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Abstract

We are interested in (g)-regular bipartite graphs which are the central ob-
jects in the regularity lemma of Szemerédi for sparse graphs. A bipartite graph
G = (AWB, E) with density p = |E|/(|A||B]) is (¢)-regular if for all sets A" C A and
B’ C Bofsize |A'| > ¢|A| and |B'| > ¢|B], it holds that |eq(A’, B")/(|A'||B’|) — p| <
ep. In this paper we prove a characterization for (¢)-regularity. That is, we give a
set of properties that hold for each (¢)-regular graph, and conversely if the proper-
ties of this set hold for a bipartite graph, then the graph is f(e)-regular for some
appropriate function f with f(¢) — 0 as ¢ — 0. The properties of this set concern
degrees of vertices and common degrees of vertices with sets of size ©(1/p) where p
is the density of the graph in question.

1 Introduction

We are interested in e-regular pairs which play a central role in the famous regularity
lemma of Szemerédi [11]. In fact we consider a generalisation of the regularity concept
that has been introduced by Kohayakawa and Rodl [7]. Following Kohayakawa and Rodl,
we say that a bipartite graph G = (AW B, F) with density p = |E|/(|A||B|) is (g)-regular
if for all sets A’ C A and B’ C of size |A'| > ¢|A| and |B’| > ¢|B|, we have

ec(A', B')
A B

—p‘ < ep, (1)

where eg(A’, B') denotes the number of edges between A’ and B’ in G. In the original
definition of e-regularity by Szemerédi, the p on the right-hand-side of (1) is not present.
For the remainder we will use the notation e-regular (in contrast to (¢)-regular) when
referring to the original definition by Szemerédi. Note that as p < 1, every (e)-regular
graph is also e-regular. Vice versa this is not the case and in particular it is easily verified
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that every bipartite graph with less than 3| A||B| edges is e-regular but not necessarily
(e)-regular. Hence if one is interested in distinguishing sparse graphs, one needs to use
the concept of (¢)-regularity instead of e-regularity.

One easily verifies that random bipartite graphs with density p > 1/n are with very
high probability (¢)-regular. Therefore, (¢)-regular bipartite graphs are sometimes called
pseudo-random. Random (bipartite) graphs also have many other properties that hold
with very high probability and a natural question is which of these properties are equiv-
alent, that is, which set of properties is such that all of them hold if one is present. For
dense graphs, it is well known [12, 13, 3, 10] that such a non-trivial set exists. Many of
these properties can be transferred to bipartite graphs and one also knows the following
connection with e-regular pairs [1]. Roughly speaking, if the graph is e-regular, then most
vertices in A have approximately the expected degree and most pairs of vertices in A have
a common neighbourhood of approximately expected size; on the other hand if many
vertices have not approximately the expected degree, or many pairs of vertices in A have
not a common neighbourhood of roughly expected size, then the graph is not f(e)-regular
for some appropriate function f. In [1] it is also shown that unless P = N P the function
f cannot be the identity and furthermore there is no equivalent definition of e-regularity
that can be verified in polynomial time.

When considering (¢)-regularity instead of e-regularity such a condition on neighbour-
hoods of pairs on vertices does not hold as was shown in [8]. There it was shown, that
there are (g)-regular graphs where most of the common neighbourhoods are empty. In
this paper we show that nevertheless one can obtain a characterization for (¢)-regularity
if one replaces pairs of vertices by sets of size ©(1/p) where p is the density of the graph.
That is, we show that it is sufficient for a graph to be f(¢)-regular (for an appropriate
function f with f(¢) — 0 as ¢ — 0) if most vertices have approximately the correct
degree and if for all sets of size C(¢)/p, most vertices have approximately the correct
number of common neighbours with the set. On the other hand, we show that every
(e)-regular graph satisfies that most vertices have approximately the correct degree and
most vertices have approximately the correct common degree with all sets of size C(e)/p,
see Theorem 2.2 for the precise statement.

1.1 Notation

For a graph G = (V, E) and sets A, B C V, we write eg(A, B) for the number of edges
with one endpoint in A and one endpoint in B. For a vertex v € V| we write I'g(v) for its
set of neighbours and deg(v) = [I'¢(v)]| for its degree. The density of a bipartite graph
G =(AWB,E)is p=|E|/(JA||B]). For a bipartite graph G = (AW B, E) with density
pand 0 < e < 1, we let

Ageg-(G,e) = {v € A:degg(v) < (1 —¢)pn}
and

Agegt (Ge) = {v € A:degg(v) > (1 +¢)pn}.

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R4 2



Let Bye (G,¢€) and By, (G,¢e) be defined analogously. If it is unambiguous to which
graph G we refer, then we simply write e(A, B), I'(v), deg(v), Ageg—(€); Ageg* (€); Baeg—(€)
and B+ () instead of eg(A, B), I'a(v), degg(v), Ageg— (G, €), Agegt (G €), Baeg— (G, €)
and Byeg+ (G, €), respectively.

2 Main Theorem

To state our main theorem, the characterization of (¢)-regularity, we need the following
definition.

Definition 2.1. We say that a bipartite graph G = (AW B, E) with |A| = |B| = n and
density p > 0 satisfies property P(e), if the following three conditions are satisfied:
P]) |Bdeg7 (5)| S En,
P2) e(Ayut(€),B) < (14¢e)epn® and e(A, Byt (€)) < (1+¢e)epn?,
P3) for all sets Q@ C B\ By (€) of size ¢ = [%/2°/p], we have
Hve B\ Q:|I'(Q)NT(v)| > qp’n+ 3epn}| < en.

The following theorem states that property P(e) and (e)-regularity have strong con-
nections.

Theorem 2.2. Let € > 0 be sufficiently small. Let G be a non-empty bipartite graph
G = (AW B, E) with |A| = |B| = n with density p > 0. Then

G is (g)-reqular = G satisfies P(e)
and, for p > 4/(e’n),

G satisfies P(¢) = G is ( ¥/e)-regular

2.1 Proof of the first implication of Theorem 2.2

In order to prove the first implication let G = (AW B, E) be an (¢)-regular bipartite
graph with |A| = |B| = n and density p > 0. We need to show that conditions P1-P3 of
Definition 2.1 are satisfied.

By the definition of By, (), we have

€(A, Biog=(€)) _ |Baeg= ()1 —€)pm
| Baeg~ ()] 14 | Baeg-(€)[14]

=(1—¢)p.

It follows that |By,-(¢)| < en, since otherwise G would not have been (¢)-regular with
density p. This proves P1.

In the same way one can show that |44+ (c)| < en. Now assume that [Ag+(g)] < en
but e(Age+(€), B) > (1 +¢)epn®. Then any superset A’ D Ay+(¢) such that [A'] = en
satisfies

e(A',B)  (1+¢e)epn?
[ANB] ~ T en?

=1+,
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which contradicts the (g)-regularity of G. The bound for B+ (g) follows by symmetry.
This proves P2.

In order to show P3 let ¢ = [¢%%°/p] and fix an arbitrary set Q C B\ Bye+ () of size
|Q| = ¢. Since Q contains no vertex from By+ (), it follows that [T'(Q)| < (1 + &)gpn.
Let I” denote an arbitrary set of size |(1 + ¢)gpn] that contains I'(Q)). We claim that
| (14 €)gpn| > en. Observe that this is obvious for large n but needs some argument in
case n is small. If € < 1/n, then it follows from the e-regularity of G' that G is either
the complete bipartite graph or empty. As p > 0, G must be complete and it is easily
checked that P3 is satisfied. Thus we may assume that € > 1/n. It now follows that for

sufficiently small
2en>2
[(1+e)gpn| > [6”*°n] > |2en] > en,

and hence
rQ)cr and  en < || < (1+ ¢)gpn. (2)

Now consider the set
Bqi={ve B\Q:|T() NT(Q)] = qp’n + 3epn}.

Then, as pg < 1 (which can be seen by considering the two cases p < %20 and p > £%/20),

3
e(Bo,I") > |BQ|~qp2n-(1+£) > |Bgl - qp*n - (1 + 3e)

(2) 14+ 3¢
> |Bo|-p-|TV]- > |Bp|-p- [TV (1 .
_IczlplllJrg Bl -p- [I"[- (1+¢)
Hence
e(BQvIV)
—— > (14 ¢)p.
| Bal [T

The assumption that G is (¢)-regular with density p therefore implies that this can only
be true if |Bg| < en, which completes the proof of P3.

2.2 Proof of the second implication of Theorem 2.2

In order to prove the second implication we assume that G = (AW B, F) is a bipartite
graph with |A| = |B| = n and density p’ > 1/(en) that satisfies property P(c). We need
to show that G is (3/e)-regular. We will do this in several steps. In order to describe
these we need some definitions. For two vertices z,v € B we define the neighbourhood
deviation o, (z,y) as
op(w,y) = [T(2) NT(y)| - pn.

(Note that in a graph with density p the expected size of a joint neighbourhood is p*n.)
For a set Y C B we define the joint deviation o(Y’) of the vertices in Y as

1 ,
7(Y) = 5m 2 onlvv)

v’ ey
v#v!
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Now we can outline our proof strategy. First we show (Lemma 2.3) that if G satisfies
some variant of condition P3 of property P(e) and the condition that G contains no vertex
of large degree, then all sufficiently large sets Y have a small joint deviation 0,(Y). In a
second step (Lemma 2.4) we then use this result to deduce that in fact all such graphs G
are (3 3/¢)-regular. Finally, we prove a lemma (Lemma 2.5) which shows that regularity
of an appropriate subgraph of G implies regularity of G (with respect to a slightly large
constant). This will then allow us to conclude the proof of the second implication of
Theorem 2.2. Because we consider a subgraph in the last step which might have a density
that is a little bit smaller than that of the original graph, in the following lemmas we need
to consider o,(Y") for a value of p that is slightly different from the density of the graph.

Lemma 2.3. Let e > 0 be sufficiently small, and let G be a bipartite graph G = (AW B, E)
with |A| = |B| = n and density p’ > 1/(en), and let p > p'. If

(Z) AngJr (58) = Bdog+ (58) = (Z), and

(i1) for all sets Q C B of size q = [e 9/20/1)1 we have

{ve B\Q:NQ)NT(v)] > gp’n + 3epn}| < en
then all sets Y C B with |Y| > 1 ¥/en satisfy 0,(Y) < e'/4p?n.

Proof. Suppose there exists a set Yy C B with [Yp| > 1 3/en and 0,(Yp) > '/*p®n. Let
q := [¢7%/p]. Observe that

Y _
(M)l = X5 S o), ®
q 2% vEQ YEVD\Q

which can be seen by verifying that for all v,y € Yj the deviation o,(v,y) is counted the
same number of times on both sides. For a set @ C Y} of size |Q| = ¢, we define the
neighbourhood deviation 7,(Q, v) of a vertex v € Y; and the set @ as

7,(Q,v) = [T(Q) NT(v)] — gp™n.

Let Qg C Yy be a set of size ¢ that maximises Zero\Q a,(Q,y) over all such sets @ C Yp.
By the choice of )y we have

('YO') S 5@en=Y Y 5@Qu) (4)

q y€Y0\Qo ‘%Cli’g yeYo\Q

Note, that if ¢ = 1, then (4) tells us that

Yol Y 5@y =Y Y 5@y =33 o,y 220,01 vl

y€Yo\Qo RCYo yeYp\Q vEYp ¥EYD
1Ql=q yF#v

and as ¢ = 1 implies p > %20 it follows that

- 1
> 5(Quy) 2 20,(Y0) Y| > 26 pPnze 0 2 € 4pn® > bepn,
y€Y0\Qo
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for sufficiently small ¢.

We want to show that the same is true when ¢ > 2. So assume that p < £%2°. We now
consider just the second sum of (4) for an arbitrary set ) C Y. By definition, 0,(Q,y)
counts the deviation of |I'(Q) N T(y)| from gp*n. We want to rewrite this in terms of the
deviations o, (v,y) for v € ). This can be done as follows. First observe that

> 5@y = Y. (M@ NT)|—qp’n)

yeYo\Q y€Yo\Q

= Z T(a) N (Y\ Q) = Yo\ Q] - gp*n.

ael(Q
On the other hand we have

Yo N oy = DY (IT@)NT(y)| - p*n)

YyEYL\Q vEQ yEY\Q veQ

= Y M@ NQ|-T(a) N (Yo\ Q) - Yo\ Q| - ap*n.

ael(Q)

Hence, we see that

Y@y = D> oy = Y (T@nQ=1)- D) Yo\ Q)

YEYL\Q yEYL\Q veQ a€l(Q)
> ¥ o= (M) rwnma
yeY\Q veQ acA
> ¥ o= (M) ase
yEYD\Q vEQ ac€A

where the last inequality follows from the assumption that Ay,+(5¢) = () and p’ < p.
Combining this last inequality and (4) we deduce that

(") ¥ aen

yeYo\Qo
I'(a) N
23 3 Saea- X S (1) 0 rsm
QC‘EO yEYo\Q VEQ ‘Qchizg acA
I'(a) N Y, Vil — 2
=> > Zap(v,y)_(1+5g)pn.z<l ()2 0|)_<| 0|_2 )
o1y YEYO\Q e acA q

where the last equality follows by considering all triples {a, y1,y2} with a € A and y;,ys €
['(a) N Yy and observing that such triples are counted the same number of times on both
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sides of the equation. Now we again use the fact that A4+ (5¢) = ) and p" < p to combine
the resulting inequality with (3), and we deduce that

G (") M) (1 ey’
yG;\QOUp(me)ZQWUp(}/O)Dfd —n (|3;0\) (( 26) p)

¢* ((1+5¢)np)’
|Yo[? 2

> 2q(lYo\ —q)
Yo/

-0 (Yo)[Yol* —

Now we use the assumptions Y| > 1e'/2%n, 0,(Yy) > £/*p*n, and

£9/207 g>2 929/20 p>1/(en) |
qg= { —‘ < < =¥ < ey,
p p 2

For sufficiently small £, we obtain

Z 5,(Qo, 1) > (1 —&)e¥*pn? — 2(1 + 5e)3¢?e~/10n2p?
y€Y0\Qo
> (1 — &) 4pn? — 8(1 + 52)%Y5pn? > Bepn®. 5)

Observe that

H{v € B\ Qo :5,(Qo,v) >3epn}| = [{v € B\ Qo : [T'(Qo) NT(v)| > qp*n + 3epn}| < en

(4)
by assumption (i7) of the lemma. As we trivially have 7,(Qo,y) < |T'(y)| < (1+ 5¢)pn we
therefore deduce that

Y. 5@y < D> Qv+ Y. 5(Q0y)

yE€Yo\Qo y<€Yp\Qo yeEYP\Qp
\ Gp(Qp,y)<3enp op(Qp,y)>3enp

< |Yy|-3epn +en - (14 5e)pn < 5epn?

which contradicts (5). The initial assumption that there exists a set Y violating the
conclusion of the lemma is therefore not true. O

Lemma 2.4. Let e > 0 be sufficiently small, and let G be a bipartite graph G = (AW B, E)
with |A| = |B| = n and density p’ > 1/(en) that satisfies for some p with (1-3¢)p <p' <p
that

(Z) A‘dngr (5€> = Bdog+ (5€> = (2)7
(ZZ) Bdeg7 (252/5) < 259/20”;
(#ii) for all sets Q C B of size ¢ = [¢%/*/p], we have

Hve B\Q:|I(Q)NT(v)| > qp’n+ 3epn}| < en.
Then G is ( 3Y/e/2)-reqular.
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Proof. Choose sets X C A with |X| > £ %/en and Y C B with |Y| > 1 ¥/en arbitrarily.

We need to show that
e(X,Y)

< % Ver'.

The proof of this fact is inspired by the proof of Lemma 3.2 in [1].
First observe that the assumptions of the lemma together with Lemma 2.3 imply that

0, (Y) < e¥4p?n.

In order to derive a bound for e(X,Y’) we introduce some additional notation. For x € A
and y € B, let my, = 1 if and only if {x,y} € E, that is, M = (my,) is the adjacency
matrix of G. We claim that

Y (L@ NY|=plY ) < e(AY) + Yo, (V) + 18¢%%p*n. (6)

zeX

In order to show this we observe that

S (M@ nY|[=plY)* <) (D@ nY|[-plY])?=> ((Zﬂm) —p|Y|>
— Z Zmiy + Z Mgy Mgy — 2p]Y | mey + p?*|Y 2

€A \ yey y,y' €Y yey
y#y’
30D ey — 20V [e(A,Y) + P YA
y,y'€Y €A
y#y’

< e(AY) + [YP(0,(Y) +p*n) = 2p|Y [e(A,Y) + p?|Y [Pn
= ¢(A,Y) +[V]P0,(Y) — 2p|Y |e(A, Y) + 2p°[Y[*n.

Thus to prove (6) it remains to show that
22| |Pn — 2p|Y|e(A,Y) < 182/5p?n?,

or (since |Y| < n)
e(A)Y)

1— T‘Y‘p < 9e2/5.
Now
e(A,Y) > e(A,Y \ By~ (26°)) @ (1 —2e2°)p'n(|Y| — 2e%%n)
nlY|p - nlY|p - nlY|p
S Y |p'n — 2|Y [e2/p'n — 29/20p'n?
B nlY|p

(1-3e)p<p’<p 1 — 3e — 9e2/5 _ 4172 >1-— 952/5’
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which concludes the proof of (6). To continue we note that by Cauchy-Schwarz’ inequality,

Y (@) nY|=ply])* = ﬁ (Z INCONRR S —p|X||Y|> :

zeX zeX

and thus

(e(X,Y) —plX[|Y])* = (Z P(z) Y] - p|X||Y|)

zeX

< XD (D) nY] = p|Y])

zeX
(6)
< X|(e(A,Y) + Y20, (Y) + 18c¥°p*n?).
It follows that

(50 Y < dh D), o

2,3
p°n
—p +18¢%/°
[ XY

— XY X (XY

Recall that Ag+(5¢) = 0 and p’ < p. Hence e(A,Y) < (14 5¢)pn|Y]. In addition,
op(Y) < eip?n, |X|,[Y| > 1 %/en and p > 1/(en) and it follows that for sufficiently
small ¢,

e(X,Y) ’ 9/10, 2 1/5, 2 3.1/4, 2 3/20, 2
XY —p| <A4(145e)e”"p°+2ePp* 4+ 18- 27 p* < &/ Fp7.
Finally,
e(X,Y) / e(X,Y) / 3/40
— < — < 3
Xiv P = [y s
30 43¢ 1
< L1200
13 V=32 I
for sufficiently small ¢. O

The main idea in order to finish the proof of the second implication of Theorem 2.2 is
to construct a subgraph G’ of GG by deleting all edges incident to Age.+(c) and Byee+(€).
One can then use Lemma 2.4 to deduce that G’ is (¢)-regular. The next lemma will allow
us to carry over the regularity from G’ to G.

Lemma 2.5. Assume that 0 < ¢ < 3 < WIO' Let G be a bipartite graph G = (AW B, E)

with |A| = |B| = n and density p such that

e(Ageg+ (G,2), B) < (1+e)epn®  and  e(A, Byy+ (G, e)) < (1+¢)epn’
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and let G' denote the subgraph of G in which all edges incident to Ag,+(G,e) and
Byegt+ (G, €) are deleted. Then the density p’ of G satisfies

(1-3e)p <p <p

and we have
G’ is (n)-regular = G is (2u)-regular.

Proof. We first show the bounds on the density p’. As G’ is a subgraph of G we trivially
have p’ < p. The lower bound is obtained as follows:

(AN Ageg+ (G, ), B\ Byegt (G €))
Al Bl
e(A, B) — e(Agegt (G, €), B) — €(A, Byey (G, €))
Al B

v

pn® — 2(1 + &)epn?
n2

> (1—3¢)-p.

To show the second part of the lemma we fix two arbitrary sets X C A and Y C B of
size | X| = |Y| > 2u in G. We need to verify that

(1 =2p)[X|[Y]p < eq(X,Y) < (1+2u)|X|]Y]p.

By assumption, the degree-restricted subgraph G’ obtained by deleting all edges incident
t0 Agegt (G, €) or Byt (G, e) is (u)-regular. We already know that the density p’ of G’
satisfies (1 — 3e)p < p’ < p. Hence,

ea(X,Y) = (X, Y) = (1= )| X[V = (1= u)(1 = 3)[X|[Y]p = (1 = 2w)| X[V |p

and
eG(Xv Y) < Tel (Xv Y) + e(Adeg+ (G, 6)7 B) + 6(14, ‘Bdog+ (G7 5))
< L+ X[Y [P +2(1 + )epn?
e
< (1+u)|X||Y|p+2(1+€)4—M2|XHY\29
< (L4 2p) [ X[[Y]p

where we used that e < p® and 3¢ < u (which follows from the fact that ¢ < p? and
w<1/4). O

Now we are in a position to complete the proof of Theorem 2.2.

Proof of the second implication of Theorem 2.2. Let G’ be the subgraph with all edges
incident to A+ (G, ) and Byee+ (G, ¢) deleted. By condition P2 of property P(e) and
Lemma 2.5 it remains to prove that G’ is ( 3/z/2)-regular. We want to use Lemma 2.4
and therefore have to verify the conditions of this lemma.
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First note, that by condition P2 of property P(¢) and Lemma 2.5, the density p’ of G’
satisfies

(1-=3e)p < p' < p (7)

Also, by construction all vertices v in G’ have a degree of at most (1+¢)pn. In particular,

we have N
€ / /
<(1+5 ,
=0 < (14 52y

1
Par()] < (1+2)pn < -

and thus Ag,+(G',5¢) = Byt (G, 5¢) = 0, where the extra parameter G’ indicates that
we are considering these sets with respect to the graph G’ (and its density p’).

Next we want to give a bound on By, (G',2¢*?). Note that by condition P1, at
most en vertices are in By, (G, ¢). In addition, for a vertex v € B\ By, (G, ¢), one
has to delete at least (2c%/® — ¢)pn incident edges in order to force its degree below
(1 —2e%%)p'n < (1 —2e*5)pn. As we deleted at most 2(1 + £)pn? edges, we deduce that

2(1 + €)epn? < 2e(1+¢)

kSt i L < 28920,
(2e%/5 —e)pn Sent e neE

Beg- (C',26%7)] < | By (G, )] +

Finally, let @)’ C B be a set of size ¢ in G’. Assume for a contradiction that Z := |{v €
B\ Q : [IPe(Q)NTa(v)] = qp°n + 3epn}| > en. Let Q" := Q' \ By, (G, ¢), so that
I (Q) = I'er(Q"). Choose a set Z’ of [en] vertices of Z. Then choose a set Q of size
q—|Q"| from B\ (Z' U Bye,+ (G, €)). Then Q UQ" C B\ Byt (G ¢), |@ UQ"| = q and

all vertices in Z’ satisfy |T(Q U Q') NTg(v)| > qp*n + 3epn which contradicts P3. O

3 Concluding remarks

We proved that a bipartite graph that satisfies P(¢) is ( 3/e)-regular. It is not hard to
see that one can verify P(e) for a graph of density p in n°0/P) steps as the most time-
consuming part is to consider the neighbourhoods of the sets of size ©(1/p). Furthermore,
in case P(e) is not satisfied for a graph G = (AW B, E) of density p, then one can produce
in n®0/P) time sets A’ C A and B’ C B with |A'| > £2°/°|A| and |B'| > £2°/°|B| that
satisfy |e(A’, B")/(|4'||B']) — p| > €®/°p. It now follows in a similar way as described in
[1] for e-regularity, that one can find in time n®(/?) a partition guaranteed by the version
of Szemerédi’s lemma for sparse graphs that was introduced by Kohayakawa and Rédl [7].
Note that if p is constant, then this is a polynomial time algorithm, and in fact is (very
similar to) the algorithm described in [1] that was the first algorithm to find a Szemerédi
partition in polynomial time. Today, there are other ways to find such a partition in
polynomial time [4, 5, 6, 9, 2] and the approach in [2] carries over to find in polynomial
time a partition guaranteed by the version of Szemerédi’s lemma for sparse graphs that
was introduced by Kohayakawa and Rodl [7].
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