the labeling l. By the above, g(u) = u and
hence g(vi) = vi for all positive integers i. Suppose g(w) 6= w for some vertex w of R. By
(∗), there exists a vertex v of R such that vu and vw are edges of R, while vg(w) 6∈ E(R).
Since vu ∈ E(R), we have v = vi for some positive integer i, and hence g(v) = v. Now
vw ∈ E(R) while g(v)g(w) = vg(w) 6∈ E(R), a contradiction.

Thus the labeling l is distinguishing. �

4 Tree-like graphs

We now move to uncountable graphs. The main result of this section asserts that the
distinguishing number of tree-like graphs of cardinality not greater than � is either one
or two, but the result is no longer true for larger cardinalities. We need the following
somewhat technical result.

Lemma 4.1 Let T be a tree with u ∈ V (T ) such that 1 ≤ deg(u) ≤ 2ℵ0 and 1 < deg(v) ≤
2ℵ0 for all v ∈ V (T ) \ {u}. Then there exist 2ℵ0 pairwise nonisomorphic distinguishing

{0, 1}-labelings l±α , α ∈ A (where |A| = 2ℵ0), of T such that, for each α ∈ A, l−α (u) = 0,
l+α (u) = 1 and with respect to each of l−α and l+α , u is the only vertex of T with all neighbors

in T labeled 0.

Proof. Let Nα, α ∈ A where |A| = 2ℵ0, be distinct subsets of the set of integers > 2 with
|Nα| > 1 for all α. For each α ∈ A, let Sα be the set of (infinite) sequences (i1, i2, . . .)
such that {i1, i2, . . .} = Nα. Of course, |Sα| = 2ℵ0 for all α ∈ A. For each α ∈ A and
each s = (i1, i2, . . .) ∈ Sα, let s be the {0, 1}-sequence (ε0, ε1, . . .) with εj = 0 if and only
if j = i1, i1 + i2, i1 + i2 + i3, . . . Put Sα = {s : s ∈ Sα}. Of course, |Sα| = |Sα| = 2ℵ0 for
all α ∈ A.

Now let T be a tree with u ∈ V (T ) such that deg(v) > 1 for all v ∈ V (T ) \ {u} and
deg(v) ≤ 2ℵ0 for all v ∈ V (T ). For each α ∈ A, we define a distinguishing {0, 1}-labeling
l−α such that u and all neighbors of u in T are labeled 0, and u is the only vertex of T
with all neighbors in T labeled 0.

Since |V (T )| ≤ 2ℵ0 , there is an injection v 7→ sv from V (T ) into Sα. Define l−α
inductively by Steps.

As Step 1, put l−α (u) = 0 and l−α (v) = 0 for all neighbors v of u in T .
Suppose now that after Step n, n a positive integer, we have a labeling of some vertices

of T such that

(in) all vertices at distance ≤ n from u in T are labeled;
(iin) if a vertex v from V (T ) \ {u} is labeled and v′ ∈ V (T ) \ {v} with dT (u, v′) +

dT (v′, v) = dT (u, v) then v′ and all neighbors of v′ in T are labeled;
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(iiin) all neighbors of any vertex of T labeled 1 are labeled.

If not all vertices of T are labeled after Step n (otherwise the definition of l−α is completed),
Step n + 1 is defined as follows:

Let {vβ : β ∈ B} be the set of all vertices of T which are unlabeled but have labeled
neighbors (at least one; note that by (iiin) all these neighbors are labeled 0). For each β ∈
B, choose an infinite path Pvβ

: vβ,0 = vβ, vβ,1, . . . of T such that dT (u, vβ,j)−dT (u, vβ,0) = j

for all non-negative integers j. By (iin), the vertices of Pvβ
are unlabeled. We label vertices

of Pvβ
using the sequence svβ

. Let X0
vβ

be the set of vertices v of T such that, for some non-

negative integer j, v is a neighbor of vβ,j different from vβ,j+1, dT (u, v) = dT (u, vβ,j) + 1
and vβ,j is labeled 0. Analogously, let X1

vβ
be the set of vertices v of T such that, for some

non-negative integer j, v is a neighbor of vβ,j different from vβ,j+1, dT (u, v) = dT (u, vβ,j)+1
and vβ,j is labeled 1. Let Yvβ

be the set of vertices v′ of T such that v′ is a neighbor of
some v ∈ X1

vβ
with dT (u, v′) = dT (u, v) + 1. Note that, by (iin), no vertex in X0

vβ
, X1

vβ
or

Yvβ
is labeled. Put l−α (v) = 0 for all v ∈ X0

vβ
∪X1

vβ
∪ Yvβ

. Using the same procedure for
all vβ, where β ∈ B, we complete Step n + 1. It is easy to see that after Step n + 1 we
get a partial labeling of T which has properties (in+1) − (iiin+1).

We now show that the resulting labeling l−α : V (T ) → {0, 1} is distinguishing. Since
all integers in Nα are > 2, it follows from the definition of l−α that u is the only vertex of T
with all neighbors in T labeled 0. Hence any automorphism of T preserving l−α stabilizes
u. Note now that infinite paths x0, x1, . . . of T with the following properties a) – d):

a) dT (u, xj) − dT (u, x0) = j for all non-negative integers j,
b) if l−α (xj) = 0 for some non-negative integer j, then l−α (xj+1) = 1,
c) l−α (x0) = 1 and dT (u, x0) ≥ 2,
d) if w is the neighbor of x0 with dT (u, w) = dT (u, x0) − 1, and w′ is the neighbor

of w with dT (u, w′) = dT (u, w) − 1, then l−α (w) = l−α (w′) = 0,

are exactly the paths Pvβ
used in one of the Steps. Indeed, any path Pvβ

= x0, x1, . . .

obviously has properties a) – d). On the other hand, if an infinite path x0, x1, . . . of T
has properties a) – d), then c) implies that x0 is a vertex of some path of the form Pvβ

.
Furthermore, by d) we have x0 = vβ. Now a) and b) imply that x0, x1, . . . coincides with
Pvβ

.
By the definition of l−α , distinct such paths have distinct labelings, thus any automor-

phism of T preserving l−α stabilizes each such path. Since for each vertex v of T , there
exists a vertex v′ with dT (u, v) + dT (v, v′) = dT (u, v′) which is a vertex of one such path,
l−α is a distinguishing labeling.

Define l+α by l+α (u) = 1 and l+α (v) = l−α (v) for all v ∈ V (T )\{u}. Then, with respect to
l+α , u is the only vertex of T with all neighbors in T labeled 0. Since l−α is a distinguishing
labeling, it follows that l+α is a distinguishing labeling as well.

The labels of each path of the form Pvβ
from the definition of l−α make it possible to

reconstruct the corresponding set Nα. Therefore the labelings l−α of T for distinct α ∈ A

are (pairwise) nonisomorphic. Hence labelings l+α of T for distinct α ∈ A are (pairwise)
nonisomorphic as well. Besides, for α, α′ ∈ A, l−α and l+α′ are nonisomorphic labelings of
T , since, with respect to each of l−α and l+α , u is the only vertex of T with all neighbors in
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T labeled 0 while l−α (u) 6= l+α′(u). �

Theorem 4.2 Let G be a tree-like graph with ∆ ≤ 2ℵ0. Then D(G) ≤ 2.

Proof. Recall that every tree-like graph G contains a vertex x with the following property:
for any y ∈ V (G) there exists a z ∈ V (G) such that {y} = N(z) ∩ Bx(d(x, z) − 1).

Let T be a spanning subgraph of G with the property that x′x′′ ∈ E(T ) if and only if
{x′} = N(x′′) ∩ Bx(d(x, x

′′) − 1) or {x′′} = N(x′) ∩ Bx(d(x, x
′) − 1).

Clearly T is a forest with no finite component, and uniquely defined. Furthermore,
for any connected component C of T , there exists a unique vertex uC of C at a smallest
distance from x, and the valency in T of any vertex of C, different from uC , is > 1. Of
course x = uC′ for the connected component C ′ of T containing x, and the set of neighbors
of x in T coincides with the set of neighbors of x in G.

Define a labeling l : V (G) → {0, 1} as follows. By Lemma 4.1, there exists a distin-
guishing labeling l− of C ′ such that l−(x) = 0 and l−(v) = 0 for all neighbors v of x in
T (or, equivalently, in G). Put l(w) = l−(w) for all vertices w of C ′. Let {Ci : i ∈ I}
be the set of connected components of T different from C ′. Then |I| ≤ 2ℵ0. Hence, by
Lemma 4.1, there exist distinguishing labelings l+i of Ci for all i ∈ I such that l+i (uCi

) = 1,
uCi

is the only vertex of Ci for which all neighbors in Ci are l+i -labeled 0, and, for any
distinct i′, i′′ ∈ I, the l+i′ -labeled tree Ci′ and the l+i′′-labeled tree Ci′′ are not isomorphic.
For each i ∈ I and each w ∈ Ci, put l(w) = l+i (w). This completes the definition of l.

Let g be an arbitrary automorphism of G preserving l. By the definition of l, x is the
only vertex of G labeled 0 for which all neighbors in G are also labeled 0. Therefore g(x) =
x and hence g ∈ Aut(T ). Since the restrictions of l to distinct connected components of
T give pairwise nonisomorphic labeled graphs, g stabilizes each connected component of
T . As the restrictions of l to any connected component C of T is a distinguishing labeling
of C, we infer that g = 1.

Thus l is a distinguishing labeling. �

Let n be a cardinal > 2ℵ0 and T a tree with x ∈ V (T ) such that deg(x) = n and
deg(y) = 2 for all y ∈ V (T ) \ {x}. Of course, D(T ) ≤ |V (T )| = n. On the other side, for
any set M with |M | < n, there are < n distinct sequences of elements of M . Thus, for
any M -labeling l of T , there exist two distinct infinite paths x′1, x

′
2, . . . and x′′1, x

′′
2, . . . of

T with dT (x, x′i) = dT (x, x′′i ) = i for all positive integers i such that l(x′i) = l(x′′i ) for all
positive integers i. The automorphism g of T defined by g(x′i) = x′′i and g(x′′i ) = x′i for
all positive integers i, and g(y) = y for all y ∈ V (T ) \ {x′1, x

′
2, . . . , x

′′
1, x

′′
2, . . .}, is a non-

trivial automorphism preserving l. Hence D(T ) = n. Thus the condition deg(v) ≤ 2ℵ0 in
the hypothesis of Theorem 4.2 cannot be weakened (even for trees and even for a single
vertex).

We close the section by noting that countable trees have also independently been
treated by Tucker [15].
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5 Cartesian products of arbitrary cardinality

In this section we generalize results about the distinguishing number of Cartesian products
of complete graphs [8, 10] to the infinite case and find many similarities. We also determine
the distinguishing number of infinite hypercubes of arbitrary dimension.

To this end we take recourse to elementary results about infinite cardinals and ordinals,
transfinite induction, and the well-ordering theorem; see e.g. [14].

We also apply several basic facts about prime factorizations and automorphisms of
connected infinite graphs with respect to the weak Cartesian product: Every connected,
infinite graph can be uniquely represented as the weak Cartesian product of prime graphs,
that is, graphs that are not the product of two nontrivial graphs; see [9]. Moreover, given
a product

G = � ι∈IGι

of prime graphs, every automorphism of G is induced by transpositions of isomorphic
factors and automorphisms of the factors themselves. That is, if ψ ∈ Aut(G) then there
exists a permutation π of I together with isomorphisms ψi : Gι → Gπι such that

(ϕv)ι = ψπ−1ιvπ−1ι.

Also, complete graphs are prime with respect to the Cartesian product.

Theorem 5.1 Let � be an infinite cardinal number. Then D(K � �K � ) = 2.

Proof. Let G = G1 �G2, where both G1 and G2 are isomorphic to K � . Let V = V (G1) =
V (G2) and ≺ a well-ordering of V with the first element a0.

We label every vertex (x, y) ∈ G1 �G2 white if x ≺ y, otherwise we label it black.
This labelling is distinguishing. To see this we first note that every G1-fiber has

infinitely many black vertices, but that the G2-fiber a0G2 has only one black vertex,
namely (a0, a0). Thus, every automorphism of G is generated by automorphisms of the
factors. In other words, every automorphism maps G1-fibers into G1-fibers and G2-fibers
into G2-fibers.

Since Ga0

1 is the only G1-fiber with no white vertices it is stabilized by all automor-
phisms. Similarly, a0G2 is stabilized by all automorphisms of G because it is the only
G2-fiber with only one black vertex. Thus (a0, a0) = Ga0

1 ∩ a0G2 is fixed by all α ∈ Aut(G).
If all diagonal elements (x, x) are fixed, then Gx

1 and xG2 are stabilized for every x.
Thus Gx

1 ∩
yG2 = (x, y) is fixed for every (x, y) ∈ V (G) and the labeling is distinguishing.

Hence, if the labeling is not distinguishing there is a smallest ordinal c in V such
that (c, c) is not fixed by the label preserving automorphisms of G, but the vertices
(x, y) ∈ V (G) with x, y ≺ c are. Let L be the union of the G1- and G2-fibers through these
vertices. Clearly L is stabilized by the all label preserving automorphisms. Moreover, Gc

1

is the only G1-fiber with no white vertex outside of L and cG2 the only G2-fiber with just
one black vertex outside of L. Thus (c, c) is also fixed. �

Theorem 5.2 Let � be an infinite cardinal. Then D(K � �K
2

� ) = 2.
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Proof. We consider the complete graphs G2 = K � with vertex set W and H = K
2

� with

vertex set V . Of course, W is a set of cardinality � and V a set of cardinality 2
�
. Write V

as a disjoint union V ′ ∪ V ′′, where V ′ is a set of cardinality � and V ′′ a set of cardinality
2

�
. Let G1 be the subgraph of H induced by V ′ and G0 the subgraph of H induced by

V ′′. Then |G2| = |G1| = � and |G0| = |H| = 2
�
.

Consider the 2
�

different black and white labelings of G2 and assign them to the G2-
fibers of G2 �H, yielding a labeling l on G2 �H. The labeling l induces labelings l′ of
G2 �G1 and l′′ of G2 �G0. By Theorem 5.1 we can choose l such that the labeling l′ is
distinguishing.

If l′′ is not distinguishing, there must be a nontrivial l′′-preserving automorphism γ of
G2 �G0. This mapping is of the form

γ(x, y) = (αx, βy) ,

where α ∈ Aut(G2) and β ∈ Aut(G0). If α is the identity mapping ι, then β = ι too,
because any two G2-fibers have different labelings. We can thus assume that α 6= ι.

We now consider the mapping

δ : (x, y) 7→ (αx, y)

of G2 �H into itself. This mapping permutes the labelings of the G2-fibers of G2 �H. In
other words, there is permutation β ′ of V (H) such that

(x, y) 7→ (αx, β ′y)

preserves l. By the definition of γ we infer that β ′|V (G0) = β. But then β ′|V (G1) is a
permutation of V (G0). But this is impossible, because l′ is distinguishing. �

If the cardinality of the second factor is bigger than 2
�

the situation is strikingly
different.

Proposition 5.3 Let 2
�
< � . Then D(K � �K � ) > � .

Proof. The number of labelings of K � with � ≤ � labels is �
�
≤ 2

�
< � . �

If the generalized continuum hypothesis does not hold, there are cardinals � and �

such that � < � < 2
�
. We do not know whether D(K � �K � ) = 2 in this case.

Theorem 5.4 Let � be an infinite cardinal. Then D(Q � ) = 2.

Proof. The proof is by transfinite induction. Let � = ℵ0. The vertices of Qℵ0
are all

01-sequences with finitely many ones. Let vi be the vertex whose first i coordinates are
1, and the others 0. We consider the one sided infinite path

P = v0v1 . . .
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and label its vertices black, all the other vertices white. Clearly P is fixed by every
automorphism of Qℵ0

. Also, P meets every Θ-class of Qℵ0
in exactly one edge. Since

this edge is fixed, all Θ-classes are stabilized and its edges cannot be inverted. Thus the
labeling is distinguishing.

Furthermore, take all vertices with an even number of ones, throw out those that are
in N(P ), and call this set A. Then A is an infinite independent set of Qℵ0

\ N(P ). We
now create 2ℵ0 labelings of Qℵ0

in which the vertices of P are labeled black, the vertices
of A in all possible ways, and the remaining vertices white. Since no two vertices of A are
adjacent and no vertex of A is a neighbor of a vertex in P , each such labeling contains
exactly one black vertex (the vertex with all zeros) with exactly one black neighbor. Note
also that given two copies of Qℵ0

with distinct labelings created as above, there is no label
preserving isomorphism between them.

We show next how to find a distinguishing labeling of Qℵ1
. To this end we choose ℵ1

hypercubes Qℵ0
and label then with distinct nonisomorphic distinguishing labelings. This

is possible, because ℵ1 ≤ 2ℵ0. Let these hypercubes, together with their labelings, be Gι,
ι ∈ I, |I| = ℵ1. Note that every Gι has exactly one black vertex that has exactly one
black neighbor, we call it the root of Gι. We now consider the weak Cartesian product

G = � ι∈IGι

with respect to the vertex v0 whose coordinates are the roots of the Gι. We also label
G such that every unit fiber, that is, the Gι-fibers through the root vertex, inherits the
labeling of its factors. All other vertices are labeled white.

Clearly, G is isomorphic to Qℵ1
. Also, since v0 is the only vertex of G that is labeled

black and has ℵ1 black neighbors, it is fixed by all automorphisms. Clearly this implies
that the unit fibers are also fixed and the labeling is distinguishing.

Note that the subgraph induced by the black vertices in G has one connected com-
ponent and isolated vertices. Moreover, the black component has exactly one vertex of
degree ℵ1, all other vertices have smaller degree.

Again we can find an independent set A of cardinality ℵ1 where no vertex of A is
adjacent to a unit fiber vertex. This we can use to find 2ℵ1 nonisomorphic distinguishing
labelings of G. Every such labeling consists of isolated black vertices and one connected
subgraph of black vertices that has a vertex, the root of G, of maximum degree ℵ1.

Suppose � is a cardinal with the following properties:

(i) There are 2
�

nonisomorphic distinguishing labelings of Q � .
(ii) In every one of these labelings the black vertices induce a subgraph consisting

of isolated vertices and a large connected component with exactly one vertex of
degree � which we call the root.

Then the above arguments imply that the successor cardinal � ′ of � also satisfies (i) and
(ii).

In order to complete the proof it remains to be shown that a limit cardinal � satisfies
(i) and (ii) if every cardinal � < � does.

For every � we select a graph G � ∼= Q � together with a distinguishing labeling
satisfying (i) and (ii).
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We can assume that the distinguishing labelings of the G � have the property that to
any two K2-factors of G � there is a black (isolated) vertex that projects into the vertex
of the K2-factor that is different from the root. We now consider the Cartesian product
G � �G � ′ , � 6= � ′, where the unit fibers inherit the labeling from G � and G � ′, and where
all other vertices are white. This means that no automorphism can map a K2-factor of
G � into one of G � ′. Again we consider the weak Cartesian product

G = �G �

where the components of the root vertex are the roots of the G � . Again we let the
unit fibers inherit the labelings of the respective factors and label everything else white.
Clearly this yields a distinguishing labeling of G. As before we can find an independent
set A of cardinality � that contains no vertex that is adjacent to a unit fiber. Labeling A
in 2

�
distinct ways in black and white yields 2

�
nonisomorphic distinguishing labelings of

G. Clearly
G = QP

� <
� � = Q �

and satisfies (i) and (ii). �

We wish to remark that this actually means that we can distinguish the Cartesian and
not only the weak Cartesian product of � copies of K2 by two colors.

Concluding remarks

Very recently (Apr 4, 2007) a closely related paper [16] was published. We note that
Theorem 3.1 of [16] is a special case of our Theorem 4.2.

We thank a referee for carefully reading the manuscript and numerous helpful remarks.
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[13] S. Klavžar and X. Zhu, Cartesian powers of graphs can be distinguished by two
labels, European J. Combin. 28 (2007) 303–310.

[14] K. Kuratowski and A. Mostowski, Set Theory, North-Holland, Amsterdam, 1968.

[15] T. Tucker, Distinguishability of maps, preprint, 2005.

[16] M. E. Watkins and X. Zhou, Distinguishability of locally finite trees, Electron. J.
Combin. 14 (2007) #R29.

the electronic journal of combinatorics 14 (2007), #R36 12


