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Abstract

We are interested in (ε)-regular bipartite graphs which are the central ob-
jects in the regularity lemma of Szemerédi for sparse graphs. A bipartite graph
G = (A]B,E) with density p = |E|/(|A||B|) is (ε)-regular if for all sets A′ ⊆ A and
B′ ⊆ B of size |A′| ≥ ε|A| and |B ′| ≥ ε|B|, it holds that |eG(A′, B′)/(|A′||B′|) − p| ≤
εp. In this paper we prove a characterization for (ε)-regularity. That is, we give a
set of properties that hold for each (ε)-regular graph, and conversely if the proper-
ties of this set hold for a bipartite graph, then the graph is f(ε)-regular for some
appropriate function f with f(ε) → 0 as ε → 0. The properties of this set concern
degrees of vertices and common degrees of vertices with sets of size Θ(1/p) where p
is the density of the graph in question.

1 Introduction

We are interested in ε-regular pairs which play a central role in the famous regularity
lemma of Szemerédi [11]. In fact we consider a generalisation of the regularity concept
that has been introduced by Kohayakawa and Rödl [7]. Following Kohayakawa and Rödl,
we say that a bipartite graph G = (A]B, E) with density p = |E|/(|A||B|) is (ε)-regular
if for all sets A′ ⊆ A and B′ ⊆ of size |A′| ≥ ε|A| and |B′| ≥ ε|B|, we have

∣∣∣∣
eG(A′, B′)

|A′||B′| − p

∣∣∣∣ ≤ εp, (1)

where eG(A′, B′) denotes the number of edges between A′ and B′ in G. In the original
definition of ε-regularity by Szemerédi, the p on the right-hand-side of (1) is not present.
For the remainder we will use the notation ε-regular (in contrast to (ε)-regular) when
referring to the original definition by Szemerédi. Note that as p ≤ 1, every (ε)-regular
graph is also ε-regular. Vice versa this is not the case and in particular it is easily verified
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that every bipartite graph with less than ε3|A||B| edges is ε-regular but not necessarily
(ε)-regular. Hence if one is interested in distinguishing sparse graphs, one needs to use
the concept of (ε)-regularity instead of ε-regularity.

One easily verifies that random bipartite graphs with density p � 1/n are with very
high probability (ε)-regular. Therefore, (ε)-regular bipartite graphs are sometimes called
pseudo-random. Random (bipartite) graphs also have many other properties that hold
with very high probability and a natural question is which of these properties are equiv-
alent, that is, which set of properties is such that all of them hold if one is present. For
dense graphs, it is well known [12, 13, 3, 10] that such a non-trivial set exists. Many of
these properties can be transferred to bipartite graphs and one also knows the following
connection with ε-regular pairs [1]. Roughly speaking, if the graph is ε-regular, then most
vertices in A have approximately the expected degree and most pairs of vertices in A have
a common neighbourhood of approximately expected size; on the other hand if many
vertices have not approximately the expected degree, or many pairs of vertices in A have
not a common neighbourhood of roughly expected size, then the graph is not f(ε)-regular
for some appropriate function f . In [1] it is also shown that unless P = NP the function
f cannot be the identity and furthermore there is no equivalent definition of ε-regularity
that can be verified in polynomial time.

When considering (ε)-regularity instead of ε-regularity such a condition on neighbour-
hoods of pairs on vertices does not hold as was shown in [8]. There it was shown, that
there are (ε)-regular graphs where most of the common neighbourhoods are empty. In
this paper we show that nevertheless one can obtain a characterization for (ε)-regularity
if one replaces pairs of vertices by sets of size Θ(1/p) where p is the density of the graph.
That is, we show that it is sufficient for a graph to be f(ε)-regular (for an appropriate
function f with f(ε) → 0 as ε → 0) if most vertices have approximately the correct
degree and if for all sets of size C(ε)/p, most vertices have approximately the correct
number of common neighbours with the set. On the other hand, we show that every
(ε)-regular graph satisfies that most vertices have approximately the correct degree and
most vertices have approximately the correct common degree with all sets of size C(ε)/p,
see Theorem 2.2 for the precise statement.

1.1 Notation

For a graph G = (V, E) and sets A, B ⊂ V , we write eG(A, B) for the number of edges
with one endpoint in A and one endpoint in B. For a vertex v ∈ V , we write ΓG(v) for its
set of neighbours and degG(v) = |ΓG(v)| for its degree. The density of a bipartite graph
G = (A ] B, E) is p = |E|/(|A||B|). For a bipartite graph G = (A ] B, E) with density
p and 0 < ε < 1, we let

Adeg−(G, ε) := {v ∈ A : degG(v) < (1 − ε)pn}

and
Adeg+(G, ε) := {v ∈ A : degG(v) > (1 + ε)pn}.
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Let Bdeg−(G, ε) and Bdeg−(G, ε) be defined analogously. If it is unambiguous to which
graph G we refer, then we simply write e(A, B), Γ(v), deg(v), Adeg−(ε), Adeg+(ε), Bdeg−(ε)
and Bdeg+(ε) instead of eG(A, B), ΓG(v), degG(v), Adeg−(G, ε), Adeg+(G, ε), Bdeg−(G, ε)
and Bdeg+(G, ε), respectively.

2 Main Theorem

To state our main theorem, the characterization of (ε)-regularity, we need the following
definition.

Definition 2.1. We say that a bipartite graph G = (A ] B, E) with |A| = |B| = n and
density p > 0 satisfies property P(ε), if the following three conditions are satisfied:

P1) |Bdeg−(ε)| ≤ εn,
P2) e(Adeg+(ε), B) ≤ (1 + ε)εpn2 and e(A, Bdeg+(ε)) ≤ (1 + ε)εpn2,

P3) for all sets Q ⊆ B \ Bdeg+(ε) of size q = dε9/20/pe, we have
|{v ∈ B \ Q : |Γ(Q) ∩ Γ(v)| ≥ qp2n + 3εpn}| < εn.

The following theorem states that property P (ε) and (ε)-regularity have strong con-
nections.

Theorem 2.2. Let ε > 0 be sufficiently small. Let G be a non-empty bipartite graph
G = (A ] B, E) with |A| = |B| = n with density p > 0. Then

G is (ε)-regular =⇒ G satisfies P(ε)

and, for p ≥ 4/(ε2n),

G satisfies P(ε) =⇒ G is ( 20
√

ε)-regular

2.1 Proof of the first implication of Theorem 2.2

In order to prove the first implication let G = (A ] B, E) be an (ε)-regular bipartite
graph with |A| = |B| = n and density p > 0. We need to show that conditions P1–P3 of
Definition 2.1 are satisfied.

By the definition of Bdeg−(ε), we have

e(A, Bdeg−(ε))

|Bdeg−(ε)||A| <
|Bdeg−(ε)|(1 − ε)pn

|Bdeg−(ε)||A| = (1 − ε)p.

It follows that |Bdeg−(ε)| ≤ εn, since otherwise G would not have been (ε)-regular with
density p. This proves P1.

In the same way one can show that |Adeg+(ε)| ≤ εn. Now assume that |Adeg+(ε)| ≤ εn
but e(Adeg+(ε), B) > (1 + ε)εpn2. Then any superset A′ ⊇ Adeg+(ε) such that |A′| = εn
satisfies

e(A′, B)

|A′||B| >
(1 + ε)εpn2

εn2
= (1 + ε)p,
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which contradicts the (ε)-regularity of G. The bound for Bdeg+(ε) follows by symmetry.
This proves P2.

In order to show P3 let q = dε9/20/pe and fix an arbitrary set Q ⊆ B \Bdeg+(ε) of size
|Q| = q. Since Q contains no vertex from Bdeg+(ε), it follows that |Γ(Q)| ≤ (1 + ε)qpn.
Let Γ′ denote an arbitrary set of size b(1 + ε)qpnc that contains Γ(Q). We claim that
b(1 + ε)qpnc ≥ εn. Observe that this is obvious for large n but needs some argument in
case n is small. If ε ≤ 1/n, then it follows from the ε-regularity of G that G is either
the complete bipartite graph or empty. As p > 0, G must be complete and it is easily
checked that P3 is satisfied. Thus we may assume that ε > 1/n. It now follows that for
sufficiently small ε

b(1 + ε)qpnc ≥ bε9/20nc ≥ b2εnc
2εn≥2

≥ εn,

and hence
Γ(Q) ⊆ Γ′ and εn ≤ |Γ′| ≤ (1 + ε)qpn. (2)

Now consider the set

BQ := {v ∈ B \ Q : |Γ(v) ∩ Γ(Q)| ≥ qp2n + 3εpn}.
Then, as pq ≤ 1 (which can be seen by considering the two cases p ≤ ε9/20 and p ≥ ε9/20),

e(BQ, Γ′) ≥ |BQ| · qp2n · (1 +
3ε

qp
) ≥ |BQ| · qp2n · (1 + 3ε)

(2)

≥ |BQ| · p · |Γ′| · 1 + 3ε

1 + ε
> |BQ| · p · |Γ′| · (1 + ε).

Hence

e(BQ, Γ′)

|BQ| |Γ′| > (1 + ε)p.

The assumption that G is (ε)-regular with density p therefore implies that this can only
be true if |BQ| < εn, which completes the proof of P3.

2.2 Proof of the second implication of Theorem 2.2

In order to prove the second implication we assume that G = (A ] B, E) is a bipartite
graph with |A| = |B| = n and density p′ ≥ 1/(εn) that satisfies property P(ε). We need
to show that G is ( 20

√
ε)-regular. We will do this in several steps. In order to describe

these we need some definitions. For two vertices x, v ∈ B we define the neighbourhood
deviation σp(x, y) as

σp(x, y) = |Γ(x) ∩ Γ(y)| − p2n.

(Note that in a graph with density p the expected size of a joint neighbourhood is p2n.)
For a set Y ⊆ B we define the joint deviation σ(Y ) of the vertices in Y as

σp(Y ) =
1

|Y |2
∑

v,v′∈Y

v 6=v′

σp(v, v′).
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Now we can outline our proof strategy. First we show (Lemma 2.3) that if G satisfies
some variant of condition P3 of property P(ε) and the condition that G contains no vertex
of large degree, then all sufficiently large sets Y have a small joint deviation σp(Y ). In a
second step (Lemma 2.4) we then use this result to deduce that in fact all such graphs G
are (1

2
20
√

ε)-regular. Finally, we prove a lemma (Lemma 2.5) which shows that regularity
of an appropriate subgraph of G implies regularity of G (with respect to a slightly large
constant). This will then allow us to conclude the proof of the second implication of
Theorem 2.2. Because we consider a subgraph in the last step which might have a density
that is a little bit smaller than that of the original graph, in the following lemmas we need
to consider σp(Y ) for a value of p that is slightly different from the density of the graph.

Lemma 2.3. Let ε > 0 be sufficiently small, and let G be a bipartite graph G = (A]B, E)
with |A| = |B| = n and density p′ ≥ 1/(εn), and let p ≥ p′. If

(i) Adeg+(5ε) = Bdeg+(5ε) = ∅, and

(ii) for all sets Q ⊆ B of size q = dε9/20/pe, we have
|{v ∈ B \ Q : |Γ(Q) ∩ Γ(v)| ≥ qp2n + 3εpn}| < εn

then all sets Y ⊆ B with |Y | ≥ 1
2

20
√

εn satisfy σp(Y ) ≤ ε1/4p2n.

Proof. Suppose there exists a set Y0 ⊂ B with |Y0| ≥ 1
2

20
√

εn and σp(Y0) > ε1/4p2n. Let
q := dε9/20/pe. Observe that

2

(|Y0| − 2

q − 1

)
σp(Y0)|Y0|2 =

∑

Q⊂Y0
|Q|=q

∑

v∈Q

∑

y∈Y0\Q

σp(v, y), (3)

which can be seen by verifying that for all v, y ∈ Y0 the deviation σp(v, y) is counted the
same number of times on both sides. For a set Q ⊆ Y0 of size |Q| = q, we define the
neighbourhood deviation σ̃p(Q, v) of a vertex v ∈ Y0 and the set Q as

σ̃p(Q, v) = |Γ(Q) ∩ Γ(v)| − qp2n.

Let Q0 ⊂ Y0 be a set of size q that maximises
∑

y∈Y0\Q
σ̃p(Q, y) over all such sets Q ⊂ Y0.

By the choice of Q0 we have
(|Y0|

q

) ∑

y∈Y0\Q0

σ̃p(Q0, y) ≥
∑

Q⊂Y0
|Q|=q

∑

y∈Y0\Q

σ̃p(Q, y). (4)

Note, that if q = 1, then (4) tells us that

|Y0|
∑

y∈Y0\Q0

σ̃p(Q0, y) ≥
∑

Q⊂Y0
|Q|=q

∑

y∈Y0\Q

σ̃p(Q, y) =
∑

v∈Y0

∑

y∈Y0
y 6=v

σp(v, y)
(3)
= 2σp(Y0)|Y0|2,

and as q = 1 implies p ≥ ε9/20 it follows that

∑

y∈Y0\Q0

σ̃p(Q0, y) ≥ 2σp(Y0)|Y0| > 2ε1/4p2n
1

2
ε1/20n ≥ ε3/4pn2 > 5εpn2,
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for sufficiently small ε.
We want to show that the same is true when q ≥ 2. So assume that p < ε9/20. We now

consider just the second sum of (4) for an arbitrary set Q ⊆ Y0. By definition, σ̃p(Q, y)
counts the deviation of |Γ(Q) ∩ Γ(y)| from qp2n. We want to rewrite this in terms of the
deviations σp(v, y) for v ∈ Q. This can be done as follows. First observe that

∑

y∈Y0\Q

σ̃p(Q, y) =
∑

y∈Y0\Q

(
|Γ(Q) ∩ Γ(y)| − qp2n

)

=
∑

a∈Γ(Q)

|Γ(a) ∩ (Y0 \ Q)| − |Y0 \ Q| · qp2n.

On the other hand we have

∑

y∈Y0\Q

∑

v∈Q

σp(v, y) =
∑

y∈Y0\Q

∑

v∈Q

(
|Γ(v) ∩ Γ(y)| − p2n

)

=
∑

a∈Γ(Q)

|Γ(a) ∩ Q| · |Γ(a) ∩ (Y0 \ Q)| − |Y0 \ Q| · qp2n.

Hence, we see that

∑

y∈Y0\Q

σ̃p(Q, y) =
∑

y∈Y0\Q

∑

v∈Q

σp(v, y)−
∑

a∈Γ(Q)

(|Γ(a) ∩ Q| − 1) · |Γ(a) ∩ (Y0 \ Q)|

≥
∑

y∈Y0\Q

∑

v∈Q

σp(v, y)−
∑

a∈A

(|Γ(a) ∩ Q|
2

)
· |Γ(a) ∩ (Y0 \ Q)|

≥
∑

y∈Y0\Q

∑

v∈Q

σp(v, y)−
∑

a∈A

(|Γ(a) ∩ Q|
2

)
· (1 + 5ε)pn,

where the last inequality follows from the assumption that Adeg+(5ε) = ∅ and p′ ≤ p.
Combining this last inequality and (4) we deduce that

(|Y0|
q

) ∑

y∈Y0\Q0

σ̃p(Q0, y)

≥
∑

Q⊂Y0
|Q|=q

∑

y∈Y0\Q

∑

v∈Q

σp(v, y) −
∑

Q⊂Y0
|Q|=q

∑

a∈A

(|Γ(a) ∩ Q|
2

)
· (1 + 5ε)pn

=
∑

Q⊂Y0
|Q|=q

∑

y∈Y0\Q

∑

v∈Q

σp(v, y) − (1 + 5ε)pn ·
∑

a∈A

(|Γ(a) ∩ Y0|
2

)
·
(|Y0| − 2

q − 2

)
,

where the last equality follows by considering all triples {a, y1, y2} with a ∈ A and y1, y2 ∈
Γ(a) ∩ Y0 and observing that such triples are counted the same number of times on both
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sides of the equation. Now we again use the fact that Adeg+(5ε) = ∅ and p′ ≤ p to combine
the resulting inequality with (3), and we deduce that

∑

y∈Y0\Q0

σ̃p(Q0, y) ≥ 2

(
|Y0|−2
q−1

)
(
|Y0|
q

) σp(Y0)|Y0|2 − n

(
|Y0|−2
q−2

)
(
|Y0|
q

) · ((1 + 5ε)np)3

2

≥ 2
q(|Y0| − q)

|Y0|2
· σp(Y0)|Y0|2 − n

q2

|Y0|2
((1 + 5ε)np)3

2
.

Now we use the assumptions |Y0| ≥ 1
2
ε1/20n, σp(Y0) > ε1/4p2n, and

q =

⌈
ε9/20

p

⌉
q≥2

≤ 2ε9/20

p

p≥1/(εn)

≤ ε
1

2
ε1/20n ≤ ε|Y0|.

For sufficiently small ε, we obtain

∑

y∈Y0\Q0

σ̃p(Q0, y) ≥ (1 − ε)ε3/4pn2 − 2(1 + 5ε)3q2ε−1/10n2p3

≥ (1 − ε)ε3/4pn2 − 8(1 + 5ε)3ε4/5pn2 ≥ 5εpn2. (5)

Observe that

|{v ∈ B \ Q0 : σ̃p(Q0, v) ≥ 3εpn}| = |{v ∈ B \ Q0 : |Γ(Q0) ∩ Γ(v)| ≥ qp2n + 3εpn}| < εn

by assumption (ii) of the lemma. As we trivially have σ̃p(Q0, y) ≤ |Γ(y)|
(i)

≤ (1+5ε)pn we
therefore deduce that

∑

y∈Y0\Q0

σ̃p(Q0, y) ≤
∑

y∈Y0\Q0
eσp(Q0,y)≤3εnp

σ̃p(Q0, v) +
∑

y∈Y0\Q0
eσp(Q0,y)>3εnp

σ̃p(Q0, y)

≤ |Y0| · 3εpn + εn · (1 + 5ε)pn < 5εpn2

which contradicts (5). The initial assumption that there exists a set Y0 violating the
conclusion of the lemma is therefore not true.

Lemma 2.4. Let ε > 0 be sufficiently small, and let G be a bipartite graph G = (A]B, E)
with |A| = |B| = n and density p′ ≥ 1/(εn) that satisfies for some p with (1−3ε)p ≤ p′ ≤ p
that

(i) Adeg+(5ε) = Bdeg+(5ε) = ∅,

(ii) Bdeg−(2ε2/5) ≤ 2ε9/20n,

(iii) for all sets Q ⊆ B of size q = dε9/20/pe, we have
|{v ∈ B \ Q : |Γ(Q) ∩ Γ(v)| ≥ qp2n + 3εpn}| < εn.

Then G is ( 20
√

ε/2)-regular.
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Proof. Choose sets X ⊆ A with |X| ≥ 1
2

20
√

εn and Y ⊆ B with |Y | ≥ 1
2

20
√

εn arbitrarily.
We need to show that ∣∣∣∣

e(X, Y )

|X||Y | − p′
∣∣∣∣ ≤

1

2
20
√

εp′.

The proof of this fact is inspired by the proof of Lemma 3.2 in [1].
First observe that the assumptions of the lemma together with Lemma 2.3 imply that

σp(Y ) ≤ ε1/4p2n.

In order to derive a bound for e(X, Y ) we introduce some additional notation. For x ∈ A
and y ∈ B, let mxy = 1 if and only if {x, y} ∈ E, that is, M = (mxy) is the adjacency
matrix of G. We claim that

∑

x∈X

(|Γ(x) ∩ Y | − p|Y |)2 ≤ e(A, Y ) + |Y |2σp(Y ) + 18ε2/5p2n3. (6)

In order to show this we observe that

∑

x∈X

(|Γ(x) ∩ Y | − p|Y |)2 ≤
∑

x∈A

(|Γ(x) ∩ Y | − p|Y |)2 =
∑

x∈A

((
∑

y∈Y

mxy

)
− p|Y |

)2

=
∑

x∈A



∑

y∈Y

m2
xy +

∑

y,y′∈Y

y 6=y′

mxymxy′ − 2p|Y |
∑

y∈Y

mxy + p2|Y |2



= e(A, Y ) +
∑

y,y′∈Y

y 6=y′

∑

x∈A

mxymxy′ − 2p|Y |e(A, Y ) + p2|Y |2|A|

≤ e(A, Y ) + |Y |2(σp(Y ) + p2n) − 2p|Y |e(A, Y ) + p2|Y |2n
= e(A, Y ) + |Y |2σp(Y ) − 2p|Y |e(A, Y ) + 2p2|Y |2n.

Thus to prove (6) it remains to show that

2p2|Y |2n − 2p|Y |e(A, Y ) ≤ 18ε2/5p2n3,

or (since |Y | ≤ n)

1 − e(A, Y )

n|Y |p ≤ 9ε2/5.

Now

e(A, Y )

n|Y |p ≥ e(A, Y \ Bdeg−(2ε2/5))

n|Y |p
(ii)

≥ (1 − 2ε2/5)p′n(|Y | − 2ε9/20n)

n|Y |p

≥ |Y |p′n − 2|Y |ε2/5p′n − 2ε9/20p′n2

n|Y |p
(1−3ε)p≤p′≤p

≥ 1 − 3ε − 2ε2/5 − 4ε1/2 ≥ 1 − 9ε2/5,
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which concludes the proof of (6). To continue we note that by Cauchy-Schwarz’ inequality,

∑

x∈X

(|Γ(x) ∩ Y | − p|Y |)2 ≥ 1

|X|

(
∑

x∈X

|Γ(x) ∩ Y | − p|X||Y |
)2

,

and thus

(e(X, Y ) − p|X||Y |)2 =

(
∑

x∈X

|Γ(x) ∩ Y | − p|X||Y |
)2

≤ |X|
∑

x∈X

(|Γ(x) ∩ Y | − p|Y |)2

(6)

≤ |X|(e(A, Y ) + |Y |2σp(Y ) + 18ε2/5p2n3).

It follows that

(
e(X, Y )

|X||Y | − p

)2

≤ e(A, Y )

|X||Y |2 +
σp(Y )

|X| + 18ε2/5 p2n3

|X||Y |2 .

Recall that Adeg+(5ε) = ∅ and p′ ≤ p. Hence e(A, Y ) ≤ (1 + 5ε)pn|Y |. In addition,

σp(Y ) ≤ ε1/4p2n, |X|, |Y | ≥ 1
2

20
√

εn and p ≥ 1/(εn) and it follows that for sufficiently
small ε,

(
e(X, Y )

|X||Y | − p

)2

≤ 4(1 + 5ε)ε9/10p2 + 2ε1/5p2 + 18 · 23ε1/4p2 ≤ ε3/20p2.

Finally,

∣∣∣∣
e(X, Y )

|X||Y | − p′
∣∣∣∣ ≤

∣∣∣∣
e(X, Y )

|X||Y | − p

∣∣∣∣+ |p − p′| ≤ ε3/40p + 3εp

≤ ε3/40 + 3ε

1 − 3ε
p′ ≤ 1

2
ε1/20p′,

for sufficiently small ε.

The main idea in order to finish the proof of the second implication of Theorem 2.2 is
to construct a subgraph G′ of G by deleting all edges incident to Adeg+(ε) and Bdeg+(ε).
One can then use Lemma 2.4 to deduce that G′ is (ε)-regular. The next lemma will allow
us to carry over the regularity from G′ to G.

Lemma 2.5. Assume that 0 < ε < µ3 < 1
100

. Let G be a bipartite graph G = (A ] B, E)
with |A| = |B| = n and density p such that

e(Adeg+(G, ε), B) ≤ (1 + ε)εpn2 and e(A, Bdeg+(G, ε)) ≤ (1 + ε)εpn2
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and let G′ denote the subgraph of G in which all edges incident to Adeg+(G, ε) and
Bdeg+(G, ε) are deleted. Then the density p′ of G′ satisfies

(1 − 3ε)p ≤ p′ ≤ p

and we have
G′ is (µ)-regular =⇒ G is (2µ)-regular.

Proof. We first show the bounds on the density p′. As G′ is a subgraph of G we trivially
have p′ ≤ p. The lower bound is obtained as follows:

p′ =
e(A \ Adeg+(G, ε), B \ Bdeg+(G, ε))

|A||B|

≥ e(A, B) − e(Adeg+(G, ε), B) − e(A, Bdeg+(G, ε))

|A||B|

≥ pn2 − 2(1 + ε)εpn2

n2
≥ (1 − 3ε) · p.

To show the second part of the lemma we fix two arbitrary sets X ⊆ A and Y ⊆ B of
size |X| = |Y | ≥ 2µ in G. We need to verify that

(1 − 2µ)|X||Y |p ≤ eG(X, Y ) ≤ (1 + 2µ)|X||Y |p.

By assumption, the degree-restricted subgraph G′ obtained by deleting all edges incident
to Adeg+(G, ε) or Bdeg+(G, ε) is (µ)-regular. We already know that the density p′ of G′

satisfies (1 − 3ε)p ≤ p′ ≤ p. Hence,

eG(X, Y ) ≥ eG′(X, Y ) ≥ (1 − µ)|X||Y |p′ ≥ (1 − µ)(1 − 3ε)|X||Y |p ≥ (1 − 2µ)|X||Y |p

and

eG(X, Y ) ≤ eG′(X, Y ) + e(Adeg+(G, ε), B) + e(A, Bdeg+(G, ε))

≤ (1 + µ)|X||Y |p′ + 2(1 + ε)εpn2

≤ (1 + µ)|X||Y |p + 2(1 + ε)
ε

4µ2
|X||Y |p

≤ (1 + 2µ)|X||Y |p

where we used that ε ≤ µ3 and 3ε ≤ µ (which follows from the fact that ε ≤ µ3 and
µ ≤ 1/4).

Now we are in a position to complete the proof of Theorem 2.2.

Proof of the second implication of Theorem 2.2. Let G′ be the subgraph with all edges
incident to Adeg+(G, ε) and Bdeg+(G, ε) deleted. By condition P2 of property P(ε) and
Lemma 2.5 it remains to prove that G′ is ( 20

√
ε/2)-regular. We want to use Lemma 2.4

and therefore have to verify the conditions of this lemma.
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First note, that by condition P2 of property P(ε) and Lemma 2.5, the density p′ of G′

satisfies
(1 − 3ε)p ≤ p′ ≤ p. (7)

Also, by construction all vertices v in G′ have a degree of at most (1+ε)pn. In particular,
we have

|ΓG′(v)| ≤ (1 + ε)pn ≤ 1 + ε

1 − 3ε
p′n ≤ (1 + 5ε)p′n,

and thus Adeg+(G′, 5ε) = Bdeg+(G′, 5ε) = ∅, where the extra parameter G′ indicates that
we are considering these sets with respect to the graph G′ (and its density p′).

Next we want to give a bound on Bdeg−(G′, 2ε2/5). Note that by condition P1, at
most εn vertices are in Bdeg−(G, ε). In addition, for a vertex v ∈ B \ Bdeg−(G, ε), one

has to delete at least (2ε2/5 − ε)pn incident edges in order to force its degree below
(1− 2ε2/5)p′n ≤ (1− 2ε2/5)pn. As we deleted at most 2ε(1 + ε)pn2 edges, we deduce that

|Bdeg−(G′, 2ε2/5)| ≤ |Bdeg−(G, ε)| + 2(1 + ε)εpn2

(2ε2/5 − ε)pn
≤ εn +

2ε(1 + ε)

2ε2/5 − ε
n ≤ 2ε9/20n.

Finally, let Q′ ⊂ B be a set of size q in G′. Assume for a contradiction that Z := |{v ∈
B \ Q′ : |ΓG′(Q′) ∩ ΓG′(v)| ≥ qp2n + 3εpn}| > εn. Let Q′′ := Q′ \ Bdeg−(G, ε), so that

ΓG′(Q′) = ΓG′(Q′′). Choose a set Z ′ of dεne vertices of Z. Then choose a set Q̃ of size
q − |Q′′| from B \ (Z ′ ∪ Bdeg+(G, ε)). Then Q̃ ∪ Q′′ ⊆ B \ Bdeg+(G, ε), |Q̃ ∪ Q′′| = q and

all vertices in Z ′ satisfy |ΓG(Q̃ ∪ Q′) ∩ ΓG(v)| ≥ qp2n + 3εpn which contradicts P3.

3 Concluding remarks

We proved that a bipartite graph that satisfies P (ε) is ( 20
√

ε)-regular. It is not hard to
see that one can verify P (ε) for a graph of density p in nO(1/p) steps as the most time-
consuming part is to consider the neighbourhoods of the sets of size Θ(1/p). Furthermore,
in case P (ε) is not satisfied for a graph G = (A]B, E) of density p, then one can produce
in nO(1/p) time sets A′ ⊂ A and B′ ⊂ B with |A′| ≥ ε20/9|A| and |B′| ≥ ε20/9|B| that
satisfy |e(A′, B′)/(|A′||B′|) − p| > ε20/9p. It now follows in a similar way as described in
[1] for ε-regularity, that one can find in time nO(1/p) a partition guaranteed by the version
of Szemerédi’s lemma for sparse graphs that was introduced by Kohayakawa and Rödl [7].
Note that if p is constant, then this is a polynomial time algorithm, and in fact is (very
similar to) the algorithm described in [1] that was the first algorithm to find a Szemerédi
partition in polynomial time. Today, there are other ways to find such a partition in
polynomial time [4, 5, 6, 9, 2] and the approach in [2] carries over to find in polynomial
time a partition guaranteed by the version of Szemerédi’s lemma for sparse graphs that
was introduced by Kohayakawa and Rödl [7].
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