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Abstract

Sylvester’s identity is a classical determinantal identity with a straightforward
linear algebra proof. We present combinatorial proofs of several non-commutative
extensions, and find a S-extension that is both a generalization of Sylvester’s identity
and the (J-extension of the quantum MacMahon master theorem.

1 Introduction

1.1 Classical Sylvester’s determinantal identity.

Combinatorial linear algebra is a beautiful and underdeveloped part of enumerative com-
binatorics. The underlying idea is very simple: one takes a matrix identity and views
it as an algebraic result over a (possibly non-commutative) ring. Once the identity is
translated into the language of words, an explicit bijection or an involution is employed
to prove the result. The resulting combinatorial proofs are often insightful and lead to
extensions and generalizations of the original identities, often in unexpected directions.

Sylvester’s identity is a classical determinantal identity that is usually written in the
form used by Bareiss ([B]).

Theorem 1.1 (Sylvester’s identity) Let A denote a matriz (a;;)mxm; take n <i,j <
m and define

@11 Q2 - Aip ayj

Q21 Qg2 -+ Aoy a2;
Ay = . . . . y o Qs = (Cm Qi = am) Y . )

Gp1 Qp2 - Qpn Anj
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bij = det ( ) ;B = (bij)nti<ij<m

Qs Qg5
Then
det A - (det Ag)™ "' = det B. O

EXAMPLE 1.2 If we take n = 1 and m = 3, the Sylvester’s identity says that
(a11a22a33 — 11032023 — (21412033 + Q21032013 + 431012023 — a31022a13)&11 =

a11Q22 — A21012 Q11023 — A21413
a11a32 — 31012 Q11033 — A31013

Bareiss’s proof of Theorem 1.1 is a pretty straightforward linear algebra argument; see
IMG], [AAM] for other proofs and some mild generalizations.

1.2 Extensions of Sylvester’s identity.

The Sylvester’s identity has been intensely studied, mostly in the algebraic rather than
combinatorial context. In 1991, a generalization to quasideterminants, essentially equiv-
alent to our Theorem 3.1, was found by Gelfand and Retakh [GeR]. Krob and Leclerc
[KL] used their result to prove the following quantum version.

Let ¢ € C\ {0}. Call a matrix (in non-commutative variables) A = (@;;)mxm quantum
if:

® ajiair = qa;ra, for 1 < j,

® a;a; = qa;pay for k < I,

® ajpa; = ajaj; for i < g,k <,
-1

o aipaj — ajiip = (¢ — q)agaz, for i < g k < L.

Define the quantum determinant of a matrix A by

det A = Z (=)™ 7 ap(1)10(2)2 * * * Ao (m)m,

gESm
where inv o denotes the number of inversions of the permutation o.

Theorem 1.3 (Krob, Leclerc) For a quantum matric A = (aij)mxm, take n, Ao, ai.
and a.; as before, and define

Ay ay
b;j = det, (CLZZ aij-) . B = (bij)n+1<ij<m-
Then
det, A - (det,Ag)™ "' = det,B. O
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Krob and Leclerc’s proof consists of an application of the so-called quantum Muir’s
law of extensible minors to the expansion of a minor.

Since then, Molev found several far-reaching extensions to Yangians, including other
root systems [Mol, Mo2]; see also [HM].

1.3 Main result.

In this paper, we find a multiparameter right-quantum analogue of Sylvester’s identity.
We use the techniques developed in [KP].

Fix non-zero complex numbers ¢;; for 1 < ¢ < j < m. We call a matrix A g-right-
quantum if

ALk = Qi Qik0jk for all i < j, (11)
@il G — qiglajka,-l = qquiglaﬂaik — quagaj; forall @ <j, k<l (1.2)

In the next section, we define the concept of a g-determinant of a square matrix. We
then have

detq(I — A) = Y (=1)"!detqA,,

JCm]

where
detqA; = Z H iy | GoGn - aotii
ceSy \p<r: jp>jr
for J={j1 <jo <...<Jr}
Our main theorem is the following.

Theorem 1.4 (g-right-quantum Sylvester’s determinant identity) Suppose that
A = (aij)mxm 1S a q-right-quantum matriz, and we choose n < m. Let Ao, ax,a.; be
defined as above, and let
I — AQ Oy

Qi Qi

c?j = —detg' (I — Ap) - detq ( ) , 9= (C%‘)nﬂsmém-

Suppose q;; = gy for all i,i" <mn and j,j7' > n. Then
detq' (I — Ap) - detq(I — A) = detq(I — CY).

The determinant detq(I — Ap) does not commute with other determinants in the
definition of c% so the identity cannot be written in a form analogous to Theorem 1.1.
See Remark 9.9 for a discussion of the necessity of the condition ¢;; = ¢yj» for i,7" < n,
J,j > n.

The proof roughly follows the pattern of the proof of the main theorem in [KP]. First
we show a combinatorial proof of the classical Sylvester’s identity (Sections 3 and 4). Then
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we adapt the proof to simple non-commutative cases — the Cartier-Foata case (Section
5) and the right-quantum case (Section 6). We extend the results to cases with a weight
(Sections 7 and 8) and to multiparameter weighted cases (Sections 9 and 10). We also
present a (J-extension of Sylvester’s identity in Section 11.

2 Algebraic framework

2.1 Words and matrices.

We work in the C-algebra A of formal power series in non-commuting variables a;;j, 1 <
t,7 < m. Elements of A are infinite linear combinations of words in variables a;; (with
coefficients in C). In most cases we take elements of A modulo some ideal Z generated by
a finite number of quadratic relations. For example, if Z.omy, is generated by a;;ar = aga;;
for all 4, 7, k, [, then A/Z o is the symmetric algebra (the free commutative algebra with
variables a;;).

We abbreviate the product ay,,, ---ax,u, to ax, for X = A ---Agand p = pq -+ - py,
where A and p are regarded as words in the alphabet {1,...,m}. For such a word
v =1 -1y, define the set of inversions

I(v) = {(4,5): i < j,v; > v},

and let invv = |Z(v)| be the number of inversions.

2.2 Determinants.

Let B = (bij)nxn be a square matrix with entries in A, i.e. b;;’s are linear combinations
of words in A. To define the determinant of B, expand the terms of

> (U™ Dby by

O'ESn

and weight a word a,, with a certain weight w(\, ;). The resulting expression is called
the determinant of B (with respect to A). In the usual commutative case, all weights are
equal to 1.

In all cases we consider we have w(@, @) = 1. Therefore

1
det(I—A) 1-%

=14+ +32+ ...,

where X is a certain finite sum of words in a;; and both the left and the right inverse of
det(/ — A) are equal to the infinite sum on the right. We can use the fraction notation as
above in non-commutative situations.
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2.3 Paths.

We consider lattice steps of the form (x,i) — (x 4 1, 7) for some z,i,7 € Z, 1 <i,7 < m.
We think of x being drawn along the z-axis, increasing from left to right, and refer
to ¢ and j as the starting height and ending height, respectively. We identify the step
(x,i) — (x4 1,j) with the variable a;;. Similarly, we identify a finite sequence of steps
with a word in the alphabet {a;;}, 1 <i,j < m, i.e. with an element of the algebra A.
If each step in a sequence starts at the ending point of the previous step, we call such a
sequence a lattice path. A lattice path with starting height i and ending height j is called
a path from 7 to j.

ExaMPLE 2.1 The following is a path from 4 to 4.

VAN

Figure 1: Representation of the word a4;a13a432090095054043033033031014G44.

Recall that the (i,7)-th entry of A* is the sum of all paths of length k from i to j.

Since
(I-A)"'=T+A+A4+..,

the (i, 7)-th entry of (I — A)~! is the sum of all paths (of any length) from i to j.

3 Non-commutative Sylvester’s identity

As in Section 1, choose n < m, and denote the matrix (a;;)mxm by A and (a;;)nxn by Ao.

We will show a combinatorial proof of the non-commutative Sylvester’s identity due
to Gelfand and Retakh, see [GeR].

Theorem 3.1 (Gelfand-Retakh) Consider the matriz C = (¢ij)n+1<ij<m, where
Cij = a,-j + CI,Z*([ — Ao)_la*j.

Then
(I-A);'=1-0);"

Proof: Take a lattice path a;,ai,i, - -+ ai,_,; with 4,7 > n. Clearly it can be uniquely
divided into paths Py, P, ... P, with the following properties:

e the ending height of P; is the starting height of P; 4

e the starting and the ending heights of all P; are strictly greater than n
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e all intermediate heights are less than or equal to n
Next, note that
_ -1 _ 2
Cij = Qi + (Iz*(] - AO) Qyj = Q45 + Z a,k(] + AO + AO + .. .)klalj
k,l<n

is the sum over all non-trivial paths with starting height ¢, ending height j, and interme-
diate heights < n. This decomposition hence proves the theorem. O

EXAMPLE 3.2 The following figure depicts the path from Example 2.1 with a dotted line
between heights n and n 4 1, and the corresponding decomposition, for n = 3.

Ay

Py Py P3 Py

Figure 2: The decomposition (&41&13&32&22&25)((154)((1430,330,330,310,14)(&44).

The theorem implies that

_ el Ts Ay awmn )\
(1= A7y =AM >(f—( )) — @

a a
m* mm mm

= (I - C);}rl,nﬂ(l - Cmﬂ’nﬂ);}rz,nu e (1 - Cmm)_l-
Here A"+l is the matrix A with the (n + 1)-th row and column removed.
In all the cases we consider in the following sections, both the left-hand side and the

right-hand side of this equation can be written in terms of determinants, as in the classical
Sylvester’s identity.

4 Commutative case

Recall that if D is an invertible matrix with commuting entries, we have
. det D7
D™ = (=1)" ——
( )’J (=1) det D’
where D’¢ denotes the matrix D without the j-th row and the i-th column. Apply this
to (3.1): the numerators (except the last one on the left-hand side) and denominators
(except the first one on both sides) cancel each other, and we get
det(I — Ao) o 1
det(I — A)  det(I —C)’

(4.1)
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Proposition 4.1 Fori,j > n we have

(100, 7)
—Qix  0ij — Gy

3 det(T — Ay) (42)
Proof: Clearly we have
Ay a\\
— ) = N e
neer=((-Cen)) )
ij
and by (4.1), this is equal to
det([ — Ao)
(- )
Aix Qg
This finishes the proof for : = j, and for 7 # j we have
det (I — Ao —ay ) det (I — Ay _a*j) + det (I — 4o 0)
1— ¢ — —ap 1 —ay _ Qi Qg —ap 1 _
“ det([ — Ao) det(I — Ao)
det (I ~ Ao _a*j) +det(I — Ag)  det (l ~ 4o _“*j)
_ Qi Qi _ Qi i 1 0
det(I — Ap) det(I — Ap) ‘
Proof (of Theorem 1.1): The proposition, together with (4.1), implies that
det(I — A) _
————— =det({ —C) =det(l — Ay)" " det B
det([ = Ag) _ detld =€) = det(l = Ao)" " de
for .
_ .
bij = det ( —ai*o dij — Zm’) » B = Ggdnasigem,
which is Theorem 1.1 for the matrix I — A. O
5 Cartier-Foata case
A matrix A is Cartier-Foata if
Qi A1 = Q1G5 (5-1>
for ¢ # j, and right-quantum if
ajrix = Qipa;, for all @ # j, (5.2)
Qi — QG = Qi — agag, for all @ # 5,k # L (5.3
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Cartier-Foata matrices were introduced in [CF| and further studied in [F2]; see also
[GGRW, §3.9]. For references on quantum and right-quantum algebras, see [K] and [M3].

A Cartier-Foata matrix is also right-quantum, but the proofs tend to be much simpler
for Cartier-Foata matrices.

Note also that the classical definition of the determinant

det B = (_1)invcrbo_11 te bomm

makes sense for a matrix B = (b;;)mxm with entries generated by a,;; in the language of
Section 2, we have w(\, u) = 1 for all words A, p.

A special case (when i = j = 1) of the following proposition is [KP, Proposition 3.2,
Proposition 4.2]. The proof in this more general case is almost exactly the same and we
omit it.

Proposition 5.1 If A = (aij)mxm s a Cartier-Foata matriz or a right-quantum matriz,

we have ) )
— = (1) ——— . det (I — A
(I—A)ij V" qag—ay detd -4
for all, 7. O
Lemma 5.2 If A is a Cartier-Foata matriz, C' is a right-quantum matrix.

Proof: Choose 7, j,k > n, i # j. The product c;,cji is the sum of terms of the form
Qiiy Qiyip ** * Qipk Ay Ajr gy * * Ajrk

for p,r >0, 41,...,4p, J1, ..., Jr <n. Note that with the (possible) exception of 4, j, k, all
other terms appear as starting heights exactly as many times as they appear as ending
heights.

Identify this term with a sequence of steps, as described in Section 2. We will perform a
series of switches of steps that will transform such a term into a term of cjic;.

The variable a;;, (or aj; if 7 = 0) commutes with all variables that appear before it. In
other words, in the algebra A, the expressions

@iy iy * " AipkQjji gy gz~ Ajik
and

Ay Qg Qipig = * * Qi kAjy o * * Ak
are the same modulo the ideal Z; generated by a;,a; — ajia;; for i # j. Graphically, we
can keep switching the step 7 — j; with the step to its left until it is at the beginning of
the sequence.

If r = 0, we are already done. If not, take the first step to the right of a;; that has
starting height j;; such a step certainly exists — for example j; — j5. Without changing
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the expression modulo Z.¢, we can switch this step with the ones to the left until it is just
right of j — 7;. Continue this procedure; eventually, our sequence is transformed into an
expression of the form

gy Agrgs « - Al ke Qidy Qigy ~ = Al k
which is equal modulo Z. to the expression we started with.
As an example, take m =5, n=2,71=3, j =5, k = 4 and the term a3;a12024a52022024.
The steps shown in Figure 3 transform it into assas4a31a12a92a24.
It is clear that applying the same procedure to the result, but with the roles of i’s and j’s
interchanged, gives the original sequence. This proves that indeed c;rcjr = ¢jiCik-
The proof of the other relation (5.3) is similar and we only sketch it. Choose i, j, k,l > n,
it # 7, k # 1. Then ¢;pcj; + cicji is the sum of terms of the form

iy Qiyiy * " Qipk@jjy Gy jp * Al

and of the form
Qi Qigiy * ** QiplAjja Ao~ * " Ajrk
for p,r >0, 41,...,%,71,...,Jr < n. Applying the same procedure as above to the first

term yields either

gy Agygs « - Al ke Qidy Qg = == Al 1

or
Ay Qigy * = - Al 1 Qi Qagaty = == il ks

this procedure is reversible and it yields the desired identity. See Figure 4 for examples
withm=5n=21=3,7=4,k=3,1l=05. O

VAVETS eI,
!
VR VER YV,
Figure 3: Transforming a31A120240A52022024 into 52024031 Q120220924 .

If A is Cartier-Foata, Proposition 5.1 implies
(I = A) iy a (T = A i = det 711 — A) - det(I — Ap).
By Lemma 5.2, C' is right-quantum, so by Proposition 5.1

(I = O)irnia (T = CHE )y e = det 7T = O,
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W
W My

Figure 4: Transforming 3113042091015 and a31A13A42092095.

and hence
det *(I — Ap) - det(I — A) = det(I — C).

In the classical Sylvester’s identity, the entries of [ —C' are also expressed as determinants.
The following is an analogue of Proposition 4.1.

Proposition 5.3 If A is Cartier-Foata, then
cij = —det (I — Ap) - det (I ~ 4o _a*j) . (5.4)
T T4

Proof: We can repeat the proof of Proposition 4.1 almost verbatim. We have

Ay awi\\
TS _ 0 g
=) )
ij
AQ Ay
Qix Qg5

is still Cartier-Foata, Proposition 5.1 shows that this is equal to

et (1 - (Ao )) det(T — Ag).
Qs Qg5
1-— Cij = det _1([ — Ao) - det <I — <AO a*j)> =

iz Qi

— det NI — Ay) - (det ([ — A _“*j) + det (I — 4o O)) _
T TG —Qp 1

and because the matrix

We get

= det ~(I — Ay) - (det ([ — A _“*ﬂ') + det(I — AO)) =
Tk Q4
= det ~Y(I — Ay) - det (]_AO _“*ﬂ') + 1. 0
TQix Q4

We have proved the following.
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Theorem 5.4 (Cartier-Foata Sylvester’s identity) Let A = (a;j)mxm be a Cartier-
Foata matriz, and choose n < m. Let Ay, a, as; be defined as above, and let

I1-A Qs

Qi Qi

Cij = —det _1(] — Ao) - det < ) , C = (cij)n+1§i,j§m-

Then
det 7 (I — Ap) - det(I — A) = det(I — O). O

6 Right-quantum analogue

The right-quantum version of the Sylvester’s identity is very similar; we prove a right-
quantum version of Lemma 5.2 and Proposition 5.3, and a right-quantum version of
Theorem 5.4 follows.

The only challenging part is the following.
Lemma 6.1 If A is a right-quantum matriz, so is C.

Proof: Choose 1,7,k > n, i # j. Instead of dealing directly with the equality c;zc;r =
c;jkCik, we will prove an equivalent identity.

Denote by Pfj(k‘l, ks, ..., ky) the set of sequences of k1 +. . .+k,+2 steps with the following
properties:

e starting heights form a non-decreasing sequence;

e cach r between 1 and n appears exactly k, times as a starting height and exactly
k. times as an ending height;

e ¢ and j appear exactly once as starting heights;
e k appears exactly twice as an ending height.

For m =5n=2,1=3,7 =5k =4,k = 1,ky = 1, all such sequences are shown in
Figure 5.

N

SN AL A A S A A A A A

Figure 5: Sequences in the set Pis(1,1).

We will do something very similar to the proof of Lemma 5.2: we will perform switches
on sequences in Pfj(k‘l, ks, ..., ky,) until they are transformed into sequences of the form
P, P, P3, where:

e P is a path from i to k with all intermediate heights < n;
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e P, is a path from j to k£ with all intermediate heights < n;

e Pjis a sequence of steps with non-decreasing heights, with all heights < n, and with
the number of steps with starting height r equal to the number of steps with ending
height r for all r.

Namely, we move the step i — i’ to the first place, the first step of the form ¢/ — " to
the second place, etc. If we start with o € Pfj(kl, ks, ..., k), we denote the sequences we
get during this process by a, ¥ (a), ¥*(a), ..., ¥ (a), the final result ¢ () is denoted by
¢(a), and we take Nt (a) = N (a) for all [ > 0. For example, the sequence a;;as4a34as52
is transformed into agyassassaq; in 5 steps, see Figure 6.

A~ N~ NV Ay

Figure 6: Transforming aijas4a34a52 into assaseas4a;.

Of course, we have to prove that this can be done without changing the sum modulo
the ideal Z,, generated by relations (5.2)—(5.3), and this is done in almost exactly the same
way as the proof in [KP, §4]. Figure 7 is an example for m = 5,n =2,i=3,j =5,k =
4,k; = 1, ky = 1; each column corresponds to a transformation of an element of Pis(1, 1),
if two elements in the same row have the same label, their sum can be transformed into
the sum of the corresponding elements in the next row by use of the relation (5.3), and
if an element is not labeled it either means that it is transformed into the corresponding
element in the next row by use of the relation (5.2) or is already in the required form.

To prove this can be done in general, define the rank of a sequence a;, j, @iy, - -+ to
be the cardinality of {(k,l): k < l,ix > 4;}. Clearly, the rank of an element of P =
Pl(ki, ks, ... ky) is 0, and rank ¢! (a) = rank ¢’ (a) + 1 .

Take r > 0, and assume that
Y V@)= a

a€P a€P
modulo Z,,. Assume that we switch the steps (v — 1,7') — (z, k') and (z,j") — (x + 1,1')
in order to get ¥ (a) from ¢¥"(a). If K =1, v (a) = ¢"(«) mod Z,q by (5.2). On
the other hand, if ¥ # I, replace (x — 1,7') — (z,k') and (z,7") — (x 4+ 1,1') in ¢¥"(a)
by (z —1,7) — (z,I') and (x,5') — (x + 1, k); this sequence has rank r and is equal to
Y7 (B) for some 3 € P. But then (5.3) tells us that, modulo Z,y, ¥" () + " (3) =

Y () + " (5), and so
Y W)= a

aceP a€EP
modulo Z,,, and by induction
Z o = CiCjiS
acP

modulo Z,q, where S is the sum over all sequences of steps with the following properties:
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NN N AN PN A M

o o
o o o o
o L]

N YRV AR SN AEARVAR/ARVARN/

o [ o
o L] [ L] o

AEVARS NS AN M \NRV A SRV AV
SRRV /\_/ /\A /\/ A /. /\/_ N
/\/_ /\/

Figure 7: Transforming the sequences in P4 (1, 1) into terms of cz4c54S.

e starting heights form a non-decreasing sequence;
e starting and ending heights are all between 1 and n;

e cach r between 1 and n appears as many times as a starting height as an ending

height.
Of course, we can also reverse the roles of ¢ and j, and this proves that the sum of all
elements of Pfj(k:l, ko, ..., k,) is modulo Z,, also equal to
CjkCikS.

Hence, modulo Z,,
CiijkS = cjkcikS. (61)
But S=14ai + ...+ apy + a11022 + a12a91 + . . . is an invertible element of A, so (6.1)
implies
CikCjk = CjkCik,
provided A is a right-quantum matrix.
The proof of the other relation is almost completely analogous. Now we take ¢ £ j, k # [,

and define Pfjl(k‘l, ko, ..., k) as the set of sequences of ky + ...+ k, + 2 steps with the
following properties:
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e starting heights form a non-decreasing sequence;

e cach r between 1 and n appears exactly k, times as a starting height and exactly
k. times as an ending height;

e ¢ and j appear exactly once as starting heights;

e i and [ appear exactly once as ending heights.

A similar reasoning shows that the sum over all elements of Pfjl(kl, ks, ..., k,) is equal
both to (cixcji + cicix)S and to (cjici + ¢jpciy)S modulo 7, which implies ;e + cucir =
CjiCik T CjkCil- H

Proposition 6.2 If A is right-quantum, then

cij = —det (I — Ap) - det (I — Ao _a*j) . (6.2)
Qi i
Proof: The proof is exactly the same as the proof of Proposition 5.3. O

Theorem 6.3 (right-quantum Sylvester’s identity) Let A = (a;j)mxm be a right-
quantum matriz, and choose n < m. Let Ay, a;., a.; be defined as above, and let

I — AO Oy

Qi Qi

Cij = —det _1(] — AO) - det ( ) , C = (Cij)n—i-lgi,jSm-

Then
det ~1(I — Ag) - det(I — A) = det(I — C). O

7 ¢-Cartier-Foata analogue

Let us find a quantum extension of Theorem 5.4. Fix ¢ € C\ {0}. We say that a matrix
A = (a;j)mxm is g-Cartier-Foata if

ayei, = agaj for i < j k<l (7.1)
ajiy, = q2aikaﬂ for i < j,k>1, (7.2
ajrair = qaag, for i < j, (7.3
and g-right-quantum if
ajrar = qaag, forall @ < j, (7.4)
@i — q_lajkail = aja — qagaj; forall @ < j k<l (7.5)

Clearly, Cartier-Foata and right-quantum matrices are special cases of ¢-Cartier-Foata
and g-right-quantum matrices, for ¢ = 1; furthermore, a quantum matrix is also right-
quantum. In [GLZ], the term “right quantum” stands for what we call “g-right-quantum”.
For references, see [K] and [M3].
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In the following two sections, the weight w(\, i) is equal to ¢"™#~™*  For example,
dety(I — A) = Y (=1)"Idet A,
JC[m]

where .
detg Ay = detg(ai)ijes = > (=) ™ to(yj ** Gotio)ie

€Sy
for J ={j1 <jo<...<jr}

The following extends Proposition 5.1. A special case (when i = j = 1) is [KP,
Proposition 5.2, Proposition 6.2]. The proof in this more general case is almost exactly
the same and we omit it.

Proposition 7.1 If A = (aij)mxm is a g-Cartier-Foata or a g-right-quantum matriz, we

have ) )
- = (=1 —— . det, (I — A"
(I - A[ij]>ij ( ) detQ([ - A) ‘ q( )

for all v, 7, where

-1 -1
q ai; - q iy ajj+1 A1m
-1 -1
Apq — q Gi—11 - 4 Qi1 QGi—1541 " Gi—1m ]
lij] = a s s s e gas :
il % qa; j+1 qa;m
Am1 T a'mj qam,j—i—l e qQmm

We use Theorem 3.1 for Ajj;. Let us find the corresponding C' = (¢} )nt1<ir jr<m-
Denote
a;jr + q_lay*(f - q_lAO)_la*j’

by cyj for o', j' > n. If i' <1i,j" < j, we have
Cojr =" "ayy + (¢ am) (I — g Ag) (g awyr) = q iy

if ¢/ <i,7" > j, we have

Chjr = Qrjr + (¢ ai ) (I — g7 Ao) Hauy = coy;
if i > 4,7 < j, we have

c;/j/ =ayjy + ap (I — q_lAO)_l(q_la*J") = Cirjts
and if i' > i, 5’ > j, we have

c;,j/ = qay + apy (I — q_lAO)_la*j’ = qcyjr.

We have proved the following.
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Proposition 7.2 With Apj as above and with C = (Citjr )nt1<ir ji<m for
B —1 4 \-1(,~1
Cirjr = Qi + ap(I — g Ag)” (¢ auyr),

we have
(I = Au))iy = (I = Cig)irjoe O

REMARK 7.3 Let us present a slightly different proof of the proposition. Another way to
characterize A} is to say that the entry aj; has weight ¢ to the power of

Lil>5  Jlik<u
0: 1< 0: k>

That means that in (Aﬁ. ﬂ)' e
1112
o QiyigQigig =~ " Qip_qi,
has weight
g >}l i<}l

Assume that we have a decomposition of a path of length ¢ from i’ to j', i', 7" > n, as
in Section 3, say @, = Qira; Ayiy Qigho haiz **° Giy_12p 057> With all elements of A, at most n,
i > n, and the length of A, equal to ¢,. Put iy =7, i,4; = j'.The number of indices of
A =14'A1... )\, that are strictly smaller than ¢ is clearly

p
S bt {roip <iY| =L—p+|{r:i, <i}|,
r=1

and the number of indices of p = Ay ... \,j’ that are strictly greater than jis [{r: i, > j}|.
Therefore the path a , is weighted by

q—z+p+|{r: > ={r: i <i}]
On the other hand, take a term ay, = @ix ai@isrodaiz * " * Bipoi Ap,Apj! (with A, 4., ¢, as
before) of (Cﬁj])i/jr. Each a;, . ., has weight ¢~ as an element of C, and a, , has the
additional weight

q|{7”: ir>gH—{r: ir<i}

as a term of (C[‘;j])i/j/. The proposition follows. O

In what follows, the crucial observation is the following. Take ay,, A = Aiijhe,
= piklpg, N = A\jide, i/ = prlkps for i < j. Then

inv p—inv )\a inv pu/ —inv \/

q A — 4 ay mod Zq—cf>

where Z,_ is the ideal of A generated by the equations (7.1)—(7.3).

We show this by considering in turn each of the following possibilities:
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1l.i<g k<l
2. 1< g, k>1
3. i<y k=1

For example, to prove case (1), note that aja;x — aaj is a generator of Z,_.¢, and
that inv ¢’ = inv u + 1 and inv X = inv A + 1. Other cases are similarly straightforward.

Lemma 7.4 If A is a q-Cartier-Foata matriz, C is a q-right-quantum matriz.

Proof: We adapt the proof of Lemma 5.2. Choose ¢, j,k > n, ¢ < j. The product c;zcjy is
the sum of terms of the form

—-p

-
q " Qiiy Qiyig ** ~ Qipk gy Ajy g~ Ak

for p,r >0, %1,...,%p, J1, .- Jr < M.
Without changing the expression modulo Z,_., we can repeat the procedure in the proof
of Lemma 5.2, keeping track of weight changes. The resulting expression

Ajji Qigy * = Al ki Qi === Qi ke

has, by the discussion preceding the lemma, weight ¢~'~"'~?" (the extra —1 comes from
the fact that the step with starting height j is now to the left of the step with starting
height ¢), In other words,

CikCik = (4CikCjk-

The proof of the other relation is completely analogous. O

If A is g-Cartier-Foata, Proposition 7.1 implies
(I = At 1)t (1 — (A"+1’"+1)[n+27n+2]);}r2,n+2 coo=dety, NI — A) - det, (I — Ap).
By Lemma 7.4, C'is g-right-quantum, so by Proposition 7.1
(I = Clastms)niinar (T = (C"HN) o) mbamg - = detg ™ (1 = C),

and hence
det, (I — Ap) - det,(I — A) = det, (I — O).

The final step is to write entries of C' as quotients of quantum determinants.

Proposition 7.5 If A is q-Cartier-Foata, then

Cij = —detq_l(I — A(]) . detq ([ B AO _a*j) .

T Q4

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R42 17



Proof: Again,

-1 -1 -1
P T S _ quq Q5
nee=((- (7)),
ij
(o )
Qix Qg5

is still g-Cartier-Foata, Proposition 7.1 shows that this is equal to

det, (1 — (;40 Zj)) -det, (I — Ay).

The rest of the proof is exactly the same as in Proposition 5.3, with det, playing the role
of det. O

and because the matrix

We have proved the following.

Theorem 7.6 (¢-Cartier-Foata Sylvester’s identity) Let A = (aij)mxm be a ¢-
Cartier-Foata matriz, and choose n < m. Let Ay, a;x, a,; be defined as above, and let

I — AQ Oy
Qi Qi

cfy = —dety (I — A) - det, ( ) ;O = (c)ntr<ij<m:
Then
dety (I — Ap) - det, (I — A) = det, (I — C?). O

8 ¢-right-quantum analogue

The results of the previous two sections easily extend to a g-right-quantum Sylvester’s
identity. Denote the ideal generated by relations (7.4)—(7.5) by Z,_.q. It is easy to see
that if X\ = A\jijha, = piklug, N = A\jide, i/ = prlkps and if i < j, then

inv p—inv A inv p/ —inv A

inv p—inv \’ inv u/ —inv \
q e = ¢ ax,u+ ¢ axy  mod Zgrq.

ax)p + q
Lemma 8.1 If A is a g-right-quantum matriz, so is C'.

Proof: This is a weighted analogue of Lemma 6.1. The sum over elements of Pfj (k1. .., k)
with ay, weighted by ¢™# ™4 = ¢"™# is modulo Z, .4 equal to both c¢;yc;,S and
q '¢jreiS; this implies the relation (7.4) for elements of C, and the proof of (7.5) is
completely analogous. O

Proposition 8.2 If A is q-right-quantum, then
T Q4

Cij = —detq_l(f — A(]) . detq ([ B AO _a*j) .
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Proof: The proof is exactly the same as the proof of Proposition 7.5. O
Proposition 7.2, Lemma 8.1 and Proposition 8.2 imply the following theorem.

Theorem 8.3 (¢-right-quantum Sylvester’s identity) Let A = (ai;)mxm be a g-right-
quantum matriz, and choose n < m. Let Ay, ai, a.; be defined as above, and let

I — A(] Oy

Qi Qi

;= —det, (I — Ay) - det, ( ) , C7=(c}j)nt1<ij<m.

Then
dety (I — Ap) - det, (I — A) = det, (I — C?). O

9 ¢;;-Cartier-Foata analogue

Now let us prove a multiparameter extension of Theorem 7.6. Choose g;; # 0 for ¢ < j,
and recall that a matrix A = (a;;)mxm is g-Cartier-Foata if

Qi = Qjaigay for 1 < j k <lI, (9.1)
Qi = GiQurtikay for 1 < g k>1, (9.2)
ajpQix = Qjagxajx for i < j, (9.

and g-right-quantum if

ALk = Qi Qk0jk for all 1<, (94)

1 —1 . .
Aik Q51 — Q35 A5G = Griq;; A0k — driQiQjk forall i <yj, k<I. (9'5

Clearly, g-Cartier-Foata and ¢-right-quantum matrices are special cases of q-Cartier-
Foata and g-right-quantum matrices, for ¢;; = ¢ for all 7, j. They were introduced in [KP]
and were motivated by [M2].

If we define ¢; = 1 and ¢;; = qigl for i < j, we can write the conditions (9.1)—(9.3)
more concisely as
ki1 G5k = Qij Ak A5, (9-6)
for all 4, j, k,1, i # j, and (9.4)—(9.5) as
ikl — G55 ki = Qrdy; Gk — Qri;k (9.7)
for all 4,5, k, 1, i # 7.
In the following two sections, the weight w(\, 1) is equal to

H Qi H q;Jl,\l
N

(6,5)€Z (1) (i,J)€T
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For example,
dety(I — A) = Y (—1)MIdetqA;,

JC[m)

where

dety Ay = dety(ai;)ijes = » 1T Utyom) | ToGii ™ Aot

o€Sy \p<qo(p)>a(q)
for J={j1 <jo <...<jr}

The following extends Proposition 7.1. A special case (when i = j = 1) is [KP,
Proposition 7.3, Proposition 8.1]. The proof in this more general case is almost exactly
the same and we omit it.

Proposition 9.1 If A = (aij)mxm 1 a q-Cartier-Foata matriz or a q-right-quantum
matriz, we have

1 o 1 g
— ) = (1) —— . detq (I — A
<]_A[ij})ij ( ) detQ(I - A) ‘ Q( )

for all i, 7, where

- - —1 —1
qq; Q11 s qq; Q1 q1; 45,5+101,5+1 s q1; GimG1im
_1 . .« e _1 . . _1 .. . . .« . _1 . .
Apj = q;1,;%i-1,1 G 1,;%-15 G;1,;495,j+10i—1,5+1 4; 1,i95m%i—1,m =
1) - .
(0751 T Qi q5,j+1Qi 5+1 T qimQim
am1 T Amy qj,54+10m j+1 T qjmAmm

Assume that ¢;; = ¢ for ¢, < n, j,j" > n; denote this value by q. We use Theorem
3.1 for the matrix Ay and the corresponding C' = (¢ )Jny1<ir jr<m- Define

iy = apj +q ap (I —q ' Ao) lany
for i', 7" > n. If i/ <i,j" < j, we have
Gy = di; avy + (a7 ain) (L — ¢~ " Ao) (g ayr) = g carys
if ¢/ <i,7" > j, we have
Corjr = Qi Qg iy + (@i i) (T — ¢ Ao) " (g™ jjrayr) = Gy djgrCaryrs
if i > 4,7 < j, we have
Corjr = Qg+ (I = g7 A0) T g™ ) = cargr;
and if i' > i, 5’ > j, we have
Crr = jjrawy + av(I — ¢ Ao) (a7 gjjranyr) = qjjrcury-

We have proved the following.
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Proposition 9.2 With Ajj) as defined above and with C' = (cyjr)ni1<ir jr<m for
Ci,j/ — a”i/j/ —I— all*(] — q_lAO)_l(q_la'*]/)’

we have

(I AZ]]) iral — (I C[U ) |:|

REMARK 9.3 Another way to characterize A is to say that the entry a;; has weight
qu:l>g QG k<
1:1<y 1: k>4 °

That means that in (Af j})' .,
i1ty

Qiyip Qigis * * " Aiy_qip
has weight
| | qﬂr | | qzrz
i >] <1

An alternative way to prove the proposition is analogous to the proof of Proposition 7.2
outlined in Remark 7.3. O

If ax,, A= Mijho, o= piklpg, N = \ijide, ' = pilkps and if ¢ < j, then

_ -1
H Qujp; H q A p = H e H qA;A; aye  mod Ly,

(1,5)€T(n) (4,7)€T(A (B.7)el(p') (i,)el(N)

where Z,_ is the ideal of A generated by the equations (9.1)—(9.3).

As in the ¢-Cartier-Foata case, we show this by considering in turn each of the possi-
bilities k < I, k > 1, k = 1.

Lemma 9.4 If A is a q-Cartier-Foata matriz, C' is a q-right-quantum matriz.

Proof: We adapt the proof of Lemma 7.4. Choose ¢, j,k > n, @ < j. The product c;,cjj, is
the sum of terms of the form

—p—r

q @iy Qiyig " Qipk Qi Ajyjo * Ak

for p,r >0, @1,...,%p, J1, .-, Jr < N
Note that since

P — oL Y R T R -1
q = Gk 45k, 4,954 4,i%,5 " D,

the weight of aj;, a4, - - @i k05,054, - - - aj, is of the form

H qﬂ] i H q

(4,5)€Z (1) (1,5)€Z(N)
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for X = di1...0p771 ... Jr and p = @1 ...9,kj1 ... jrk. Without changing the expression
modulo Zqy_., we can repeat the procedure in the proof of Lemma 5.2, but changing the
weight at each switch. The resulting expression

R A A A

has, by the discussion preceding the lemma, weight

-1 . -1
y

-1 -1 -1 _  —r'—p -1
i j qi;,jqi’li qi;,iqij =4 ij

-1 -1
qink qi;,kqjij q]';qu ]

(the extra qigl comes from the fact that the step with starting height j is now to the left
of the step with starting height ¢), In other words,

CikCik = QijCikCjk-
The proof of the other relation is completely analogous. O

If A is g-Cartier-Foata, Proposition 9.1 implies
(] - A[n—i—l,n—l-l]);—il-l,n—&—l(l - (Anﬂ’nﬂ)[n+2,n+2]);}r27n+2 = detal(f - A) ’ detq(I - AO)'
By Lemma 7.4, C'is g-right-quantum, so by Proposition 9.1

(I = Clsrnin) g (1 — (CHMH)[n+2,n+2]);}r2,n+2 e =detg' (I - C),

and hence
dety (I — Ap) - dety(I — A) = detq(I — C).

So far, the extension to the multiparameter case has been straightforward. However,
we need something extra for the proof of the analogue of Proposition 7.5 since the matrix

A(] Qs
Qs Qi
is in general not g-Cartier-Foata. However, a special case of the first statement of Propo-

sition 9.1 holds under slightly weaker conditions.

Proposition 9.5 Assume that for A = (Gij)mxm, the submatriz (aij)mx(@m-1) s @ q-
Cartier-Foata or a q-right-quantum matriz. Then

1 1
- - - . J — Amm
(I - A[mm])mm dotg(T—A) 1t )

where Ajpmm) is defined as in Proposition 9.1.

Proof: When i = j = m, the relations (9.1)-(9.5) for k = m or [ = m are never used in
the proof of Proposition 9.1. O
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In other words, even though only the first n columns of

AQ Ay
Qix Qg5

satisfy the g-Cartier-Foata condition, we still have

= (1= (2 ) ) -

ij
_ Ay ay
= detg’ <I — <a£ aij)) -detq (I — Ayp).
Proposition 9.6 If A is q-Cartier-Foata, then
Cij = —detal([ — Ao) . detq (I B AO _a*j) . O
T T4

Proof: This follows from the previous proposition, using the same technique as in the
proof of Proposition 5.3. O
We have proved the following.

Theorem 9.7 (q-Cartier-Foata Sylvester’s theorem) Let A = (aij)mxm be a q-
Cartier-Foata matriz, and choose n < m. Let Ay, a;x, a,; be defined as above, and let

I — A(] Oy

J —Qix  —Qjj

cl = —detg' (I — Ay) - detq ( ) , O = (c)nti<ij<m-

Suppose q;; = gy for all i,i" <mn and j,j7' > n. Then
detq' (I — Ag) - detq(I — A) = detq(I — CY).

REMARK 9.8 It is important to note that the determinant detq(/ — C'?) is with respect
to C, the algebra generated by c¢;;’s, not with respect to A. For example, for n = 2 and
m = 4, we have

oy _ 14 .4 9.9 _,—1.4 4
detq(l ) =1 C33 — Cjq T C33C4 — (34 C43C3y-

REMARK 9.9 The condition ¢;; = ¢;;; whenever ,7" <n, j,j' > n is indeed necessary, as
shown by the following. Take n =1 and m = 3. In detg' (I — Ap) - detq(I — A) we have
the term

-1 -1
—(12 G13 421032013,

while in detq(I — C?) we have

—(s (—32)(— 13 a21013) = —q15 21a32013. O
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10 ¢;;-right-quantum analogue

The results in this section are almost complete copies of proofs above.

Assume we have a g-right-quantum matrix, with ¢;; = ¢ for ¢ < n, j > n. In the
notation of the previous section, we have the following.

Lemma 10.1 If A is a q-Cartier-Foata matriz, C is a q-right-quantum matriz.
Proof: We use a combination of proofs of Lemmas 8.1 and 9.4. O

Proposition 10.2 If A is q-right-quantum, then

Qi 0

Cij = —detal(f — Ao) . detq (I B AO _a*j) .

Proof: We use the same technique as in the proof of Proposition 9.6. O

This finishes the proof of Theorem 1.4.

11 The (f-extension

Theorem 1.1 trivially implies that
(det B)? = (det A)? - (det Ag)Ptm—n-1)
for any 3 € Z, where a;; are commutative variables and

AO Ay j

bij = det ( ) ;B = (bij)nti<ij<m:

Qi Qij
It is not immediately clear what the non-commutative extension of this could be. Of
course, Theorem 5.4 implies that

(det(I — C))° = (det " (I — Ap) - det(I — A))”

for
I — AO Qx5

— Ui« _aij

Cij = — det _1(I — AO) . det ( ) s C = (Cij)n—i-lgi,jgma

where A is a Cartier-Foata or right-quantum matrix, but this does not tell us how to cal-
culate terms of (det(/—C))?. However, a technique similar to the proof of the S-extension
of the non-commutative MacMahon Master Theorem, [KP, §10], gives a reasonable inter-
pretation of (det(I — C))? for 3 € Z when A is a Cartier-Foata matrix.

We need some terminology from [KP]. A balanced sequence (b-sequence) is a finite
sequence of steps such that the number of steps starting at height 7 is equal to the number
of steps ending at height ¢, for all i. We denote this number by k;, and call (ky,. .., k,,) the
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type of the b-sequence. An ordered sequence (o0-sequence) is a b-sequence where the steps
starting at smaller height always precede steps starting at larger heights. In other words,
an o-sequence of type (ki,...,k,) is a sequence of k; steps starting at height 1, then ks
steps starting at height 2, etc., so that k; steps end at height i. Denote by O(ky, ..., k)
the set of all o-sequences of type (ki, ..., k;). Finally, consider a lattice path from (0, 1)
to (x1,1) that never goes below y = 1 or above y = m, then a lattice path from (x1,2)
to (w9, 2) that never goes below y = 2 or above y = m, etc.; in the end, take a straight
path from (z,,_1,m) to (x,,, m). We call this a path sequence (p-sequence). Observe that
every p-sequence is also a b-sequence. Denote by P(kq, ..., k) the set of all p-sequences
of type (k1,. .., km)-

In [KP, §2] a bijection
o O(ky, ... kp) — Pky, ... kn)

was defined (which proved various forms of the MacMahon Master Theorem) as follows.
Take an o-sequence «, and let [0,z] be the maximal interval on which it is part of a p-
sequence, i.e. the maximal interval [0, z] on which the o-sequence has the property that if
a step ends at level i, and the following step starts at level j > i, the o-sequence stays on
or above height j afterwards. Let i be the height at x. Choose the step (2/,i) — (2/+1,4')
in the o-sequence that is the first to the right of x that starts at level ¢ (such a step exists
because an o-sequence is a balanced sequence). Continue switching this step with the one
to the left until it becomes the step (x,i) — (x + 1,7’). The new object is part of a p-
sequence at least on the interval [0,z + 1]. Continuing this procedure we get a p-sequence

p(a).
A lattice path from i to ¢ with each height appearing at most once as the starting
height is called a disjoint cycle.

For an o-sequence ay ,, take the corresponding p-sequence ay v = p(ay ). If the first
repeated height in ay . is the starting height of the sequence, the sequence starts with a
disjoint cycle; remove it and repeat the algorithm. If the first repeated height in ay ,/ is
not the starting height of the sequence, we have A’ starting with i1is - - - iip19pr2 - - fprr_1
and g starting with igis - - - ip410p40 - - -4, for different indices i1, ..., ip1,—1. Then we can
move the disjoint cycle 4, — 7,41 — ... — ip4,—1 — i, to the beginning, remove it,
and repeat the algorithm with the rest of the sequence. The resulting sequence is a
concatenation of disjoint cycles, and we call it the disjoint cycle decomposition of the o-
sequence ay , (or of the p-sequence ay /). For example, the disjoint cycle decomposition
of

(130110A12013022023022021A23022A23032431A31A33032032033033
18
(22032023013031411A22012021A13031A33023032022023032033A33-

We say that two cycles in the disjoint cycle decomposition are disjoint if the sets of
their starting heights are disjoint.
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Recall that for a Cartier-Foata matrix A, the matrix C' = (¢;;)n+1<ij<m With

Cij = — det _1(] — A0> - det ([ -4 _a*j)

TGk T4
is right-quantum by Lemma 5.2 and Proposition 5.3, so
det _1([ - C) = ([ - C);Jlrl,nﬂ([ - CmH’nH);}rz,nﬂ =

= (I — Ay (L= A e (11.1)

by Theorem 3.1. The last expression is the sum over all sequences which are concatena-
tions of a lattice path from n 4+ 1 to n 4 1, a lattice path from n + 2 to n + 2, etc.

Theorem 11.1 (f-extension of Cartier-Foata Sylvester’s identity) Assume A =

(@ij)mxm ts a Cartier-Foata matriz. For

C = (Cij)nt1<ij<m with cij = —det _1([ — Ayp) - det (I — Ao _a*j) .

T T4
1 B
det(/ — C)

Z e,u(ﬂ>a)\,,uv

where (1 runs over all words in the alphabet {1,...,m}, X is the non-decreasing rearrange-
ment of p, and e,(3) is a polynomial function of B that is calculated as follows. Let
w Uz . .. uy, be the disjoint cycle decomposition of ay,. Let J be the set of i € {1,...,k}
such that u; contains a height > n. Then

en(B) = (ﬁ ! _ll - d(ﬂ)), (11.2)

™

For each 8 € Z, the expression

18 equal to

where the sum is over all permutations m € Sy with the following properties:
o ifi < j,m(i) > m(j), then uruy, uxg) are disjoint;
o for each i & J there exists j > i such that ur;y and ur;) are not disjoint;
o ifm(i)>m(i+1) then (i) € J.

Here d() denotes the number of descents of the subword of (w(1),7(2),...,7(k)) composed
of m(i) € J, and | = |TJ|.
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ExamMpPLE 11.2 Take p = 132521421325. The disjoint cycle decomposition of the o-
sequence a11a13a12025022021 024032031 443052055 1S

U1 U2U3U4LUSUE = (all)(a25a52)(agg)(algaggagl)(a12a24a43a31)(a55).

We have J = {2,4,5,6}, the only permutations in S that appear in the sum (11.2) are
213456, 213465, 261345 with d(213456) = 0, d(213465) = 1, d(261345) = 1. Therefore

_(B+3 B+2 _ﬁ4 5% 332 3
eu(ﬁ)—< 4 >+2< 4 )_§+§+?+E'

EXAMPLE 11.3 Take n = 0. In this case J = {1,...,k}, only the first condition is not
vacuously true on 7, and we get the [-extension of MacMahon Master Theorem, [KP,
Theorem 10.5].

It is clear that each term of (det(I — C))~# is an o-sequence modulo Z, and that the
coefficients of o-sequences are polynomial functions of 3. Therefore it is enough to prove
the theorem for § € N, and this is an enumerative problem. We are given an o-sequence
ay,, and (3 slots, and we have to calculate in how many ways we can choose terms of
(det(I — C))~! in each slot so that their product is, modulo Z, equal to ay .

We start the proof with a lemma.

Lemma 11.4 All the steps in a cycle of the disjoint cycle decomposition must be placed
in the same slot.

Proof: This is proved in exactly the same way as the proof of [KP, Lemma 10.4], since all
we used there was that the sequence chosen in each slot must be balanced, which is also
true in our case. O

Proof of Theorem 11.1. We call cycles with all heights < n low cycles, and cycles con-
taining at least one height > n high cycles.

The lemma tells us that we must choose a permutation 7 € S; such that u;---u; =
Ur(1) -+ Ur(k) Modulo Zgs, and place the cycles ur(1), ..., Urx) in the 3 slots so that the
cycles in each slot give a term appearing in (det(I — C'))™".

Two cycles commute if and only if they are disjoint. That means that the condition
Uy e Uk = Ug(1) * ** Un(k) 1 equivalent to

o if i < j,m(i) > 7(j), then urg), ur(;) are disjoint,

which is the first condition in Theorem 11.1.
Take a low cycle u,(;), and assume that it is disjoint with all u.; for j > ¢. That means
we can push it to the end of the chosen slot without changing the sequence modulo Z.

But then the sequence in the slot is not equal to a sequence of the form (11.1) modulo
Zes. Therefore

e for each i ¢ J there exists j > i such that wu,q) and u.(;) are not disjoint,
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which is the second condition in Theorem 11.1.

Finally, assume that we have 7(i) > 7(i + 1) with 7 (i) ¢ J. Then 7(i) must be placed
in the same slot as a high cycle 7(j) for j > ¢, and so 7(i + 1), which commutes with
7(i), must be placed in the same slot as well. But then this placement of cycles in slots is
already counted in the permutation where (i) and 7(i 4+ 1) are switched. Therefore we
have

o if (i) > m(i + 1) then 7(:) € J,

which is the third condition in Theorem 11.1.

We have described all permutations that give ay ,, and now we have to find the number
of ways to place ur(1),...,urr in the 3 slots so that the cycles in each slot give a term
appearing in (det(/ — C'))~'. All cycles between two consecutive high cycles must appear
in the same slot as the right-hand high cycle. Therefore placing the cycles in slots is the
same as placing # — 1 dividers after (some of the) high cycles. Of course, there are (6 _11“)
ways of doing this, but we can get the same terms several times: if we take two consecutive
high cycles urg), Ur(;) With i < j,7(i) > 7(j), then u,;) must necessarily commute with
ur(j) and with all the low cycles between them, we can move u,;) to the right of u.,
possibly move some of the low cycles before u,(;) to the right of w.;), and we see that
this term has already been counted for a different 7. In order to avoid overcounting, we
have to place a divider after (). Therefore the number of unique placements in slots

corresponding to 7 is (6 _Hé_d(”)), and this finishes the proof of Theorem 11.1. O
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