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Abstract

The unitary Cayley graph Xn has vertex set Zn = {0, 1, . . . , n−1}. Vertices a, b

are adjacent, if gcd(a− b, n) = 1. For Xn the chromatic number, the clique number,
the independence number, the diameter and the vertex connectivity are determined.
We decide on the perfectness of Xn and show that all nonzero eigenvalues of Xn are
integers dividing the value ϕ(n) of the Euler function.

1 Introduction

Let Γ be a multiplicative group with identity 1. For S ⊆ Γ, 1 /∈ S and S−1 = {s−1 : s ∈
S} = S the Cayley Graph X = Cay(Γ, S) is the undirected graph having vertex set
V (X) = Γ and edge set E(X) = {{a, b} : ab−1 ∈ S}. By right multiplication Γ may be
considered as a group of automorphisms of X acting transitively on V (X). The Cayley
graph X is regular of degree |S|. Its connected components are the right cosets of the
subgroup generated by S. So X is connected, if S generates Γ. More information about
Cayley graphs can be found in the books on algebraic graph theory by Biggs [3] and by
Godsil and Royle [10].

For a positive integer n > 1 the unitary Cayley graph Xn = Cay(Zn, Un) is defined by
the additive group of the ring Zn of integers modulo n and the multiplicative group Un of
its units. If we represent the elements of Zn by the integers 0, 1, . . . , n− 1, then it is well
known [13] that

Un = {a ∈ Zn : gcd(a, n) = 1}.

So Xn has vertex set V (Xn) = Zn = {0, 1, . . . , n− 1} and edge set

E(Xn) = {{a, b} : a, b ∈ Zn, gcd(a− b, n) = 1}.

The graph Xn is regular of degree |Un| = ϕ(n), where ϕ(n) denotes the Euler function. If
n = p is a prime number, then Xn = Kp is the complete graph on p vertices. If n = pα is a
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prime power then Xn is a complete p-partite graph which has the residue classes modulo
p in Zn as maximal sets of independent (pairwise nonadjacent) vertices. Unitary Cayley
graphs are highly symmetric. They have some remarkable properties connecting graph
theory and number theory.

In some recent papers induced cycles in Xn were investigated. Berrizbeitia and Giudici
[2] studied the number pk(n) of induced k-cycles in Xn. Fuchs and Sinz [8, 9] showed that
the maximal length of an induced cycle in Xn is 2r +2, where r is the number of different
prime divisors of n.

In Section 2 we deal with some basic invariants of Xn. We show that the chromatic
number χ(Xn) and the clique number ω(Xn) equal the smallest prime divisor p of n. For
the complementary graph X̄n of Xn we have χ(X̄n) = ω(X̄n) = n/p. Unitary Cayley
graphs represent very reliable networks, which means that the vertex connectivity κ(Xn)
equals the degree of regularity of Xn, κ(Xn) = ϕ(n). We show that the diameter of Xn

is at most 3.
A graph G is perfect, if for every induced subgraph G′ ⊆ G chromatic number and

clique number coincide, χ(G′) = ω(G′). In Section 3 we prove that Xn is perfect, if and
only if n is even or if n is odd and has at most two different prime divisors.

The eigenvalues of a graph G are the eigenvalues of an arbitrary adjacency matrix of
G. In Section 4 we show that all nonzero eigenvalues of Xn are divisors of ϕ(n). The
definition of Xn is extended to gcd-graphs Xn(D), where vertices a, b are adjacent, if
gcd(a− b, n) ∈ D, D a given set of divisors of n. All eigenvalues of Xn(D) also turn out
to be integral.

2 Basic invariants

First we determine the chromatic number and the clique number of Xn and of the com-
plementary graph X̄n. We remark that ω(X̄n) and χ(X̄n) are also called the independence
number and the clique covering number of Xn. From now on we always assume that n is
an integer, n ≥ 2.

Theorem 1. If p is the smallest prime divisor of n, then we have

χ(Xn) = ω(Xn) = p, χ(X̄n) = ω(X̄n) =
n

p
.

Proof. As the vertices 0,1,. . . , p-1 induce a clique in Xn, we have

χ(Xn) ≥ ω(Xn) ≥ p. (1)

On the other hand the residue classes modulo p in Zn = {0, 1, . . . , n−1} constitute p sets
of independent vertices of Xn. These sets can be taken as color classes to show χ(Xn) ≤ p,
which proves equality in (1). In X̄n the residue classes induce cliques showing

χ(X̄n) ≥ ω(X̄n) ≥
n

p
. (2)
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Now the integer intervals

{kp, kp + 1, . . . , (k + 1)p− 1}, 0 ≤ k ≤
n

p
− 1,

consist of indpendent vertices of X̄n. These sets can be taken as color classes for X̄n to
establish χ(X̄n) ≤ n/p, which proves equality in (2).

Corollary 2. [7] The unitary Cayley graph Xn, n ≥ 2, is bipartite if and only if n is
even.

Corollary 3. There is no selfcomplementary unitary Caley graph Xn for n ≥ 2.

Proof. Suppose Xn is selfcomplementary. Then Xn and X̄n must have the same chromatic
number, which by Theorem 1 implies n = p2, p a prime. As Xn∪X̄n = Kn is the complete
graph on n vertices and asXn and X̄n must have the same degree of regularity, we conclude

ϕ(n) =
n− 1

2
. (3)

Inserting n = p2 we get 2ϕ(p2) = 2p(p− 1) = p2 − 1, which is impossible.

We remark that Corollary 3 supports a still open conjecture of Lehmer [12], which
states that equation (3) is unsolvable.

Let a ∈ Un, i.e. 1 ≤ a ≤ n− 1, gcd(a, n) = 1. If n ≥ 3, then the sequence

(xk), xk ≡ ka mod n, 0 ≤ k ≤ n− 1,

defines a hamiltonian cycle Ca of Xn. We notice that a and n − a define the same
hamiltonian cycle. There are ϕ(n)/2 edge disjoint hamiltonian cycles Ca, a ∈ Un, which
completely partition the edge set E(Xn). This implies that Xn has edge connectivity
ϕ(n). We show that this is also the value of the vertex connectivity of Xn.

Theorem 4. The unitary Cayley graph Xn has vertex connectivity κ(n) = ϕ(n).

Proof. For a ∈ Zn and b ∈ Zn we define the affine transformation

ψa,b : Zn −→ Zn by ψa,b(x) ≡ ax + b mod n for x ∈ Zn .

We check that ψa,b is an automorphism of Xn, if and only if a ∈ Un. Moreover, A(Xn) =
{ψa,b : a ∈ Un, b ∈ Zn} is a subgroup of the automorphism group Aut(Xn). We call
A(Xn) the group of affine automorphisms of Xn.

According to Biggs [3] a graph G is called symmetric, if for all vertices x, y, u, v of
G such that x is adjacent to y and u is adjacent to v, there is an automorphism σ of G
for which σ(x) = u and σ(y) = v. If G = Xn, then we find exactly one automorphism
σ ∈ A(Xn) satisfying these conditions. So Xn is symmetric.

It has been shown by Watkins [15], see also [4], that the vertex connectivity κ(G) of
a connected graph G, which is regular and edge transitive, equals its degree of regularity.
This result especially applies to connected, symmetric graphs, because symmetry includes
regularity and edge transitivity [3]. Therefore, we conclude κ(Xn) = ϕ(n).
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The following lemma will be used to determine the number of common neighbors of a
pair of vertices in Xn.

Lemma 5. For integers n, s, n ≥ 2, denote by Fn(s) the number of solutions of the
congruence

x+ y ≡ s mod n, x ∈ Un, y ∈ Un. (4)

Then we have

Fn(s) = n
∏

p|n, p prime

(1 −
ε(p)

p
), where ε(p) =

{

1, if p | s
2, if p 6 | s

.

Proof. Let p1, p2, . . . , pr be the different prime divisors of n,

n = pα1

1 p
α2

2 · · · pαr

r , m = p1p2 · · · pr .

If x and y satisfy (4), then y is uniquely determined modulo n by x. So we have to find
out the number of possible entries for x. We partition the interval of integers [0, n− 1] =
{0, 1, . . . , n− 1} into the disjoint intervals Ik = [(k − 1)m, km− 1], k = 1, . . . , n/m. By
the Chinese Remainder Theorem [13] every integer x ∈ Ik is uniquely determined by its
values xi modulo pi, 1 ≤ i ≤ r, i.e. by the congruences

x ≡ xi mod pi, 0 ≤ xi ≤ pi − 1, 1 ≤ i ≤ r.

To guarantee x ∈ Ik ∩Un all xi must be nonzero. There remain pi − 1 possible choices for
xi. An additional value for xi has to be ruled out, if s ≡ s′ mod pi, 0 < s′ < pi. In this
case xi = s′ would have the consequence y ≡ 0 mod pi implying y 6∈ Un. So the number of
possible choices for x ∈ Ik ∩Un to satisfy (4) is (p1 − ε(p1)) · · · (pr − ε(pr)). Multiplying
this number by the number n/m of intervals Ik proves Lemma 5.

Theorem 6. In the notation of Lemma 5 the number of common neighbors of distinct
vertices a, b in the unitary Cayley graph Xn is given by Fn(a− b).

Proof. Let a, b, z be elements of V (Xn) = Zn = {0, 1, . . . , n− 1}. Vertex z is a common
neighbor of a and b, if and only if gcd(a − z, n) = gcd(z − b, n) = 1. There exist unique
x, y ∈ Zn such that

a− z ≡ x mod n, z − b ≡ y mod n.

Now z ≡ a− x ≡ b + y becomes a common neighbor of a and b, if and only if

x + y ≡ a− b mod n, x ∈ Un, y ∈ Un.

By Lemma 5 this means that the number of common neighbors of a and b is Fn(a−b).

Corollary 7. Every pair of adjacent vertices of Xn has the same number λ(n) of common
neighbors,

λ(n) = n
∏

p|n, p prime

(1 −
2

p
) .
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Corollary 8. [7] The number T (n) of triangles in Xn is

T (n) =
n3

6

∏

p|n, p prime

(1 −
1

p
)(1 −

2

p
) .

Proof. By Corollary 7 every edge of Xn is contained in λ(n) triangles. If we multiply λ(n)
by the number nϕ(n)/2 of edges in Xn, then every triangle is counted three times. So we
have T (n) = nϕ(n)λ(n)/6. The result follows, if we insert λ(n) from Corollary 7 and the
analogous product expansion for ϕ(n) [13].

The distance d(x, y) of vertices x and y of a graph G is the length (number of edges)
of a shortest x, y-path. The diameter diam(G) is the maximal distance any two vertices
of G may have.

Theorem 9. For n ≥ 2 we have

diam(Xn) =















1, if n is a prime number,
2, if n = 2α, α > 1,
2, if n is odd, but not a prime number,
3, if n is even and has an odd prime divisor .

Proof. If n is a prime number, then Xn = Kn is the complete graph, which has diameter
1. In the other cases Xn is not complete, diam(Xn) ≥ 2. If n = 2α, α > 1, then Xn is the
complete bipartite graph with vertex partition V (Xn) = {0, 2, . . . , n−2}∪{1, 3, . . . , n−1},
which has diameter 2.

Suppose n is odd, but not a prime number. By Theorem 6 the number of common
neighbors of vertices a 6= b is Fn(a−b). According to Lemma 5 all factors in the expansion
of Fn(a− b) are positive, if n has only odd prime divisors. In this case there is a common
neighbor to every pair of distinct vertices, which implies diam(Xn) = 2.

Finally, we consider the case where n is even and has an odd prime divisor p. The
vertices 0 and p of Xn are not adjacent and by Theorem 6 they have no common neighbor.
Therefore, we have diam(Xn) ≥ d(0, p) ≥ 3. Suppose now that a and b, a 6= b, are
arbitrary nonadjacent vertices of Xn, which have no common neighbor. Any two vertices
x and y, x 6= y, of Xn, which are both even or both odd have a common neighbor by
Theorem 6. So we may assume that a is even and b is odd. All ϕ(n) neighbors of a are
odd. Let c be one of them. Now c and b are both odd and therefore have a common
neighbor d. Passing along a, c, d, b shows d(a, b) ≤ 3, diam(Xn) = 3.

3 Perfectness

A graph G is perfect [1], if for every induced subgraph G′ ⊆ G the clique number and
the chromatic number coincide, ω(G′) = χ(G′). Clearly, induced cycles of odd length
at least 5, popularly called odd holes, prevent a graph from being perfect. Chudnovsky,
Robertson, Seymour, and Thomas [5] in 2002 turned the corresponding famous conjecture
of Berge into the following theorem, the Strong Perfect Graph Theorem (SPGT).
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SPGT. A graph G is perfect if and only if G and its complement Ḡ have no odd holes.

If n is even or a power of a prime p, then Xn is bipartite or completely p-partite. As
these graphs are perfect, we may assume that n is odd and has at least two different prime
divisors.

Lemma 10. If n is odd and has at least three different prime divisors, then Xn contains
an induced cycle C5 of length 5.

Proof. Let p1, . . . , pr (in ascending order) be the prime divisors of the odd integer n, r ≥
3, m = p1p2 · · · pr. As the cycle C5 is selfcomplementary, it suffices to show that there
is an induced C5 in the complement X̄n. We define the vertices x0, x1, x2, x3 by

x0 = 0, x1 = pr, x2 = pr + p1 · · · pr−1, x3 = 2pr + p1 · · · pr−1. (5)

According to the Chinese Remainder Theorem we can define x4 ∈ Zm uniquely by the
following congruences.

x4 ≡ 0 mod p1, x4 ≡ 2pr mod p2, x4 ≡ 2p1 · · · pr−1 mod pr ,
x4 ≡ 0 mod pj for j = 3, . . . , r − 1

(6)

One checks that the vertices x0, . . . , x4 are distinct. They define a cycle C5 of X̄n, because

x1 − x0 ≡ x3 − x2 ≡ 0 mod pr,
x2 − x1 ≡ x4 − x0 ≡ 0 mod p1, x4 − x3 ≡ 0 mod p2

imply that the edges {x0, x1}, . . . , {x4, x0} belong to X̄n. It remains to show that this C5

has no chords in X̄n.
We have x2 − x0 = pr + p1 · · · pr−1, which implies gcd(x2 − x0, m) = 1 and {x0, x2} 6∈

E(X̄n). A similar argument applies to the edges {x0, x3} and {x1, x3}. Consider now the
edge {x1, x4}. By (5) and (6) we conclude that

x4 − x1 ≡ −pr mod p1, which implies p1 6 | (x4 − x1),
x4 − x1 ≡ pr mod p2, which implies p2 6 | (x4 − x1),
x4 − x1 ≡ −pr mod pj, j = 3, . . . , r − 1, which implies pj 6 | (x4 − x1),
x4 − x1 ≡ 2p1 · · · pr−1 mod pr, which implies pr 6 | (x4 − x1).

Now gcd(x4 − x1, m) = 1 implies that the edge {x1, x4} does not belong to X̄n. Similarly,
we confirm {x2, x4} 6∈ E(X̄n).

It has been shown by Fuchs and Sinz [8, 9] that the length of a longest induced cycle
in Xn is 2r + 2, if r ≥ 2 is the number of distinct prime divisors of n. We remark that
their arguments can also be used to show that the length of a longest induced path in Xn

is 2r.
To complete our decision concerning the perfectness of Xn, it remains to investigate

the case where n has exactly two different odd prime divisors. By the just mentioned
result we know that a longest induced cycle in Xn has length 6. So the only possible odd
hole Xn may have is C5. But this is excluded by the next lemma.
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Lemma 11. If n is odd and has exactly two different prime divisors, then X̄n has no odd
hole C2k+1, k ≥ 2.

Proof. Assume that X̄n contains the induced cycle C2k+1, k ≥ 2, which runs through
the vertices x0, x1, . . . , x2k in this order. If p1, p2 are the two odd prime divisors of n,
then for every edge {xj, xj+1} (indices modulo 2k + 1) we must have p1 | (xj+1 − xj) or
p2 | (xj+1 − xj). For every pair of consecutive edges {xj, xj+1}, {xj+1, xj+2} of C2k+1

the prime divisors p1, p2 must alternate. Otherwise we would have e.g. xj − xj+1 =
sp1, xj+2 − xj+1 = tp1, which would imply xj+2 − xj = (t − s)p1. But this would mean
that {xj, xj+2} ∈ E(X̄n) is a chord of C2k+1 contradicting our asumption. On the other
hand the alternation of prime divisors along the edges of C2k+1 forces the cycle to have
even length, which again is a contradiction.

With the help of SPGT, Lemma 10 and Lemma 11 we have established the following
theorem.

Theorem 12. The unitary Cayley graph Xn, n ≥ 2, is perfect if and only if n is even or
if n is odd and has at most two different prime divisors.

4 Eigenvalues

The eigenvalues of a graph G are the eigenvalues of an arbitrary adjacency matrix of
G. We establish the adjacency matrix An of Xn with respect to the natural order of the
vertices 0, 1, . . . , n − 1. The entries a0, a1, . . . , an−1 of the first row of An generate the
entries of the other rows by a cyclic shift.

An =













a0 a1 . . . an−1

an−1 a0 . . . an−2

. . . . . .

. . . . . .
a1 a2 . . . a0













Matrices of this kind are called circulant matrices. A circulant graph is a graph, which
has a circulant adjacency matrix. Circulant graphs with n vertices are exactly the graphs
isomorphic to a Cayley graph with respect to the additive group Zn of integers modulo
n. Unitary Cayley graphs are circulant graphs.

A detailed exposition of circulant matrices is given by Davis [6]. There is an explicit
formula for the eigenvalues λr, 0 ≤ r ≤ n − 1, of a circulant matrix such as An. Define
the polynomial pn(z) by the entries of the first row of An and let w denote a complex
primitive n-th root of unity.

pn(z) =
n−1
∑

j=0

ajz
j , w = exp(

2πi

n
)
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The eigenvalues of An are given by (cf. Theorem 3.2.2 [6])

λr = pn(wr), 0 ≤ r ≤ n− 1 . (7)

Here every eigenvalue of An is listed according to its multiplicity. The definition of An as
a special adjacency matrix of Xn implies

aj =

{

1, if gcd(j, n) = 1
0, if gcd(j, n) > 1.

Therefore, equation (7) leads to

λr =
∑

1≤j<n
gcd(j,n)=1

wrj = c(r, n) , 0 ≤ r ≤ n− 1 . (8)

The arithmetic function c(r, n) is a Ramanujan sum, for which some results are available
[14]. For integers r, n, n > 0, Ramanujan sums have only integral values. So all eigen-
values of unitary Cayley graphs are integers. More information can be drawn from the
following formula (cf. Corollary 2.4 of [14]).

λr = c(r, n) = µ(tr)
ϕ(n)

ϕ(tr)
, where tr =

n

gcd(r, n)
, 0 ≤ r ≤ n− 1. (9)

Here µ denotes the Möbius function.

Theorem 13. For n ≥ 2, the following statements hold.

1. Every nonzero eigenvalue of Xn is a divisor of ϕ(n).

2. Let m be the maximal squarefree divisor of n. Then

λmin = µ(m)
ϕ(n)

ϕ(m)
(10)

is a nonzero eigenvalue of Xn of minimal absolute value and multiplicity ϕ(m).
Every eigenvalue of Xn is a multiple of λmin. If n is odd, then λmin is the only
nonzero eigenvalue of Xn with minimal absolute value. If n is even, then −λmin is
also an eigenvalue of Xn with multiplicity ϕ(m).

Proof. 1. By the multiplicative properties of the Euler function ϕ(t) divides ϕ(n), if t is
a divisor of n [13]. Therefore, (9) implies that the nonzero eigenvalues of Xn are divisors
of ϕ(n).

2. For λr 6= 0 we must have µ(tr) 6= 0, which is equivalent to tr being a divisor of m.
Now by (9) the absolute value of λr 6= 0 is minimal if and only if ϕ(tr) = ϕ(m). This
equation always has the trivial solution tr = m, which implies

λr = λmin = µ(m)
ϕ(n)

ϕ(m)
.
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For 0 ≤ r ≤ n− 1 we have the equivalences

λr = λmin ⇐⇒ tr =
n

gcd(r, n)
= m⇐⇒ gcd(r, n) =

n

m

⇐⇒ r ∈ Q := {x
n

m
: 0 ≤ x < m, gcd(x,m) = 1}.

So λmin has multiplicity |Q| = ϕ(m).
If λr is an arbitrary nonzero eigenvalue of Xn, then tr is a divisor of m and so ϕ(tr)

divides ϕ(m), say ϕ(m) = kϕ(tr) with a positive integer k. Now λr becomes a multiple
of λmin by (9) and (10),

λr = µ(tr)
ϕ(n)

ϕ(tr)
= kµ(tr)

ϕ(n)

ϕ(m)
= ±kλmin.

If n is odd and tr divides m, then ϕ(tr) = ϕ(m) has only the trivial solution tr = m
and λmin is the only eigenvalue with minimal absolute value. But if n is even, we have
ϕ(m) = ϕ(m/2) and we get another solution for tr = m/2,

λ′min = µ(
m

2
)
ϕ(n)

ϕ(m
2
)

= −µ(m)
ϕ(n)

ϕ(m)
= −λmin.

As above we deduce the multiplicity ϕ(m/2) = ϕ(m) for the eigenvalue λ′
min.

Remember that Xn is bipartite for even n. The appearence of λmin and −λmin in this
case reflects the well known fact [3] that the nonzero eigenvalues of bipartite graphs occur
in pairs (λ,−λ) with the same multiplicity. We further mention that for the connected
graph Xn the degree of regularity, i.e. ϕ(n), is a simple eigenvalue of maximal absolute
value.

Corollary 14. There is an eigenvalue ±1 of Xn, if and only if n is squarefree. If n is
squarefree, then Xn has the eigenvalue µ(n) with multiplicity ϕ(n). The unitary Cayley
graph Xn has both eigenvalues ±1 with multiplicity ϕ(n), if and only if n is squarefree
and even.

Theorem 15. Let m be the maximal squarefree divisor of n and let M be the set of positive
divisors of m. Then the following statements for the unitary Cayley graph Xn, n ≥ 2,
hold.

1. Repeating every term of the sequence

S =

(

µ(t)
ϕ(n)

ϕ(t)

)

t∈M

ϕ(t)−times results in a sequence S̃ of length m which consists of all nonzero eigen-
values of Xn such that the number of appearences of an eigenvalue is its multiplicity.
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2. The multiplicity of zero as an eigenvalue of Xn is n−m.

3. If α(λ) is the multiplicity of the eigenvalue λ of Xn, then λα(λ) is a multiple of
ϕ(n).

Proof. 1. The number of terms in the resulting sequence S̃ is

∑

t∈M

ϕ(t) =
∑

t|m

ϕ(t) = m.

The last equation exhibits the well known summatory function of the Euler function [13].
Equation (9) describes the sequence (λr), 0 ≤ r ≤ n − 1, of all eigenvalues of Xn, in

which each eigenvalue is listed according to its multiplicity. As µ(tr) = 0 for tr /∈ M , we
get the subsequence T̃ of nonzero eigenvalues for 0 ≤ r ≤ n− 1, tr ∈M .

T̃ =

(

µ(tr)
ϕ(n)

ϕ(tr)

)

0≤r≤n−1, tr∈M

, tr =
n

gcd(r, n)

Let t be an arbitrary element of M . For 0 ≤ r ≤ n− 1, i.e. r ∈ Zn, we have tr = t, if and
only if gcd(r, n) = n/t. Elementary number theory shows

Qt := {r ∈ Zn : gcd(r, n) =
n

t
} = {x

n

t
: x ∈ Zt, gcd(x, t) = 1},

which implies that Qt has ϕ(t) elements. Therefore, the sequence T̃ consists of all terms

µ(t)
ϕ(n)

ϕ(t)
, t ∈M,

where each of these terms appears ϕ(t)-times. If we take every term only once, then we
arrive at the sequence S and see that S̃ and T̃ coincide apart possibly from the order of
their elements.

2. By (1.) the length of the sequence S̃ equals the number of nonzero eigenvalues,
each of them counted according to its multiplicity. As S̃ has length m, the eigenvalue
zero has multiplicity n−m.

3. The statement is trivially true for λ = 0. Let λ be a nonzero eigenvalue of Xn.
Then there is an integer t ∈ M such that λ = µ(t)ϕ(n)/ϕ(t). By (1.) λ has at least
multiplicity ϕ(t), more precisely

α(λ) = ktϕ(t), kt = |{τ ∈M : µ(τ) = µ(t), ϕ(τ) = ϕ(t)}|.

Now we deduce

λα(λ) = µ(t)
ϕ(n)

ϕ(t)
ktϕ(t) = µ(t)ktϕ(n).
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We extend the class of unitary Cayley graphs. Let D be a set of positive, proper
divisors of the integer n > 1. Define the gcd-graph Xn(D) to have vertex set Zn =
{0, 1, . . . , n− 1} and edge set

E(Xn(D)) = {{a, b} : a, b ∈ Zn, gcd(a− b, n) ∈ D}.

If D = {d1, . . . , dk}, then we also write Xn(D) = Xn(d1, . . . , dk), especially Xn(1) = Xn.

Theorem 16. All eigenvalues of gcd-graphs are integers.

Proof. As Xn(D) is a circulant graph, its eigenvalues are determined by (7),

λr =
n−1
∑

j=0

ajw
rj, 0 ≤ r ≤ n− 1, where

aj =

{

1, if gcd(j, n) ∈ D
0, if gcd(j, n) /∈ D.

, w = exp(
2πi

n
).

Inserting aj yields

λr =
∑

d∈D

∑

1≤j<n
gcd(j,n)=d

wrj , 0 ≤ r ≤ n− 1.

Observing

{j : 1 ≤ j < n, gcd(j, n) = d} = {td : 1 ≤ t < n/d, gcd(t, n/d) = 1}

leads to

λr =
∑

d∈D

∑

1≤t<n/d
gcd(t,n/d)=1

wrtd =
∑

d∈D

∑

1≤t<n/d
gcd(t,n/d)=1

exp(
2πi

n/d
rt) ,

λr =
∑

d∈D

c(r, n/d) , 0 ≤ r ≤ n− 1.

Similar to (8) we get a representation of the eigenvalues by Ramanujan sums. As these
sums are integer valued, we conclude that all eigenvalues of gcd-graphs are integers.

5 Problems and remarks

1. Investigate the automorphism group Aut(Xn). For n > 6 it seems to be considerably
larger than the group A(Xn) of affine automorphisms.

2. Which circulant graphs have only integer eigenvalues? For general considerations
about graphs with integral spectra see [11].

3. Investigate the gcd-graphs defined in Section 4. The graph Xn(d1, . . . , dk) is con-
nected, if and only if gcd(d1, . . . , dk) = 1. Examples suggest that chromatic number
and clique number of Xn(D) are always divisors of n.
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