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Abstract

Combinatorial representation in terms of Schröder paths and other weighted
plane paths are given of Laurent biorthogonal polynomials (LBPs) and a linear
functional with which LBPs have orthogonality and biorthogonality. Particularly,
it is clarified that quantities to which LBPs are mapped by the corresponding linear
functional can be evaluated by enumerating certain kinds of Schröder paths, which
imply orthogonality and biorthogonality of LBPs.

1 Introduction and preliminaries

Laurent biorthogonal polynomials, or LBPs for short, appeared in problems related to
Thron type continued fractions (T-fractions), two-point Padé approximants and moment
problems (see, e.g., [6]), and are studied by many authors (e.g. [6, 4, 5, 12, 11]). We recall
fundamental properties of LBPs.

Remark. In this paper, ` and m, n are used for integers and nonnegative integers, re-
spectively.

Let K be a field. (Commonly K = C.) LBPs are monic polynomials Pn(z) ∈ K[z], n ≥ 0,
such that deg Pn(z) = n and P (0) 6= 0, which satisfy the orthogonality property with a
linear functional L : K[z−1, z] → K

L
[
z`Pn(z−1)

]
= hnδ`,n, 0 ≤ ` ≤ n, n ≥ 0, (1)

∗JSPS Research Fellow.
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where hn are some nonzero constants. Such a linear functional is uniquely determined
up to a constant factor, and then we normalize it by L[1] = 1 in what follows. It is well
known that LBPs satisfy a three-term recurrence equation of the form

{
P0(z) = 1, P1(z) = z − c0,

Pn(z) = (z − cn−1)Pn−1(z) − an−2zPn−2(z), n ≥ 2
(2)

where the coefficients an and cn are some nonzero constants. The LBPs Pn(z) have
unique biorthogonal partners, namely monic polynomials Qn(z) ∈ K[z], n ≥ 0, such that
deg Qn(z) = n, which satisfy the orthogonality property

L
[
z−`Qn(z)

]
= hnδ`,n, 0 ≤ ` ≤ n, n ≥ 0, (3)

or, equivalently, do the biorthogonality one

L
[
Pm(z−1)Qn(z)

]
= hmδm,n, m, n ≥ 0. (4)

In this paper, we consider the case Qn(0) 6= 0, that is, we assume that the biorthogonal
partners Qn(z) are also LBPs with respect to the functional L′ defined by L′[z`] = L[z−`].

Our aim in this paper is a combinatorial interpretation of LBPs and their properties.
Especially, we explain orthogonality and biorthogonality of LBPs in terms of Schröder
paths and other weighted plane paths. This paper is organized as follows. In the rest of
this Section 1, we introduce and define several combinatorial concepts used throughout
this paper, e.g., Schröder paths and enumerators for them. In Section 2, we introduce
Favard paths for LBPs, or Favard-LBP paths for short, with which we interpret the three-
term recurrence equation (2) of LBPs. They play an auxiliary role to prove claims in the
following sections concerned with orthogonality and biorthogonality of LBPs. In Section
3, we give to the quantity

L
[
z`Pn(z

−1)
]
, ` ∈ Z, n ≥ 0 (5)

a combinatorial representation derived by enumerating some kinds of Schröder paths. We
then show that the LBPs Pn(z) can be regarded as generating functions of some quantities
obtained by enumerating Favard-LBP paths, and that the corresponding linear functional
L can be done by doing Schröder paths. Section 4 is devoted for a similar subject, but
we consider the quantity

L
[
z`Qn(z)

]
, ` ∈ Z, n ≥ 0, (6)

and combinatorially interpret the biorthogonal partners Qn(z). Finally, in Section 5, we
clarify that we can evaluate the quantity

L
[
z`Pm(z−1)Qn(z)

]
, ` ∈ Z, m, n ≥ 0 (7)

by enumerating Schröder paths. As a result, we shall be able to understand from a com-
binatorial viewpoint the LBPs Pn(z), the linear functional L, the biorthogonal partners
Qn(z) and the orthogonality and the biorthogonality satisfied by them.
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This combinatorial approach to orthogonal functions is due to Viennot [10]. He gave
to general (classical) orthogonal polynomials, following Flajolet’s interpretation of Jacobi
type continued fractions (J-fractions) [3], a combinatorial interpretation using Motzkin
paths. Specifically, he showed, for general orthogonal polynomials pn(z) which are or-
thogonal with respect to a linear functional f , that the quantity

f
[
z`pm(z)pn(z)

]
, `, m, n ≥ 0

can be evaluated by enumerating Motzkin paths of length `, starting at level m and ending
at level n, which implies the orthogonality f [pm(z)pn(z)] = κmδm,n. Kim [7] presented an
extension of Motzkin paths and generalized Viennot’s result for biorthogonal polynomials.

First of all, we introduce combinatorial concepts fundamental throughout this paper.
We consider plane paths each of whose points (or vertices) lies on the point lattice

L = {(x, y), (x + 1/2, y) | x, y ∈ Z, y ≥ 0} ⊂ R2 (8)

and each of whose elementary steps (or edges) is directed. (See Figure 1, 2, etc., for
example.) We identify two paths if they coincide with translation. We use the symbol
Π♥

♦ for the finite set of plane paths characterized by the scripts ♥ and ♦. Moreover, for
a plane path π = s1s2 · · · sn, where each si is its elementary step, we denote by si(π) the
i-th elementary step si, and denote by si,j(π) the part si · · · sj if i ≤ j or the empty path
φ if i > j, namely the path consisting only of one point. Additionally, we denote by |π|
the number n of the elementary steps of π.

Valuations, weight and enumerators A valuation v is a map from a set of elementary
steps to the field K. Then, weight of a path π is the product

wgt(v; π) =

|π|∏

i=1

v(si(π)), (9)

and an enumerator for paths in Π♥
♦ is the sum of weight

µ♥
♦(v) =

∑

π∈Π♥
♦

wgt(v; π). (10)

Note that the enumerator µ♥
♦(v) is a generalization of the cardinality of the set Π♥

♦ of plane
paths, which is obtained by letting K = Q and letting the valuation v be the constant 1.

Schröder paths Commonly, a Schröder path is a lattice path in the xy-plane from
(0, 0) to (n, n), n ≥ 0, consisting of the three kinds of elementary steps (1, 0), (0, 1) and
(1, 1), and not going above the line {y = x}. The number of such paths are counted by
the large Schröder numbers (the sequence A006318 in [9]). See for Schröder paths and
the Schröder numbers, e.g., [8, 1] and [2, pp.80–81].

In this paper, instead, we use the following definition of Schröder paths, in which we
consider direction of paths: rightward and leftward. A rightward Schröder path of length
` ≥ 0 is a plane path on L,
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• starting at (x, 0) and ending at (x + `, 0),

• not going under the horizontal line {y = 0},

• consisting of the three kinds of elementary steps: up-diagonal aR
k = (1/2, 1), down-

diagonal bR
k = (1/2,−1) and horizontal cR

k = (1, 0),

where the subscript k of each elementary step indicates the level of its starting point. See
Figure 1 for example. The definition of a leftward Schröder path of length ` ≥ 1 is same
as that of rightward one, except for it ending at (x−`, 0) and consisting of the three kinds
of elementary steps: aL

k = (−1/2, 1), bL
k = (−1/2,−1) and cL

k = (−1, 0). We regard, for
convenience, the empty path φ as a rightward path. We denote by ΠS

` , ` ≥ 0, the set of
such rightward Schröder paths, and do by ΠS

−`, ` ≥ 1, that of such leftward ones.
We deal with Schröder paths starting by a horizontal step cR

0 or cL
0 . Let us denote the

set of such paths by ΠSH. Additionally, we use the following notation for their sets, for
any ` ∈ Z, and use the notation

ΠSH
` = ΠS

` ∩ ΠSH. (11)

Valuations, weight and enumerators for Schröder paths Let α = (αk)
∞
k=0 and

γ = (γk)
∞
k=0 be such two sequences on K that every term of them is nonzero. We then

define a valuation v = (α, γ) by

v(aR
k ) = αk, v(bR

k ) = 1, v(cR
k ) = γk,

v(aL
k) = α∗

k, v(bL
k ) = 1, v(cL

k) = γ∗
k

(12)

where α∗ = (α∗
k)

∞
k=0 and γ∗ = (γ∗

k)
∞
k=0 are given by

V ∗ : α∗
k =

αk

γkγk+1
, γ∗

k =
1

γk

. (13)

We can regard this (13) as the transformation of valuations which maps v = (α, γ) to
v∗ = (α∗, γ∗). We then represent it as V ∗, that is, in this case v∗ = V ∗(v). In what
follows, for any superscript ♥, we denote by α♥ and γ♥ sequences (α♥

k )
∞

k=0 and (γ♥
k )

∞

k=0,
respectively, and denote by v♥ the valuation (α♥, γ♥).

1 2 3 4 5

1

2

0

α1α1

α0α0

γ1

Figure 1: A rightward Schröder path ω = aR
0 cR

1 bR
1 aR

0 aR
1 bR

2 aR
1 bR

2 bR
1 of length 5, wgt(v; ω) =

(α0)
2(α1)

2γ1.
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Using valuations of this kind we weight Schröder paths by (9) and then evaluate
enumerators by (10). For example, a few of them are

µSH
−2(v) = γ∗

0(α
∗
0 + γ∗

0),

µSH
−1(v) = γ∗

0 ,

µS
0(v) = 1,

µS
1(v) = α0 + γ0,

µS
2(v) = α0α1 + α0γ1 + (α0)

2 + 2α0γ0 + (γ0)
2.

Clearly, we have the following.

Lemma 1. Enumerators for Schröder paths satisfy the equalities

{
µS

` (v) = γ0µ
SH
`−1(v), ` ≤ 0,

µSH
` (v) = γ0µ

S
`−1(v), ` ≥ 1.

(14)

Since the transformation V ∗ of valuations is an involution, then we have the following.

Lemma 2. If v∗ = V ∗(v), then enumerators for Schröder paths satisfy the equalities

µS
` (v) = µS

−`(v
∗), µSH

` (v) = µSH
−` (v

∗), ` ∈ Z. (15)

Linear functionals To combinatorially interpret LBPs, it shall be inevitable to define
a linear functional in terms of Schröder paths as

LS(v)
[
z`
]

=

{
µSH

` (v), ` ≤ −1,

µS
` (v), ` ≥ 0,

(16)

with respect to which LBPs shall be orthogonal. We have the following from Lemmas 1
and 2.

Lemma 3. If v∗ = V ∗(v), then linear functionals satisfy the equality

LS(v)
[
z`
]

= γ∗
0L

S(v∗)
[
z−`−1

]
, ` ∈ Z. (17)

2 Favard paths for Laurent biorthogonal polynomials

Favard paths, appeared in [10], are plane paths introduced to interpret general orthogonal
polynomials, especially to do three-term recurrence equation satisfied by them. We use a
similar approach to interpret LBPs and their recurrence equation.

A Favard path for Laurent biorthogonal polynomials, or a Favard-LBP path for short,
of height n and width ` is a plane path on L,

• starting at (x, 0) and ending at (x + `, n), and
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0 1 2

1

2

3

4

5

−α2

−γ0

−γ1

Figure 2: A Favard-LBP path η = cF
0 cF

1 aF
2 bF

4 of height 5 and width 2, wgt(v; η) = −α2γ0γ1.

• consisting of the three kinds of elementary steps: up-up-diagonal aF
k = (1, 2), up-

diagonal bF
k = (1, 1), and up cF

k = (0, 1),

where the subscript k of each elementary step indicates the level of its starting point. See
Figure 2 for example. We denote by ΠF

n,` the set of such Favard-LBP paths.
To weight Favard-LBP paths we extend the valuation v for Schröder paths by

v(aF
k ) = −αk, v(bF

k ) = 1, v(cF
k ) = −γk, (18)

with which we may evaluate the enumerators µF
n,`(v) for Favard-LBP paths. Moreover,

we consider the generating functions of the enumerators

GF
n(v; z) =

n∑

k=0

µF
n,k(v)zk, n ≥ 0. (19)

The structure of Favard-LBP paths obviously implies the following recurrence.

Proposition 4. Enumerators for Favard-LBP paths satisfy the equality

µF
n,`(v) = µF

n−1,`−1(v) − γn−1µ
F
n−1,`(v) − αn−2µ

F
n−2,`−1(v), n ≥ 1, (20)

where µF
−1,`(v) = 0 for each `.

Thus, the generating functions satisfy the recurrence equation

{
GF

0 (v; z) = 1, GF
1 (v; z) = z − γ0,

GF
n(v; z) = (z − γn−1)G

F
n−1(v; z) − αn−2zG

F
n−2(v; z), n ≥ 2,

(21)

whose form is identical to that (2) of LBPs. Then, we can interpret LBPs in terms of
Favard-LBP paths. This fact will be explicitly noted in Theorem 8 in the next section.
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3 First orthogonality

In this section, we give a combinatorial representation to the quantity

L
[
z`Pn(z−1)

]
, ` ∈ Z, n ≥ 0,

where Pn(z) are the LBPs which satisfy the orthogonality (1) with the unique linear
functional L, and do the recurrence equation (2). For this, instead, we evaluate the
quantity

LS(v)
[
z`GF

n(v∗; z−1)
]
, ` ∈ Z, n ≥ 0, (22)

where v and v∗ = V ∗(v) are valuations for Schröder paths. We then shall understand from
a combinatorial viewpoint the LBPs Pn(z), the linear functional L and the orthogonality
(1) of the LBPs.

We consider such a Schröder path ω = s1 · · · sν ∈ ΠS
` (resp. ω = s0s1 · · · sν ∈ ΠSH

` )
that it has at least m + n steps (resp. m + n + 1 steps) and its m steps s1, . . . , sm and n
ones sν−n+1, . . . , sν are all up-diagonal and down-diagonal, respectively. See Figure 3 for
example. We denote by ΠS

`;m,n (resp. by ΠSH
`;m,n) the set of such paths.

The next theorem is a main subject of this section.

Theorem 5 (First orthogonality). Let v be a valuation for Schröder paths and let
v∗ = V ∗(v). Then, generating functions of enumerators for Favard-LBP paths satisfy the
equality

LS(v)
[
z`GF

n(v∗; z−1)
]

=





µSH
`−n;n,0(v), ` ≤ −1,
[

n−1∏

i=0

(
−

1

γi

)]
µS

`;n,0(v), ` ≥ 0.
(23)

Particularly, they satisfy the orthogonality property

LS(v)
[
z`GF

n(v∗; z−1)
]

=

[
n−1∏

i=0

(
−

αi

γi

)]
δ`,n, 0 ≤ ` ≤ n. (24)

Hereafter we call this theorem, especially the formula (23), first orthogonality.
To prove the first orthogonality we introduce a new but simple kind of plane paths.

An S×F path (ω, η) is an ordered pair of a Schröder path ω and a Favard-LBP path η,

ω ω
′

Figure 3: Schröder paths ω ∈ ΠSH
−5;1,3 and ω′ ∈ ΠS

5;2,2.
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0−1−2−3

1
2

3
4

5

(ω, η)

3210

1
2

3
4

5

(ω′
, η

′)

Figure 4: S×F paths (ω, η) ∈ ΠS×F
−1,4 and (ω′, η′) ∈ ΠS×F

3,5 .

where ω ∈ ΠSH if ω is leftward. Graphically, it is a path derived by coupling the ending
point of ω and the starting point of η. See Figure 4 for example. We denote by ΠS×F

i,j ,
(i, j) ∈ L, the set of S×F paths from (0, 0) to (i, j). Note that it can be represented as

ΠS×F
i,j =

(
i⋃

k=0

ΠS
i−k × ΠF

j,k

)
∪

(
j⋃

k=i+1

ΠSH
i−k × ΠF

j,k

)
. (25)

The first step to prove the first orthogonality is the next.

Lemma 6. The following equality holds,

LS(v)
[
z`GF

n(v∗; z−1)
]

=
∑

(ω,η)∈ΠS×F
`,n

wgt(v; ω) · wgt(v∗; η). (26)

Proof. We have from the definition (16) of linear functionals

LS(v)
[
z`GF

n(v∗; z−1)
]

=
∑̀

k=0

µS
`−k(v) · µF

n,k(v
∗) +

n∑

k=`+1

µSH
`−k(v) · µF

n,k(v
∗).

This and (25) lead (26).

Prior to the second step, we classify S×F paths into two groups: proper and improper
ones. A proper S×F path is a path in the sets

Π̃S×F
i,j =

{
ΠSH

i−j;j,0 × ΠF
j,j, i ≤ −1,

ΠS
i;j,0 × ΠF

j,0, i ≥ 0.
(27)

See Figure 5 for example. Note that ΠF
j,j = {η̃j,j} and ΠF

j,0 = {η̃j,0}, j ≥ 0, where
η̃j,j = bF

0 · · · b
F
j−1, the path consisting only of up-diagonal steps, and η̃j,0 = cF

0 · · · c
F
j−1, the

one doing only of up ones. (In the case j = 0, η̃0,0 is the empty path φ.) Meanwhile,
an improper S×F path is a path which is not proper, and belongs to the complement
ΠS×F

i,j \ Π̃S×F
i,j . That is characterized as follows. An S×F path (ω, η) ∈ ΠS×F

i,j is improper if
and only if ω is rightward (resp. ω is leftward) and
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(ω, η) (ω′
, η

′)

3210

1
2

3
4

4 50-1-2-3

1
2

3
4

-4-5

Figure 5: Proper S×F paths (ω, η) ∈ ΠS×F
−1,4 and (ω′, η′) ∈ ΠS×F

5,2 .

• ω has at least one down-diagonal step or horizontal step in s1,min {j,|ω|}(ω) (resp. in
s2,min {j+1,|ω|}(ω)), or

• η has at least one up-diagonal step (resp. up step) or up-up-diagonal step in
s1,min {j,|η|}(η).

The second step to prove the first orthogonality is the next.

Lemma 7. There exists an involution T S×F
`,n on ΠS×F

`,n \ Π̃S×F
`,n of improper S×F paths,

satisfying for any pair (ω, η) and (ω′, η′) = T S×F
`,n ((ω, η))

wgt(v; ω) · wgt(v∗; η) = −wgt(v; ω′) · wgt(v∗; η′). (28)

Proof. We show such an involution as a transformation which takes an improper S×F
path (ω, η) as the input and outputs one (ω′, η′) after transforming the input a little.

Definition 1 (Involution T S×F
`,n ). For a given input (ω, η) ∈ ΠS×F

`,n \ Π̃S×F
`,n , output

(ω′, η′) ∈ ΠS×F
`,n \ Π̃S×F

`,n as follows.

(i) Case ω ∈ ∪`≤−2Π
SH
` , or ω ∈ ΠSH

−1 and s1(η) = aF
0 or cF

0 :
Let ν ≥ 1 be the minimal integer satisfying (sν+1(ω), sν(η)) 6= (aL

ν−1, b
F
ν−1). Then,

output (ω′, η′) following the next table.

sν+1(ω) sν(η) ω′ η′

(iP1) bL
ν−1 bF

ν−1 s1,ν−1(ω)sν+2,|ω|(ω) s1,ν−2(η)aF
ν−2sν+1,|η|(η)

(iP2) any aF
ν−1 s1,ν(ω)aL

ν−1b
L
ν sν+1,|ω|(ω) s1,ν−1(η)bF

ν−1b
F
ν sν+1,|η|(η)

(iH1) cL
ν−1 bF

ν−1 s1,ν(ω)sν+2,|ω|(ω) s1,ν−1(η)cF
ν−1sν+1,|η|(η)

(iH2) any cF
ν−1 s1,ν(ω)cL

ν−1sν+1,|ω|(ω) s1,ν−1(η)bF
ν−1sν+1,|η|(η)

This table means, for example, that, if (sν+1(ω), sν(η)) = (bL
ν−1, b

F
ν−1), then out-

put (ω′, η′) = (s1,ν−1(ω)sν+2,|ω|(ω), s1,ν−2(η)aF
ν−2sν+1,|η|(η)), where “any” means no

restriction. See Figure 6 for example.

the electronic journal of combinatorics 14 (2007), #R37 9



(iP1)

(iP2)

(iH1)

(iH2)

Figure 6: Transformations by T S×F
−1,5 , Case (i).

(ii) Case ω ∈ ΠSH
−1 and s1(η) = bF

0 , or ω ∈ ΠS
0 and s1(η) = cF

0 :
Output (ω′, η′) following the next table.

ω s1(η) ω′ η′

(ii1) cL
0 bF

0 φ cF
0 s2,|η|(η)

(ii2) φ cF
0 cL

0 bF
0 s2,|η|(η)

See Figure 7 for example.

(iii) Case ω ∈ ΠS
0 and s1(η) = aF

0 or bF
0 , or ω ∈ ∪`≥1Π

S
` :

Let ν ≥ 1 be the minimal integer satisfying (sν(ω), sν(η)) 6= (aL
ν−1, c

F
ν−1). Then,

output (ω′, η′) following the next table.

sν(ω) sν(η) ω′ η′

(iiiP1) any aF
ν−1 s1,ν−1(ω)aR

ν−1b
R
ν sν,|ω|(ω) s1,ν−1(η)cF

ν−1c
F
ν sν+1,|η|(ν)

(iiiP2) bR
ν−1 cF

ν−1 s1,ν−2(ω)sν+1,|ω|(ω) s1,ν−2(η)aF
ν−2sν+1,|η|(η)

(iiiH1) any bF
ν−1 s1,ν−1(ω)cR

ν−1sν,|ω|(ω) s1,ν−1(η)cF
ν−1sν+1,|η|(η)

(iiiH2) cR
ν−1 cF

ν−1 s1,ν−1(ω)sν+1,|ω|(ω) s1,ν−1(η)bF
ν−1sν+1,|η|(η)

See Figure 8 for example.

(ii1)

(ii2)

Figure 7: Transformations by T S×F
1,4 , Case (ii).
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(iiiP1)

(iiiP2)

(iiiH1)

(iiiH2)

Figure 8: Transformations by T S×F
5,4 , Case (iii).

In this transformation, (iP1) and (iP2), (iH1) and (iH1), (ii1) and (ii2), (iiiP1) and (iiiP2),
and (iiiH1) and (iiiH2) are inverse to each other, respectively. That is, for example, if
T S×F

`,n ((ω, η)) outputs (ω′, η′) by (iP1), then T S×F
`,n ((ω′, η′)) outputs (ω, η) by (iP2). Hence,

T S×F
`,n is an involution. Finally, the equality (28) is easily validated using (13). For example,

in the case (iiiP1), (ω′, η′) is made from (ω, η) only by inserting aR
ν−1b

R
ν (weighing αν−1)

into ω and replacing aF
ν−1 (weighing −α∗

ν−1) in η with cF
ν−1c

F
ν (weighing γ∗

ν−1γ
∗
ν), in which

1 · (−α∗
ν−1) = −(αν−1 · γ

∗
ν−1γ

∗
ν) holds from (13), and then (28) holds. We have completed

the proof.

We make up a proof of the first orthogonality using these lemmas.

Proof of Theorem 5. Lemmas 6 and 7 lead

LS(v)
[
z`GF

n(v∗; z−1)
]

=
∑

(ω,η)∈eΠS×F
`,n

wgt(v; ω) · wgt(v∗; η), (29)

since in the summation of the right hand side of (26) only proper S×F paths survive while
improper ones cancel out. Thus, we have from (27), if ` ≤ −1,

r.h.s. of (29) = wgt(v∗; η̃n,n)
∑

ω∈ΠSH
`−n;n,0

wgt(v; ω) = µSH
`−n;n,0(v),

and, if ` ≥ 0, with (13)

r.h.s. of (29) = wgt(v∗; η̃n,0)
∑

ω∈ΠS
`;n,0

wgt(v; ω) =

[
n−1∏

i=0

(
−

1

γi

)]
µS

`;n,0(v).

Finally, the orthogonality property (24) follows the fact that ΠS
`;n,0 is empty if 0 ≤ ` ≤ n−1

and ΠS
n;n,0 = {aR

0 · · ·aR
n−1b

R
n · · · bR

1 }.
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The first orthogonality gives us a combinatorial representation of the LBPs Pn(z) and
the linear functional L in terms of Favard-LBP paths and Schröder paths, respectively.

Theorem 8. Let Pn(z) ∈ K[z] be the LBPs satisfying the three-term recurrence equation
(2) whose nonzero coefficients are a = (ak)

∞
k=0 and c = (ck)

∞
k=0, and let L : K[z−1, z] → K

be the unique linear functional with which the LBPs Pn(z) have the orthogonality (1). Let
vP = (a, c) be a valuation for Schröder paths. Then Pn(z) and L are represented as

Pn(z) = GF
n(vP ; z), n ≥ 0 (30)

L = LS(V ∗(vP )). (31)

As a corollary we have the following.

Corollary 9. If an + cn+1 = 0 for some n ≥ 0, then the constant term Qn+1(0) of the
biorthogonal partner Qn+1(z) vanishes.

Proof. Since deg (cn+1Pn+1(z) + anzPn(z)) ≤ n, we have from the recurrence (2), and the
orthogonalities (1), (4) and (3)

0 = L
[
Pn+2(z

−1)Qn+1(z)
]

= Qn+1(0)L
[
z−1Pn+1(z

−1)
]
.

Here, L[z−1Pn+1(z
−1)] is explicitly calculated, with (30), (31) and the first orthogonality

(23), as

L
[
z−1Pn+1(z

−1)
]

= µSH
−n−2;n+1,0(V

∗(vP )) = c0

(
n∏

i=0

ai

)
6= 0.

Hence, Qn+1(0) = 0.

Moreover, the nonzero constants hn appearing in the orthogonality (1) are

hn =
n−1∏

i=0

(
−

ai

ci+1

)
, n ≥ 0. (32)

4 Second orthogonality

In this section, we give a combinatorial representation to the quantity

L
[
z`Qn(z)

]
, ` ∈ Z, n ≥ 0,

where Qn(z) are the unique biorthogonal partners of the LBPs Pn(z) which are charac-
terized by the orthogonality (3). For this, instead, we find such a valuation v̄ that the
generating functions GF

n(v̄; z) satisfy the orthogonality

L(v)
[
z−`GF

n(v̄; z)
]

=

[
n−1∏

i=0

(
−

αi

γi

)]
δ`,n, 0 ≤ ` ≤ n, n ≥ 0,
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and evaluate the quantity

L(v)
[
z`GF

n(v̄; z)
]
, ` ∈ Z, n ≥ 0.

We then shall understand from a combinatorial viewpoint the partners Qn(z) and their
orthogonality (3). We consider only the case that Qn(0) 6= 0, namely that Qn(z) are also
LBPs. Thus, from Corollary 9, we assume in what follows that the coefficients an and cn

of the recurrence equation (2) of the LBPs Pn(z) satisfy an + cn+1 6= 0 for each n ≥ 0,
and also assume that the valuation v = (α, γ) for Schröder paths satisfies αn + γn 6= 0 for
each n ≥ 0 so that v∗ = V ∗(v) satisfies α∗

n + γ∗
n+1 6= 0.

Lemmas 1 and 2 can be generalized for paths in ΠS
`;m,n and ΠSH

`;m,n like

µS
`;m,n(v) = γ0µ

SH
`−1;m,n(v), ` ≤ 0.

We then have as a corollary of the first orthogonality (23) with Lemma 3

LS(v)
[
z`GF

n(v; z)
]

=






[
n−1∏

i=0

(−γi)

]
µSH

`;n,0(v), ` ≤ −1,

µS
`+n;n,0(v), ` ≥ 0.

(33)

The valuation v appearing here is not a desired one, however it looks to be close to that.
Thus, we call the equality (33) imperfect orthogonality, and we will use it to derive a
desired v̄ afterwards.

We consider Schröder paths ω = s1 · · · sν ∈ ΠS
`;m,n and ω = s0s1 · · · sν ∈ ΠSH

`;m,n, s0 = cR
0

or cL
0 satisfying the following conditions: the elementary step {(i) sm+1, (ii) sν−n}, if ω

has, is {(a) not up-diagonal, (b) not down-diagonal, (c) horizontal}. We represent the
sets of such paths as in the next table, in which the superscripts ♥ are any of S and SH.

(a) (b) (c)

(i) Π♥

`;(¬a
m),n

Π♥

`;(¬b
m),n

Π♥

`;( c
m),n

(ii) Π♥

`;m,(¬a
n )

Π♥

`;m,(¬b
n )

Π♥

`;m,(c
n)

We also deal with paths which satisfy combinations of the above conditions. For example,

ΠS
`;(¬b

m),(¬a
n )

= ΠS
`;(¬b

m),0
∩ ΠS

`;0,(¬a
n ).

Moreover, we take into consideration the existence of peaks and valleys in a Schröder
path. Namely, we call two consecutive elementary steps aR

k bR
k+1 and aL

kbL
k+1 peaks of level

k. Similarly, we call bR
k aR

k−1 and bL
kaL

k−1 valleys of level k. Let ΠSnP and ΠSnV be the sets
of Schröder paths without peaks and without valleys, respectively. We use the following
notation to represent subsets of them, for ♥ = S or SH and for any subscript ♦

Π♥nP
♦ = Π♥

♦ ∩ ΠSnP, Π♥nV
♦ = Π♥

♦ ∩ ΠSnV.

To find a desired valuation v̄, we consider enumerator-conserving transformations of
Schröder paths.
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Lemma 10. The following equalities of enumerators hold for ` ≥ 0,

µS

`;(¬b
m),(¬a

n )
(v) = µSnP

`;m,n(v
nP), (34a)

µSnP
`+1;m,n(vnP) = µSHnV

`+1;m,n(vnV) = γnV
0 µSnV

`;m,n(vnV), (34b)

µSnV
`;m,n(v

nV) = µS
`;m,n(v̄), (34c)

where αnV
−1 = 0 and vnP, vnV and v̄ are the valuations determined by

αnP
k = αk, γnP

k = αk + γk, (35a)

αnV
k = αnP

k

γnP
k+1

γnP
k

, γnV
k = γnP

k , (35b)

ᾱk = αnV
k , ᾱk−1 + γ̄k = γnV

k , (35c)

respectively.

Proof of (34a). We consider the transformation T S→SnP of plane paths defined by the next
recursive algorithm.

Algorithm 2 (Transformation T S→SnP). For a given input π, output π′ as follows.

(i) If π = φ, then output π′ = φ.

(ii) Else if s1,2(π) = aR
k bR

k+1, then output π′ = cR
k T S→SnP(s3,|π|(π)).

(iii) Otherwise, output π′ = s1(π)T S→SnP(s2,|π|(π)).

As shown in the example in Figure 9, this T S→SnP replaces every peak with a horizontal
step of the same level, and hence it maps ΠS

`;(¬b
m),(¬a

n )
onto ΠSnP

`;m,n. Additionally, it is

weight-conserving with the equalities (35a) of valuations, namely for any path ω ′ ∈ ΠSnP
`;m,n

∑

ω∈(TS→SnP)−1(ω′)

wgt(v; ω) = wgt(vnP; ω′)

holds. Thus, we obtain (34a) by summing this equality over ω ′ ∈ ΠSnP
`;m,n.

αk

γk

γnP

k
= αk + γk

ω

ω′ = T S→SnP(ω)

Figure 9: A transformation by T S→SnP.
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Thus, the transformation T S→SnP yields the equality (34a) of enumerators with the equal-
ity (35a) of valuations. In this sense we call it enumerator-conserving. We can prove
(34b) and (34c) in similar ways, but we use the transformations T SnP→SnV and T S→SnV,
respectively, defined as follows.

Algorithm 3 (Transformation T SnP→SnV). For a given input π, output π′ as follows.

(i) If π = φ, then output π′ = φ.

(ii) Else if s|π|−1,|π|(π) = aR
k−1c

R
k , then output π′ = T SnP→SnV(s1,|π|−2(π)cR

k−1)a
R
k−1.

(iii) Otherwise, output π′ = T SnP→SnV(s1,|π|−1(π))s|π|(π).

Algorithm 4 (Transformation T S→SnV). For a given input π, output π′ as follows.

(i) If π = φ, then output π′ = φ.

(ii) Else if s1,2(π) = bR
k aR

k−1, then output π′ = cR
k T S→SnV(s3,|π|(π)).

(iii) Otherwise, output π′ = s1(π)T S→SnP(s2,|π|(π)).

T SnP→SnV maps ΠSnP
`;m,n onto ΠSnV

`;m,n by replacing the part of the form aR
k1
· · ·aR

k2−1c
R
k2

, k1 <
k2, with cR

k1
aR

k1
· · ·aR

k2−1, while T S→SnV maps ΠS
`;m,n onto ΠSnV

`;m,n by doing every valley with a
horizontal step of the same level. They are also enumerator-conserving with the equalities
(35b) and (35c) of valuations, respectively. See Figures 10 and 11 for example.

Thus, combining the equalities in (34) and (35), we have

µS

`;(¬b
m),(¬a

n )
(v) = γ̄0µ

S
`−1;m,n(v̄), ` ≥ 1, (36)

where v̄ is the valuation given by

V̄ : ᾱk =
αk+1 + γk+1

αk + γk

αk, γ̄k =
αk + γk

αk−1 + γk−1
γk−1 (37)

αnP

k1
· · ·αnP

k2−1
γnP

k2

γnV

k1
αnV

k1
· · ·αnV

k2−1

= αnP

k1
· · ·αnP

k2−1
γnP

k2

ω

ω′ = T SnP→SnV(ω)

Figure 10: A transformation by T SnP→SnV.
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ᾱk−1

γ̄k

γnV

k
= ᾱk−1 + γ̄k

ω

ω′ = T S→SnV(ω)

Figure 11: A transformation by T S→SnV.

with α−1 = 0 and γ−1 6= 0. We represent this transformation (37) of valuations as V̄ ,
namely in this case v̄ = V̄ (v). Then, the transformation

V̄ ∗ = V̄ ◦ V ∗ (38)

of valuations is an involution, which implies with Lemmas 1 and 2 and (36)

µSH
`;m,n(v) = γ̄0µ

SH

`−1;(¬b
m),(¬a

n )
(v̄), ` ≤ −1. (39)

Additionally, it holds that

µS
0;m,n(v) = µS

0;(¬b
m),(¬a

n )
(v) = γ̄0µ

SH
−1;m,n(v̄) = γ̄0µ

S

−1;(¬b
m),(¬a

n )
(v̄) =

{
1, m = n = 0,

0, otherwise.
(40)

As a whole, we have

Proposition 11. Let v and v̄ be valuations for Schröder paths satisfying v̄ = V̄ (v). Then,
the following equalities of enumerators hold,





µSH
`;m,n(v) = γ̄0µ

SH
`−1;(¬b

m),(¬a
n )

(v̄), ` ≤ −1,

µS
0;m,n(v) = µS

0;(¬b
m),(¬a

n )
(v) = γ̄0µ

SH
−1;m,n(v̄) = γ̄0µ

S

−1;(¬b
m),(¬a

n )
(v̄),

µS

`;(¬b
m),(¬a

n )
(v) = γ̄0µ

S
`−1;m;n(v̄), ` ≥ 1.

(41)

Particularly, in the case of m = n = 0 we have





µSH
` (v) = γ̄0µ

SH
`−1(v̄), ` ≤ −1,

µS
0(v) = γ̄0µ

SH
−1(v̄),

µS
` (v) = γ̄0µ

S
`−1(v̄), ` ≥ 1,

(42)
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which is equivalent, in terms of linear functionals, to

LS(v)
[
z`
]

= γ̄0L
S(v̄)

[
z`−1

]
, ` ∈ Z. (43)

Hence, we have from the imperfect orthogonality (33) with the last equality of (41)

LS(v)
[
z`GF

n(v̄; z)
]

= µS

`+n;(¬b
n ),0

(v) = µS
`+n;0,(¬a

n )
(v), ` ≥ 1, (44)

where in the last equality we use the symmetry of flipping a Schröder path in the horizontal
direction.

On the other hand, the above three enumerator-conserving transformations T S→SnP,
T SnP→SnV and T S→SnV also yield the following.

Lemma 12. The following equalities of enumerators hold for ` ≥ 0,




(αn + γn)µS

`;(¬b
m),n

(v) = µSnP
`+1;m,(c

n)
(vnP) if ` = m = n does not hold,

(α` + γ`)µ
S
`;`,`(v) = µSnP

`+1;`,(c
`)

(vnP),
(45a)

µSnP
`+1;m,(c

n)
(vnP) = µSHnV

`+1;m,(¬b
n )

(vnV) = γnV
0 µSnV

`;m,(¬b
n )

(vnV), (45b)

µSnV

`;m,(¬b
n )

(vnV) = µS

`;m,(¬b
n )

(v̄), (45c)

where vnP, vnV and v̄ are the valuations given by (35) with αnV
−1 = 0.

Proof. Suppose that ` = m = n does not hold. The transformation T S→SnP maps the set

Π′ =

{
ω ∈ ΠS

`+1;(¬b
m),n

; s|ω|−n−1,|ω|−n(ω) = aR
n bR

n+1 or s|ω|−n(ω) = cR
n

}

onto ΠSnP
`+1;m,(c

n)
, and is enumerator-conserving with (35a) as µ′(v) = µSnP

`+1;m,(c
n)

(vnP). The

trivial surjection from Π′ onto ΠS

`;(¬b
m),n

Π′ 3 ω 7→





s1,|ω|−n−2(ω)s|ω|−n+1,|ω|(ω) if s|ω|−n−1,|ω|−n(ω) = aR

n bR
n+1,

s1,|ω|−n−1(ω)s|ω|−n+1,|ω|(ω) if s|ω|−n(ω) = cR
n

leads µ′(v) = (αn + γn)µ
S

`;(¬b
m),n

(v). We then have the first equality of (45a). Similarly,

we can obtain the second one of (45a). The equalities (45b) and (45c) are obtained using
T SnP→SnV and T S→SnV, respectively.

In a way similar to that used to obtain Proposition 11 from Lemma 10, we have the
following.

Proposition 13. Let v and v̄ be valuations for Schröder paths satisfying v̄ = V̄ (v). Then,
the following equalities of enumerators hold,
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• if ` ≤ −1 and −` − 1 = m = n does not hold, then

γn−1γn

αn−1 + γn−1

µSH

`;m,(¬b
n )

(v) = γ̄0µ
SH

`;(¬b
m),n

(v̄), (46a)

• if ` ≥ 0 and ` = m = n does not hold, then

(αn + γn)µS

`;(¬b
m),n

(v) = γ̄0µ
S

`;m,(¬b
n )

(v̄), (46b)

• otherwise




γ−`−2γ−`−1

α−`−2 + γ−`−2

µSH
`;−`−1,−`−1(v) = γ̄0µ

SH
`;−`−1,−`−1(v̄), ` ≤ −1,

(α` + γ`)µ
S
`;`,`(v) = γ̄0µ

S
`;`,`(v̄), ` ≥ 0,

(46c)

where α−1 = 0 and γ−1 6= 0.

Hence, we have from the imperfect orthogonality (33) with the equalities (43), (46a) and
the first of (46c)

LS(v)
[
z`GF

n(v̄; z)
]

= −

[
n∏

i=0

(−γi)

]
µSH

`−1;0,(¬b
n )

(v), ` ≤ 0. (47)

Thus, v̄ = V̄ (v) is a desired valuation, that is, we have the following by combining the
equalities (44) and (47).

Theorem 14 (Second orthogonality). Let v be such a valuation for Schröder paths
that αn + γn 6= 0 for each n ≥ 0, and let v̄ = V̄ (v). Then, generating functions of
enumerators for Favard-LBP paths satisfy the equality

LS(v)
[
z`GF

n(v̄; z)
]

=





−

[
n∏

i=0

(−γi)

]
µSH

`−1;0,(¬b
n )

(v), ` ≤ 0,

µS
`+n;0,(¬a

n )
(v), ` ≥ 1.

(48)

Particularly, they satisfy the orthogonality property

LS(v)
[
z−`GF

n(v̄; z)
]

=

[
n−1∏

i=0

(
−

αi

γi

)]
δ`,n, 0 ≤ ` ≤ n. (49)

Hereafter we call this theorem, especially the formula (48), second orthogonality.
This theorem gives us a combinatorial representation of the biorthogonal partners

Qn(z) in terms of Favard-LBP paths.
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Theorem 15. Let Pn(z) ∈ K[z] be the LBPs satisfying the three-term recurrence equation
(2) whose nonzero coefficients a = (ak)

∞
k=0 and c = (ck)

∞
k=0 satisfy the condition an+cn+1 6=

0 for each n ≥ 0. Let vP = (a, c) be a valuation for Schröder paths. Then the biorthogonal
partners Qn(z) ∈ K[z] of the LBPs Pn(z) are represented as

Qn(z) = GF
n(vQ; z), n ≥ 0, (50)

where the valuation vQ is given by vQ = V̄ ∗(vP ).

Here we also know the following with Corollary 9.

Corollary 16. The biorthogonal partners Qn(z) are again LBPs if and only if the recur-
rence coefficients an and cn of Pn(z) satisfy an + cn+1 6= 0 for each n ≥ 0.

5 Biorthogonality

Finally, in this section, we give a combinatorial representation to the quantity

L
[
z`Pm(z−1)Qn(z)

]
, ` ∈ Z, m, n ≥ 0,

which shall imply the biorthogonality (4). For this, instead, we evaluate the quantity

Σ`;m,n(v) = LS(v)
[
z`GF

m(v∗; z−1)GF
n(v̄; z)

]
, ` ∈ Z, m, n ≥ 0, (51)

where v, v∗ = V ∗(v) and v̄ = V̄ (v) are valuations for Schröder paths.

Case m ≤ n: Expanding GF
m(v∗; z) in the right-hand side of (51) and using the second

orthogonality (48), we have

Σ`;m,n(v) = Σ1 −

[
n∏

i=0

(−γi)

]
Σ2, (52)

where Σ1 and Σ2 are

Σ1 =
`−1∑

i=0

µS
`+n−i;0,(¬a

n )(v) · µF
m,i(v

∗), Σ2 =
m∑

i=`

µSH

`−i−1;0,(¬b
n )

(v) · µF
m,i(v

∗). (53)

Here, Σ1 is evaluated as

Σ1 =






0, ` ≤ 0,
[

m−1∏

i=0

(
−

1

γi

)]
µS

`+n;m,(¬a
n )(v), ` ≥ 1.

(54)
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Proof of (54). We can rewrite Σ1 in (52) as

Σ1 =
∑

(ω,η)∈Π1

wgt(v; ω) · wgt(−v∗; η),

where Π1 is the set of S×F paths from (0, 0) to (` + n, m)

Π1 =

`−1⋃

i=0

(
ΠS

`+n−i;0,(¬a
n ) × ΠF

m,i

)
.

If ` ≤ 0, then Π1 is empty and Σ1 = 0. Let us consider the case ` ≥ 1. For any (ω, η) ∈ Π1,
the Schröder path ω is rightward and its length is at least n+1. Additionally, if its length
is n+1, then it is any of ΠS

n+1;0,(¬a
n )

= {aR
0 · · ·aR

n−1a
R
n bR

n+1b
R
n · · · bR

1 , aR
0 · · ·aR

n−1c
R
n bR

n · · · bR
1 }.

Moreover, its first m steps and its last n ones are disjoint. Thus, the set Π1 \ Π̃S×F
`+n,m is

closed under the transformation T S×F
`+n,m. Hence, in a way similar to that used to obtain

the first orthogonality (23), we have the second case of (54).

Similarly, Σ2 is evaluated as

Σ2 =

{
µSH

`−m−1;m,(¬b
n )

(v), ` ≤ 0,

0, ` ≥ 1.
(55)

As a whole, we have

Σ`;m,n(v) =





−

[
n∏

i=0

(−γi)

]
µSH

`−m−1;m,(¬b
n )

(v), ` ≤ 0,

[
m−1∏

i=0

(
−

1

γi

)]
µS

`+n;m,(¬a
n )(v), ` ≥ 1.

(56)

Case m > n: First, we rewrite Σ`;m,n(v) in (51), using (43) and Lemma 3, as

Σ`;m,n(v) = LS(v̄∗)
[
z−`GF

m(v∗; z)GF
n(v̄; z−1)

]
= Σ−`;n,m(v̄∗),

where v̄∗ = V̄ ∗(v). Thus, we have from the formula (56) and Proposition 13

Σ`;m,n(v) =





−

[
n∏

i=0

(−γi)

]
µSH

`−m−1;m,(¬b
n )

(v), ` ≤ −1,

[
m−1∏

i=0

(
−

1

γi

)]
µS

`+n;m,(¬a
n )(v), ` ≥ 0.

(57)

As a result, we have the following.
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Theorem 17 (Biorthogonality). Let v be such a valuation for Schröder paths that
αn +γn 6= 0 for each n ≥ 0, and let v∗ = V ∗(v) and v̄ = V̄ (v). Then, generating functions
of enumerators for Favard-LBP paths satisfy the equality

LS(v)
[
z`GF

m(v∗; z−1)GF
n(v̄; z)

]
=





−

[
n∏

i=0

(−γi)

]
µSH

`−m−1;m,(¬b
n )

(v), ` ∈ Z−
m,n,

[
m−1∏

i=0

(
−

1

γi

)]
µS

`+n;m,(¬a
n )(v), ` ∈ Z+

m,n,

(58)

where Z±
m,n ⊂ Z are the sets of integers

Z−
m,n =

{
Z≤0, m ≤ n,

Z≤−1, m > n,
Z+

m,n = Z \ Z−
m,n.

Particularly, they satisfy the biorthogonality property

LS(v)
[
GF

m(v∗; z−1)GF
n(v̄; z)

]
=

[
m−1∏

i=0

(
−

αi

γi

)]
δm,n. (59)

This biorthogonality, letting m = 0, naturally induces the second orthogonality of Theo-
rem 14. Similarly, it does the first one of Theorem 5 by letting n = 0, which, however, is
seen unobvious at a glance in the case ` = m = 0 and in the one ` ≤ −1. At the last, let
us confirm this. Substituting n = 0 in the biorthogonality (58), we have

LS(v)
[
z`GF

m(v∗; z−1)
]

=





γ0µ
SH

`−m−1;m,(¬b
0 )

(v), ` ∈ Z−
m,0,

[
m−1∏

i=0

(
−

1

γi

)]
µS

`;m,0(v), ` ∈ Z+
m,0.

• Case ` = m = 0: Since 0 ∈ Z−
m,0, then we need γ0µ

SH

−1;0,(¬b
0 )

(v) = 1. Note that

ΠSH

−1;0,(¬b
0 )

= {cL
0}. Thus, we have µSH

−1;0,(¬b
0 )

(v) = γ∗
0 , which satisfies the need.

• Case ` ≤ −1: Since ` ∈ Z−
m,0, then we need γ0µ

SH

`−m−1;m,(¬b
0 )

(v) = µSH
`−m;m,0(v).

Note that any path in ΠSH

`−m−1;m,(¬b
0 )

is leftward, its length is at least 2 and it ends

by a horizontal step cL
0 . Thus, deleting this last step, we have µSH

`−m−1;m,(¬b
0 )

(v) =

γ∗
0µ

SH
`−m;m,0(v), which satisfies the need.
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[8] E. Schröder, Vier combinatorische probleme, Z. Math. Phys. 15 (1870), 361–376.

[9] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electroni-
cally at www.research.att.com/˜njas/sequences/, 2006.

[10] G. Viennot, A combinatorial theory for general orthogonal polynomials with exten-
sions and applications, in: Orthogonal Polynomials and Applications, Lecture Notes
in Mathematics, Vol. 1171, Springer, Berlin, 1985, pp.139–157.

[11] L. Vinet and A. Zhedanov, Spectral transformations of the Laurent biorthogonal
polynomials. I. q-Appel polynomials, J. Comput. Appl. Math. 131 (2001) 253–266.

[12] A. Zhedanov, The “classical” Laurent biorthogonal polynomials, J. Comput. Appl.
Math. 98 (1998) 121–147.

the electronic journal of combinatorics 14 (2007), #R37 22


