1

We start with some standard notation for sets. N is the set of positive integers {1, 2, ...}.
For m,n € N, m < n, the set {m,m+1,...,n} is denoted by [m,n], and if m = 1 then we
also write [n]. For a set X, the power set {A: A C X} of X is denoted by 2%, and the
sub-family of 2% given by {Y C X: [Y| = r} is denoted by (¥). The Cartesian product
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Abstract

A family F of sets is said to be (strictly) EKR if no non-trivial intersecting
sub-family of F is (as large as) larger than some trivial intersecting sub-family of F.

For a finite set X := {r1,...,zx|} and an integer k¥ > 2, we define Sx ;. to be the
family of signed sets given by

SX7]<: = {{(azl,al), . ($|X‘,G‘X|)}Z a; € [k’],Z =1,.. |X|}

For a family F, we define Sr := Upcr Sk

We conjecture that for any F and k& > 2, Sr, is EKR, and strictly so unless
k =2 and F has a particular property.

A well-known result (stated by Meyer and proved in different ways by Deza and
Frankl, Engel, Erdés et al., and Bollob4s and Leader) supports this conjecture for
F = ([Zf}). The main theorem in this paper generalises this result by establishing
the truth of the conjecture for families F that are compressed with respect to some
[ e€UperF (e. fEFeF, f*¢F= (F\{f})u{f} €F). We also confirm
the conjecture for families F that are uniform and EKR.

Introduction

X x Y of two sets X and Y is the set {(z,y): v € X,y € Y}.

Next, we recall some basic definitions for families F of sets. F is said to be intersecting
if i NFy, # ¢ forany Fi, I, € F. If (\per F' # ¢ then F is said to be trivial, otherwise

non-trivial. F is said to be (r-)uniform if (r =) |Fy| = |Fy| for any Fy, F5 € F.
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In the following, unless otherwise stated, we consider sets and families that are non-
empty and finite.
Let U(F) := Upeg F- For any f € U(F), let

Ff)={FeF:feF}, Ff)={F\{f}:FeF()}
Ox(f) ={f € UWF): F(f) = F(/)}-

We call F(f) a star of F and Oz(f) the F-orbit of f. Let
L(F) ={f € UF): F(f) is a largest star of F}.

We denote the set of extremal (i.e. largest) intersecting sub-families of F by ex(F). F is
said to have the Erdds-Ko-Rado (EKR) property if {F(f): f € L(F)} C ex(F), and to
have the strict EKR property it {F(f): f € L(F)} = ex(F); we abbreviate, saying that
F is EKR or strictly EKR, respectively.

A classical result in the literature on intersecting systems is the EKR Theorem [6],
which says that if » < n/2 then ([:f]) is EKR. Many other EKR-type results were proved
after the publication of [6]; two good survey papers are [3| and |7].

We now define signed sets and give a brief review of EKR-type results that are most
relevant to the results and conjecture concerning signed sets that we present in this paper.
The ’signed sets’ terminology was introduced in [2|, but the presentation here is different
and more general.

Let X := {z1,...,2zx}. Let y1,...,yx) € N. We call the set {(x1,91), ..., (xx,yx))}
a k-signed | X|-set if |{y1,...,yx|}| = k. For k > 2, we define Sy, to be the family of
(< k)-signed | X|-sets given by

Sxk = {{(xl,al), o (@xpax) e ekl i=1, .., |X|}

We need to define Sy := ¢. For a family F of sets, we define

S}:k = U Sp,k.

The following is the basic result for signed sets.

Theorem 1.1 (Berge [1], Livingston [11]) (i) Sjjx is EKR, and
(i1) strictly so unless k = 2.

Berge originally proved Theorem 1.1(i), and Livingston determined the extremal case.
Other proofs of this result were given by Gronau [8] and Moon [13].

Holroyd and Talbot |9] recently showed that if F is an EKR family of independent
r-sets of a graph then Sz is EKR; however, their proof carries forward to the following
generalisation of Theorem 1.1(i).

Theorem 1.2 (Holroyd, Talbot [9]) If F is r-uniform and EKR then Sy is EKR.
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The next generalisation of Theorem 1.1 is a well-known result that was first stated by
Meyer [12] and proved by Deza and Frankl |3].

Theorem 1.3 (Meyer [12], Deza and Frankl [3]) Forr <n and k > 2,
(i) S([n]) . 15 EKR, and

(i) strictly so unless r =n > 3 and k = 2.

Engel [4], Erdés et al. [5], and Bollobas and Leader [2| gave other proofs of Theorem 1.3
based on variants of the circle method used by Katona [10] in his alternative proof of the
EKR Theorem.

Note that Theorem 1.3(i) with » < n/2 follows from Theorem 1.2 and the EKR
Theorem. Also note that the case r > n/2 in Theorem 1.3 provides an example of a
family F such that S is EKR but F is not.

This paper is motivated by the question “Do families F such that Sz is not EKR
for some k > 2 exist after all?””. We conjecture that the answer is “no”. Our main result
provides a strong generalisation of Theorem 1.3 by establishing the truth of our conjecture
for families F that are compressed wrt (with respect to) an element f* € U(F), i.e. families
F for which f € F € F\F(f*) implies (F\{f}) U{f*} € F(f*). We are also concerned
with strict and non-strict EKR cases.

Conjecture 1.4 Let F be any family of sets, and let k > 2. Then
(Z) Sf,k 18 EKR,
(11) Sx . is strictly EKR unless k =2 and |Ox(f)| > 3 for some (f,1) € L(Sx.2).

Theorem 1.5 Conjecture 1.4 is true if F C 21" is compressed wrt 1.
We also confirm Conjecture 1.4(ii) for families F as in Theorem 1.2.

Theorem 1.6 Conjecture 1.4 is true if F is r-uniform and EKR.

2 An auxiliary result for the special case k = 2
For a signed set A and integers ¢ and k, let
01 (A) :={(x,a 4+ g modulo k): (x,a) € A}.

For ¢ = 1, we also write 0;(A).
Clearly, if k = 2 then 65(A) is the unique set in Sx o that does not intersect A. Thus,
for A C SX72,

Ae eX(SXQ) 54 |Aﬂ {A,GQ(A)}| =1forall Ae SX72. (1)

Note that stars of Sx 2 are members of ex(Sx2), and that not all members of ex(Sx 2) are
stars unless | X| < 2.
We generalise (1) in the following direction.
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Theorem 2.1 Let I C N. For each i € I, let X; be a finite set and let A; C Sx, .
Suppose | J;c; Ai is intersecting. Then A; € ex(Sx, 2) holds for alli € 1 iff X == (,c; Xi #
¢ and, for some X € ex(Sx) and for allie I, A;={A € Sx,2: AN(X x2) e X}

Proof. The sufficiency condition is straightforward since then, for all ¢ € I, A; satisfies
(1). Now assume that for all : € I, A; € ex(Sx,2). We prove the necessary condition by
induction on m := min{|X;|: i € I}.

Suppose there exist 1,42, € I such that A, N A;, N (X, x [2]) = ¢ for some A;, € A;,
and AZ‘Q c Aig- Let Bp = Aip N (Xl X [2]), p = 1,2 Let YV = Xl\(X“ U XZ2) If
Y # ¢ then choose C' € Sy., otherwise take C' := ¢. Let D := B;\(X,, x [2]) and
E := ByUbOy(D)UC € Sx, 2. So ENA;, = ¢ and 05(E)NA;, = ¢. Therefore E,05(E) ¢ A,
and hence, by (1), we have A; ¢ ex(Sx,2), a contradiction. Thus,

forany A,B € |J,.; Aiand l € I, AN BN (X; x [2]) # ¢. (2)

i€l

Let X == {AN(X x2): AcU;; A} (X :={;c; Xi). Let j € I such that | X;| =m.

Suppose X = X;. So X D A, and, by (2) (with [ = j), X is intersecting. Since
A; € ex(Sx;2), it follows that X' = A;, and hence result. It will be clear from the
following that we have also just covered the basis of induction m = 1.

Now suppose X # X;. So there exists h € I such that X;\ X} # ¢. Let z; € X;\ X,
Let X7 := X;\{x;}, and for each i € I\{j}, let X] := Xi. So (., X = X. If X; =¢
then X; N X), = ¢, and hence A; = ¢ or A, = ¢, a contradiction. Therefore m' :=
min{|X;|: i € I} = |X}| =m —1 > 1. For each i € I\{j}, we have A} := A; € ex(Sx:>).
Let A} == {A\{(z;,1),(2;,2)}: A € A;} € Sxsp. By (2), for any A, B € U, A,
AN BN (Xy x [2]) # ¢; hence (¢, A; is intersecting. Suppose A} ¢ ex(Sx:2). Then, by
(1), A}, 02(A)) ¢ Aj for some A} € Sxro. So Aj == AU {x;,1} ¢ A; and 65(4;) ¢ Aj,
which, by (1), contradicts A; ¢ ex(Sy,2). Hence Aj € ex(Sx;2). Clearly, the result
follows immediately after applying the inductive hypothesis for the families A%, i € I. B

Corollary 2.2 If f € U(F) and A € ex(Sx(y)2) then:
(i) A={F € F: FN(Ozy)(f) x [2]) € X} for some X € ex(So,,()2);
(ii) if Oz (f)] £2 then A= Sza((f',b)) for some (f',b) € Oz (f) x [2].

Proof. Let B := Szs((f,1)). Set n:= |F(f)|, and let X1, ..., X,, be the sets in F(f). For
each i € [n], let A; := ANSx, 2, B; := BNSx, 2. So J;—, A; and |J_, B; are partitions of A
and B respectively. By (1), B; € ex(Sx,2), ¢ = 1,...,n, and hence B € ex(Sz(y)2). Thus,
if A; ¢ ex(Sx,2) for some i € [n] then |A| < |B|, but this contradicts A € ex(Sz(s)2)-
So A; € ex(Sx,2), © = 1,...,n. By Theorem 2.1, for some X € ex(Sx2) and for all
i€n], Ai={AeSx 2 AN(X x2) € X)}, where X =, X; > f. So (i) follows if
X = Ogp(f). Let x € U(F(f)). If ¢ X then there exists j € [n| such that z ¢ X},
and hence x & Ox(s)(f); contrapositively, if x € Oz¢p)(f) then x € X. So Oz (f) C X.
If x € X then F(f)(z) = F(f). So X C Oz (f), and hence X = Oz (f) indeed.
Suppose |Oz)(f)] < 2. So 1 < [Ogp(f)] = |X| < 2, and it is trivial that X' can
only be a star in this case. Hence (ii). |
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The strict and non-strict EKR cases for £k = 2 in each of Theorems 1.5 and 1.6 will be
determined using Theorem 2.1, Corollary 2.2 and the following fact.

Proposition 2.3 If |Oz(f)| > 3 for some (f,1) € L(Sx2) then Sgs is not strictly EKR.

Proof. We have F(f1) = F(f2) = F(fs) = F(f) for some distinct fi, fo, f3 € Ox(f)
(possibly, f € {f1, f2, f3}). It follows that for all ' € F(f), fi, f2, f3 € F. Define
Yi = {(f17 1)7 (f27 1)7 (f37 1>}= Y2 = {(flv 1)7 (f27 1)7 (f372)}7 }/3 = {(f17 1)7 (f272>7 (f37 1)}7

Y= {(f1.2), (f2, 1), (fs,1)}. Clearly, the family . {Y;UZ: i € [4],Z € Sp\(f1.fa,15).2}
is non-trivial, intersecting, and as large as Szo((f, 1)), a largest star of Sro. [

3 Proof of main result

This section is dedicated to the proof of Theorem 1.5, which is based on two different
compression - also known as shifting or pushing-up - methods. We refer the reader to |7]
for a survey on compression applications in extremal set theory.

The first compression operation was used in |3] for the proof of Theorem 1.3. For
(a,b) € [n] x [2,K], let Agp: 9% — 9%k be defined by

Agp(A) = {0,0(A): Ac AJU{A € A: §,,(A) € A},
where 045 Soim) j, — Somml , is defined by

sl o= { Af@ D} (@D} it (0D < 4

We say A C Sy, is A-compressed if for all (a,b) € [n] x [2,k], Ay(A) = A,
The following lemma outlines the well-known fundamental properties of the compres-
sion A, p, which are not difficult to prove.

Lemma 3.1 Let A C Sy y,. Let (a,b) € [n] x [2,k]. Then:

(Z) |Aa,b(~’4>| = |A|;

(i) if A is intersecting then A, u(A) is intersecting;

(111) if A is intersecting and A-compressed then AyNAsN([n] x[1]) # ¢ for any Ay, As € A.

We next introduce our second compression operation. We take K := {(1,b): b €
[k]} U {(n,1)} and define A: Sy — Soinl . by

A\{(n, D} U{(1,1)} if ANK ={(n,1)};
A(A) = ﬁ\{(l,b),(n,l)}U{(l,l),(n,b)} ifﬁmKZ{(l,b),(n,l)};
otherwise.

Similarly to A,p, we define A: 9%lnl &y 9lnl k by

A(A) == {\A): A€ AYU{A € A: \(A) € A}.
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At this point, we need to introduce some further notation. For A € Sgy, let
v(A) ;= F.
For A C Sgy, let I'(A) be the sub-family of F given by
F(A) ={y(A4): Ac A} ={F € F: ANSpi # ¢}.

Lemma 3.2 Let F C 2 be compressed wrt 1. Let A C Sri be intersecting and A-
compressed. Then:

(i) IA(A)] = | AL

(it) A(A) C Srp;

(111) By N By N ([n] X [1]) # ¢ for any By, By € A(A).

Proof. (i) is straightforward.

If A € Sy and 1(M(A)) £ 7(A) then n € 7(A), 1 ¢ 7(4) and 5(A(4)) = ((A\{n})U
{1}. Since F is compressed wrt 1, it follows that T'(A(A)) C F. Hence (ii).

By Lemma 3.1, AN A" N ([n] x [1]) # ¢ for any A, A’ € A. Let By, By € A(A). Then,
for each p € [2], B, = A, or B, = A\(A,) for some A, € A. It is straightforward that
(iii) holds if B, = A,, p = 1,2, or B, = A(4,), p = 1,2. Without loss of generality,
suppose By = Ay, By = MAs) # Ay and By N By N ([n] x [1]) = ¢. It follows that
AiNAsN([n] x[1]) ={(n,1)} and A; # A(A;) € A. But then \(A;)NAxN([n] x[1]) = ¢,
a contradiction. Hence (iii). |

Theorem 3.3 Let 1 € J C [n]. Let F C 2" such that F is compressed wrt j € [n] iff
j€J. Let A* C Sgy, be intersecting. Then

(i) | A < |8k ((1,1))], and

(i1) equality holds iff A* = Szi((4,0)), (4,0) € J x [k], or k = 2, |Ox(1)] > 1 and
A* = {F e F:. Fn (O]-‘(l) X [2]) S X}, X e eX(So]__(l)Q).

Proof of Theorem 3.3(i). The case n = 2 is trivial, so we assume n > 2. Let A’ be
a A-compressed family resulting from A* through repeated application, if necessary, of

compressions A, . Let A := A(A’). By Lemmas 3.1 and 3.2, A C Sgy, |A| = |A*| and
forany A,Be A, ANBNZ # ¢, (3)

where Z := [n] x [1].

Let B:={Ae€ A((n,1))((1,1)): AnBNZ = {(n,1)} for some B € A((n,1))}. Let
Ay = A((n,1))\B. For I € [2,k], let B, := {(A\{(n,1)}) U{n,l}: A € B} and A, :=
A((n,1))uB,. If A((n,1))NB; # ¢ and A € A((n,1))NB; then 6,,,(A)NBNZ = {(n,1)} for
some B € A((n, 1)), and hence ANBNZ = ¢, a contradiction to (3). So A((n,l))NB; = ¢.
Therefore

k

DA D) < (AR, )] = 1B]) + Y (IA((n, D)+ |B]) = Z|Ai|- (4)

i=1
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Let Z' := [n — 1] x [1]. Suppose that for some i € [k] and A, B € A;, ANBNZ = ¢.
It is immediate by (3) that ¢ ¢ [2,k]. So A, B € A; and AN B = {(n,1)}. By definition
of Ay, (1,1) ¢ AUB. But A(A) € A and A(A)NBNZ = ¢, a contradiction to (3). Thus,

for any i € [k] and A, B € A;, ANBNZ # ¢. (5)

Let Fy := F\F(n) and F, := F(n). Clearly, Fy and F; are compressed wrt 1. Let
Ao = AN Sz k- By (3), Ao is an intersecting sub-family of Sg, . By (5), Ai((n,7)) is
an intersecting sub-family of Sz, 1, © = 1, ..., k. The result now follows by induction on n
since

AT = AL = Aol + D A, )] < JAol + ) [Ai(n,0)]

i=1 i=1
< |87 k(L D)+ K[ Sz k(1 1) = S 1)1, (6)
where the first inequality is obtained from (4). |

We need to do more work to prove the extremal structures given in Theorem 3.3(ii).
We start with a simple lemma that we will use often.

Lemma 3.4 Let A C Sgy be intersecting. Suppose that for some (a,b) € U(F) and
FeF, Spi((a,b)) CA. Then AC Sri((a,b)).

Proof. It suffices to show that if B € Sz;i\Srx((a,b)) then AN B = ¢ for some
A € Spi((a,b)). Let C € Spi\Sri((a,b)) such that BN (F x [k]) C C. Clearly, for some
g€ k—1], 0UC) € Spr((a,b)) and BN OL(C) = ¢. ]

Lemma 3.5 Let F C 2" Let A C Sry, be intersecting, where k > 3. If A # Ayy(A) =
Srr((d, b)) then A= Sri((a,b)).

Proof. Since A # A, ,(A) = Sri((d, b)), there exists A € A such that A ¢ Sz x((a', V)

and 6,5(A) € Sri((a/,0)). This implies that (a’,¥') = (a,1). Let F' := v(A). Le
(Ap \
k] S

=+ ~—r

.AF = .AﬂSF,k. Clearly, Aa,b(«AF) = Aa,b(.A)ﬂSF,k = Sp,k((a, 1)) and |.AF‘ = |Aa
|SFk((a,1))|. Thus, by Theorem 1.1, Ap = Spi((c,d)) for some (c,d) € F x

A € Ap\Sri((a,1)) and A,p(Ar) = Sri((a,1)), it follows that (c¢,d) = (a,b).
Lemma 347 A - S]—',k((av b)) Since |’A| = |Aa,b(A)| = |Sf,k((av b))|7 A= S]—',k((a'7 b))

5
IE

For F e Fand f,g € U(F), let ¢s4(F) = (F\{g}) U{f}.
Proposition 3.6 Let F and J be as in Theorem 3.3. Then L(Sry) = J x [k].

Proof. Let j € J and h € [n]. Then, since F is compressed wrt j,

[Sralho)l = > [Sus((h)l+ > [Sar((h,b)]

HeF(h)(j) GeF(h)\F(j)

= D> SualGI+ D ISuu@r(( D) < [SEa((: )] (7)

HeF(5)(h) GEF(R)\F(5)
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with equality iff for all ' € F(5)\F(h), Yn;(F) € F(h). This already gives J x[k] C L(F).
Now consider equality in (7). Suppose h ¢ J. So there exist F' € F\F(h) and f € F such
that Iy := ¢y, s(F) ¢ F(h). Therefore f # j. If j ¢ F then Fy := v, ;(F) € F(j)\F(h),
Yn,;(F2) = F1, and hence 9y, ;(F3) ¢ F(h); but this is a contradiction as it yields a strict
inequality in (7). So F € F(j)\F(h), and hence Fs := v, j(F) € F(h)\F(j). Thus
Fy =, s(F3) € F(h)(j). Now ¢y, ¢(F) = ¢, s(¢n;(F)), and hence Fy = Fy; but this
contradicts Fy € F(h) and Fy ¢ F(h). So h € J. Therefore L(F) C J x [k]. This
establishes the result since we previously obtained J x [k] C L(F). |

Lemma 3.7 Let A" be as in the Proof of Theorem 8.3(i). Suppose A" # A(A) =
Sri((a,1)). Thenn € J and A" = Szi((n,1)).

Proof. Since A’ # A(A") = Srx((a, 1)), there exists A’ € A’ such that A" ¢ Sri((a,1))
and M(A") € Sri((a,1)). Soa =1 and v(A) N{l,n} = {n}. Let A := {(n,1)} U
{(¢,2): c € y(A)\{n}}. Since A(A") = Sx((1,1)), exactly one of A and A(A) (# A) is in
A’. Recall that we arrived at (3) using the fact that, by Lemma 3.1, A;NA>N([n] x[1]) # ¢
forany Ay, As € A’. Since A\(A)NA'N([n]x[1]) = ¢, it follows that A € A", and hence, since
AN([n]x[1]) ={(n, 1)}, A" C Szi((n,1)). Since 1 € Jand |A’| = |A(A")| = |Srr((1,1))],
it follows by Proposition 3.6 that n € J and A’ = Sz x((n, 1)). |

Before coming to the proof of Theorem 3.3(ii), we finally determine two nice properties
of F-orbits of elements j € U(F) such that F is compressed wrt j. This will be very
useful when dealing with the case k = 2 of Theorem 3.3(ii).

Proposition 3.8 Let F and J be as in Theorem 3.3. Let 7* € J.
(i) If O (G)O\J*} # ¢ then F(j*) = F and Ox(j*) = J.
(i) If Ox(j*) = {j*} then Ox(j) = {j} for all j € J.

Proof. Suppose Ox(7*)\{j*} # ¢. Suppose F(j*) # F. Let F € F\F(j*) and j' €
Ox(7)\{j*}- So j' ¢ F since F ¢ F(j*) = F(j'). But then, since F is compressed wrt
J*, for any f € F we have (F\{f})U{j*} € F(j*)\F(j'), which contradicts F(j*) = F(j').
So F(j*) = F.

Let j € J. Suppose j ¢ Oz(j*). So F(j) € F(j*) as F(j*) = F. Let F* €
F(G)\F(j). Since F is compressed wrt j, we have (F*\{j*}) U {j} € F\F(5*), which
contradicts F(j*) = F. Therefore J C Oz(j*). Also, Ox(5*) C J because if j € Oz(j*)
then F(j) = F(j*) = F. Hence (i).

Now suppose Ox(5*) = {7*} and O£(j)\{j} # ¢ for some j € J. By (i), Ox(j) =
J. So j* € Ox(j), and hence, by definition, Ox(j*) = Ox(j); but this contradicts
Or(IN{7} # 6 = Or( N} Hence (i) .

Proof of Theorem 3.3(ii). By Proposition 3.6, |Sxx((4,0))| = |Sxx((1,1))] iff (4,0) €
Jx[k]. Also, if k =2and A* = {F € F: FN(Ox(1)x[2]) € X} for some X € ex(So,(1),2)
then |A*| = |Sra((1,1))] as Sra((1,1)) = {F € F: FN (0Ox(1) x [2]) € X*}, where
X" =80,1)2((1,1)) € ex(So,1),2). By Theorem 3.3(i), the sufficiency condition follows.
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We now continue on the Proof of Theorem 3.3(i) to prove the necessary condition.
Therefore, we now consider equality in (6). This gives us equality in (4) together with
|A0| = |Sfo,k((17 1))| and |AZ<(TL, Z)>| = |SF1J€((17 1))|7 =1,k

Since we are proving the result by induction on n, we may assume that F(n) # ¢ and
n € y(A*) for some A* € A*. If [U(F(n))| =1 then v(A*) = {n} and A* = {A*}. So we
assume that |U(F(n))| > 2, which implies |[U(F(n))| > 1. Thus, for each i € [k], we have
|Ai((n, 1)) = |S7x((1,1))] > 0.

Let Jy := {jo € [n — 1]: Fo is compressed wrt jo} and J; := {j; € [n — 1]: F; is
compressed wrt j;}. Clearly, 1 € Jy N Ji.

Consider first & > 3. Since we have equality in (4), it follows that B = ¢ and
A; = A((n,d)), i = 1,...k. Thus, by (3) and (5), A~ := Ay U U, A((n,7)) is an
intersecting sub-family of S Uz, k. Now, by the inductive hypothesis and (5), A;((n, 1)) =
Sr k((j1,1)) for some j; € Jy. Since A((n,1)) = A;, we have A((n,1)) = Sx, 1((j1,1)),
and hence A~ C Sz ur k((j1,1)) by Lemma 3.4. So A C Srx((j1,1)). Since we have
equality in (6), Proposition 3.6 gives us j; € J and A = Szi((j1,1). Therefore, by
Lemmas 3.5 and 3.7, A* is as required.

Next, consider & = 2 and |O#(1)| > 1. By Proposition 3.8(i), F = F(1). By Corol-
lary 2.2(i), A* ={F € F: FN (0Ox(1) x [2]) € X'} for some X € ex(So,n),2)-

Finally, consider £ = 2 and Og(1) = {1}. Suppose Fy = ¢. Then F = F(n). If
F(n)\F(1) # ¢ and F € F(n)\F(1) then, given that 1 € J, we have (F\{n})U{1} € Fy,
a contradiction. So F(n)\F(1) = ¢, and hence, since F(n) = F, F(n) = F(1); but this
contradicts Oz(1) = {1}. So Fy # ¢, and hence |Ag| > 0 as |Ag| = |Sx2((1,1))] and
1 € Jy. It remains to consider the following three cases.

Case 1: |Og(1)] = 1. By the inductive hypothesis and (3), Ay = Sx 2((Jo, 1)) for
some jy € Jy. Clearly, AoU.A; and AyU A, are intersecting. By Lemma 3.4, we therefore
have Ay U Ay, Ag U Ay C Sra((Jo, 1)), and hence A C Szs((jo,1)). Since we have
equality in (6), Proposition 3.6 gives us jo € J and A = Sri((jo,1). By Lemma 3.7,
A" = 874((4,1)), where j € {jo,n}NJ. Since 1 € J and Ox(1) = {1}, Proposition 3.8(ii)
gives us Oz(j) = {j}. Since I'(A*) = I'(A") = F(j), it follows by Corollary 2.2(ii) that
A* = Sz x(j,b) for some b € [2].

Case 2: |Og (1)] = 1. By the inductive hypothesis and (5), A;{((n,1)) = Sz, 2((j1,1))
for some j; € J;. Since AgUA;((n, 1)) is an intersecting sub-family of Sz, &, Lemma 3.4
gives us Ay U A1((n,1)) € Srur2((1,1). So Ay € Sz 2((j1,1)). Since Ao =
|Sx.2((1,1))], it follows by Proposition 3.6 that j; € Jy and Ay = Sxg2((j1,1)). As
in Case 1, this leads us to the desired result.

Case 3: |Og (1) > 1, |Ox(1)] > 1. By Proposition 3.8(i), Fo(1) = Fy and Fi(1) =
Fi. So F(1) = F. Thus, by Corollary 2.2(ii), A* = Sx2((1,b)) for some b € [2]. |

Proof of Theorem 1.5. By Theorem 3.3, (1,1) € L(Sz ) and, moreover, S ((1,1)) €
ex(Szx); hence Sz, is EKR. By Theorem 3.3(ii), if £ > 3 then Sry is strictly EKR. Now
consider k = 2. If Sz is not strictly EKR then, by Theorem 3.3(ii) and Corollary 2.2(ii),
|O£(1)] > 3; the converse holds by Proposition 2.3 with f = 1. |
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4 Proof of Theorem 1.6

We now give a simple proof of Theorem 1.2 and prove the stronger Theorem 1.6. Thus,
in the following, F is taken to be r-uniform. Our first simple observation is that

fre L(F) < (f,1) € L(SFx) (8)

since for all f € U(F), k" F(f)] = k" YT (Srx((f, 1)) = |Srx((f,1))].

For A C Sgy, let ©9(A) := {01(A): A€ A}. Suppose F = {F'} and A is intersecting.
If A€ Aand g € [k — 1] then 6} (A) ¢ Aas 01 (A)NA=¢. So A, O (A),.., 0 1(A) are
k disjoint copies of the same intersecting family, and hence k|A| < [Sgi| = k". Therefore

A C Spy, intersecting = |A| < k"7 9)
which proves Theorem 1.1(i) since [Spx((f,1))] = k1.

Proof of Theorem 1.2. Let F be EKR, and let A C Sz be intersecting. Clearly,
I'(A) is intersecting. Thus, for f* € L(F), |T'(A)] < |F(f*)|. For any F € TI'(A), let
Ap = AN Spi. By (9), |Ap| < k"', Thus, for any b € [k],

A= > AR < E DA < K UES)] = ISR, D)], (10)

FeT'(A)

and hence result. [ ]

Proof of Theorem 1.6. We continue on the proof of Theorem 1.2, and we now consider
equality in (10). So I'(A) = F(f*) and for all F € T'(A), |Ar| = k. Thus, by (9),

for all F € I'(A), Ar € ex(Spy)- (11)

Case 1: k> 3. Let F* € I'(A). By (11) and Theorem 1.1(ii), Ap = Spi((a*, b)) for
some (a*,b*) € F* x [k]. By Lemma 3.4, A C Sz ;((a*,0*)). So Sgy is strictly EKR.

Case 2: k = 2 and for all f € L(F), |Ox(f)] < 2. Let X := (Npepy F- By (11)
and Theorem 2.1, | X| > 1. Let f' € X; so I'(A) C F(f'). Since [['(A)| = |F(f*)| and
fre L(F), T(A) = F(f') and f" € L(F). So [Ox(f)] < 2. Since A € ex(Sz(s)2) (by
(11)), it follows by Corollary 2.2(ii) that A is a star of Sro. So Sg is strictly EKR.

Case 3: k =2 and |Ox(f)| > 3 for some f € L(F). By (8), (f,1) € L(Sr2). Thus,
by Proposition 2.3, Sg is not strictly EKR. |
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