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Abstract

The dartboard problem is to arrange n numbers on a circle to obtain maximum

risk, which is the sum of the q-th power of the absolute differences of adjacent

numbers, for q ≥ 1. Curtis showed that the dartboard problem admits a greedy

algorithm. We generalize the dartboard problem by considering more circles and

the goal is to arrange kn number on k circles to obtain the maximum risk. In

this paper, we characterize an optimal arrangement for k = 2 and show that the

generalized dartboard problem also admits a greedy algorithm.

1 Introduction

Darts is a very popular game. Players throw darts and score points corresponding to
the sector the darts just landed on. The traditional dartboard is circular and partitioned
into several sectors as shown in figure 1. When playing darts, players often aim at the
high score sectors. But for ordinary players, it is hard to land the dart on the desired
sectors. The risk of aiming at an area can be measured by the difference between the
scores of adjacent sectors. As the larger the difference is, the higher the risk is and the
game becomes more challenging. The total risk of a dartboard is the sum over the risks of
all sectors. The so called dartboard problem, as discussed in Curtis’ paper [4], is to find
a cyclic permutation τ = α1 · · ·αn of a multiset {a1, · · · , an} on a circle which maximizes
the risk function

∑n

i=1
|αi − αi−1|

q where α0 ≡ αn and q ≥ 1.
The dartboard problem has been studied for a while. Eiselt and Laporte [5] used a

branch-and-bound algorithm[1] to find optimal permutations for the dartboard problem on
{1, 2, . . . , 20} for q = 1 and q = 2, and they observed that the traditional dartboard score
arrangement is not optimal. Chao and Liang [2] studied the permutations of n distinct
numbers arranged on a circle or a line and showed the arrangements that maximize or
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Figure 1: A traditional dartboard.

minimize the risk function. Later, Cohen and Tonkes [3] analyzed optimal permutations
for multisets of numbers. Recently, Curtis[4] designed a greedy algorithm to find an
optimal permutation π = a1an−1a3an−3a5 · · ·an−4a4an−2a2an for the dartboard problem,
where a1 ≤ a2 ≤ · · · ≤ an.

In this paper, we extend the dartboard problem from single circle to double circles.
For example, the dartboard with two circles, is as shown in figure 2. Assume that we
are given a multiset of 2n numbers and a double layer dartboard. We use a pair of
permutations (v1 · · · vn, w1 · · ·wn) to describe the arrangement, as shown in figure 3, where
v1 · · · vn is a cyclic permutation for the outer circle and w1 · · ·wn is a cyclic permutation
for the inner circle. We can extend the definition of the risk function to the double
layer dartboard. For example, the risk of the arrangement (v1 · · · vn, w1 · · ·wn) in figure
3, denoted by rq(v1 · · · vn, w1 · · ·wn), is defined as

∑n

i=1
|vi − wi|

q +
∑n

i=1
|vi − vi−1|

q +
∑n

i=1
|wi − wi−1|

q where v0 ≡ vn and w0 ≡ wn. We define the 2-dartboard problem as:
finding an arrangement (τV , τW ) for a multiset A = {a1, · · · , a2n} on two circles which
maximizes the risk function, where V and W is a partition of A and both have n elements.

Furthermore, we can extend the dartboard problem to k-layer dartboard. We use k
cyclic permutations (τ1, · · · , τk) to represents the arrangement where τi is a permutation
on n elements for the i-th circle. The risk function can be recursively defined as

rq(τ1, · · · , τk−2, τk−1 = v1 · · · vn, τk = w1 · · ·wn) = rq(τ1, · · · , τk−1)+rq(τk)+
n

∑

i=1

|vi − wi|
q ,

where the last term is the sum over the q-th power of the absolute differences between
numbers of the (k − 1)-th and k-th circles. Similarly, the k-dartboard problem is: find-
ing an arrangement for a multiset A = {a1, · · · , akn} on k circles to maximize the risk
function.

For the k-dartboard problem, we show once the numbers on each circle is determined,
then we can find the maximum arrangement efficiently. Moreover, we show that for the
2-dartboard problem, there exists an efficient greedy algorithm given an arbitrary input.
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Figure 2: A double layer dartboard
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Figure 3: An arrangement for double layer dartboard

However, it is not clear whether there exist an efficient algorithm for the k-dartboard
problem (k > 2) when the input does not specify the numbers on each circle. We leave it
as an open question.

2 Preliminaries

The following lemma is very useful in our proof, which was proved in Curtis’ paper[4].

Lemma 1. [4] Let lmin, lmax, rmin, rmax, q be real numbers with q ≥ 1. If lmin ≤ lmax and
rmin ≤ rmax, then |lmax − rmin|

q + |lmin − rmax|
q ≥ |lmax − rmax|

q + |lmin − rmin|
q.

With lemma 1, Curtis[4] proved the following theorem:

Theorem 1. [4] For arranging n numbers a1 ≤ a2 ≤ · · · ≤ an on a single circle dartboard,
the permutation a1an−1a3an−3a5 · · ·an−4a4an−2a2an maximizes the risk function.
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For an n-element multiset A, we denote the maximum permutation of A claimed in
Theorem 1 by πn(A). Cyclic permutations are reverse-invariant and shift-invariant when
calculating the risk function. That is, the value of risk is the same under the following
permutations α1 · · ·αn, αn · · ·α1 and αi+1 · · ·αnα1 · · ·αi for i ∈ [n − 1]. We denote the
reverse of permutation τ by τR.

Lemma 2. Given two multisets of numbers X = {x1, · · · , xn} and Y = {y1, · · · , yn}.
Assume that x1 ≤ · · · ≤ xn. If y1 ≤ · · · ≤ yn, then

∑n

i=1
|xi − yn−i+1|

q has the maximum
value over all possible permutations of yi’s, where q ≥ 1.

Proof. Assume that y1, · · · , yn are not sorted in increasing order and
∑n

i=1
|xi − yn−i+1|

q

is maximized. Thus, there exists i, j such that i < j and yn−i+1 < yn−j+1. We call i and
j form an inversion in yi’s . As xi ≤ xj, we know that |xi − yn−i+1|

q + |xj − yn−j+1|
q ≤

|xj − yn−i+1|
q + |xi − yn−j+1|

q by lemma 1. Therefore the sum does not decrease after
swapping yn−i+1 and yn−j+1. By repeating the swapping step whenever there is an inver-
sion in yi’s, then we can eventually rearrange yi’s in increasing order without decreasing
the sum, since there are at most O(n2) inversions in a permutation of size n. 2

With lemma 2, we have the following theorem.

Theorem 2. If n numbers on each circle are given, say X and Y are the multisets
of numbers on the outer circle and the inner circle, respectively, then the arrangement
(πn(X), πn(Y )R), achieves the maximum risk. That is, rq(πn(X), πn(Y )R) ≥ rq(τX , τY )
for any permutation τX of X and τY of Y .

Proof. Since the numbers on the outer circle are permuted with πn(X), the risk con-
tributed from the outer circle is maximized and so is πn(Y )R to the inner circle. Assume
X = {x1, · · · , xn} with x1 ≤ · · · ≤ xn and Y = {y1, · · · , yn} with y1 ≤ · · · ≤ yn. Observe
that πn(X) = x1xn−1x3 · · ·xn−2x2xn and πn(Y )R = yny2yn−2 · · · y3yn−1y1. By lemma 2,
we have the risk contributed from the difference between circles is maximized since xi is
adjacent to yn−i+1. Therefore, we conclude that rq(πn(X), πn(Y )R) ≥ rq(τX , τY ) for every
permutation τX of X and τY of Y . 2

By the above, for convenience, we denote the maximum risk corresponding to partition
(X, Y ) by rq(X, Y ).

Corollary 1. Let Xi be the multiset of n numbers on the i-th circle, i = 1..k, then the
arrangement, permuting circle i with πn(Xi) if i is odd, else with πn(Xi)

R, achieves the
maximum risk.

Proof. By induction on k, assume the corollary is true up to k − 1. Similar to the proof
for theorem 2, the risks contributed from the first k − 1 circles and from the k-th circle
are maximized by induction basis. The risk contributed from the difference between the
(k − 1)-th and k-th circles is also maximized due to lemma 2. Thus the corollary is true
for k. 2

Let A be a multiset of kn elements and (A1, · · · , Ak) is a partition of A with each Ai

of the same size. We say a partition (A1, · · · , Ak) is maximum if rq(πn(A1), πn(A2)
R, · · · )

≥ rq(τ1, · · · , τk), for every arrangement (τ1, · · · , τk) of A. Note that corollary 1 implies
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Algorithm GreedyPartition({a1, · · · , a2n})
1. if n = 3 then return ({a1, a2n−2, a2n−1}, {a2, a3, a2n})
2. if n = 4 then return ({a1, a4, a2n−2, a2n−1}, {a2, a3, a2n−3, a2n})
3. (X ′, Y ′) =GreedyPartition({a3, · · · , a2n−2});
4. X ← Y ′ ∪ {a1, a2n−1}, Y ← X ′ ∪ {a2n, a2};
5. return (X, Y );

Figure 4: Our greedy algorithm

that once the partition (A1, · · · , Ak) of kn numbers is determined, the maximum possible
risk achieved by (A1, · · · , Ak) can be determined, so we can just focus on finding a partition
that yields the maximum risk.

3 Optimal arrangement for 2-dartboard problem

In this section, we show how to solve the 2-dartboard problem with a greedy method.
Consider a multiset {a1, · · · , a2n} with a1 ≤ · · · ≤ a2n. By theorem 2, we focus on
finding a maximum partition. But trying all possible

(

2n

n

)

partitions is inefficient. Here
we propose an efficient greedy method to obtain a maximum partition, as in figure 4.

Theorem 3. There is an efficient algorithm solving the 2-dartboard problem.

Proof. There are only
(

2

1

)

= 2 and
(

4

2

)

= 6 possible partitions when n = 1 and n = 2,
respectively, so we can find out the maximum partition efficiently by brute force if n ≤ 2.
When n ≥ 3, we claim that GreedyPartition algorithm gives a maximum partition.
The correctness of a greedy algorithm can be justified by checking the greedy choice
property and the property of optimal substructure. To prove the greedy choice property
of GreedyPartition, we need to show that there exists a maximum partition (X, Y )
with {a1, a2n−1} ⊆ X and {a2, a2n} ⊆ Y . To prove the optimal substructure property, we
need to show that there exists a maximum partition (X, Y ) such that (Y −{a2, a2n}, X−
{a1, a2n−1}) is also a maximum partition for the subproblem with instance {a3, · · · , a2n−2}.
The proof of correctness consists of 4 propositions. The greedy choice property is proved
by proposition 1 and 2 and the optimal substructure is proved by proposition 3 and 4.

Proposition 1. For n ≥ 3, there exists a maximum partition (X∗, Y ∗) such that a1 ∈ X∗

and a2n ∈ Y ∗.

Proof. Let (X, Y ) be another maximum partition. Let X = {x1, · · · , xn} with x1 ≤ · · · ≤
xn and Y = {y1, · · · , yn} with y1 ≤ · · · ≤ yn. By theorem 2, (x1xn−1x3 · · ·xn−2x2xn, yny2

yn−2 · · · y3yn−1y1) is an optimal arrangement. Without loss of generality, we can assume
x1 = a1. Note that a2n can be either yn or xn. If yn = a2n, then we’re done. Thus we
assume xn = a2n.

Since x1 = a1 and xn = a2n, we have x1 ≤ y1 and xn ≥ yn. Note if x1 = y1 or xn = yn,
then (Y, X) satisfies the proposition. Hence, we consider x1 < y1 and xn > yn from now
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on. Let l = min{i : xi ≥ yi} and r = min{j : xn−j+1 ≤ yn−j+1}. Let k = min(l, r). It is
clear that 1 < k < n, and for every i < k, xi < yi and xn−i+1 > yn−i+1. By lemma 1, we
have

|xi − yn−i+1|
q + |xn−i+1 − yi|

q ≤ |xi − xn−i+1|
q + |yi − yn−i+1|

q

for every i < k. Thus, swapping xi’s with yi’s and swapping xn−i+1’s with yn−i+1’s
respectively, for every i < k will not decrease the risk contributed from the difference
between circles. This kind of swapping is a basic step of our argument. The rest part of
proof is to decide the numbers we should swap. There are two possible cases:

• k = l < r: For k is odd, we swap xn−k+2, xk−2, xn−k+4, xk−4, · · · , xn−1, a1 with
yn−k+2, yk−2, yn−k+4, yk−4, · · · , yn−1, y1, respectively. We illustrate the swapping op-
eration in figure 5. For k is even, as in figure 6, we swap xn−k+2, xk−2, xn−k+4,
xk−4, · · · , x2, a2n with yn−k+2, yk−2, yn−k+4, yk−4, · · · , y2, yn, respectively.

a2n

x2

a1

xn−1

...

xn−k+2

xk

· · · · · ·

xn−k+1

xk−1

...

y1
yn−1

yn
y2

...

yk−1

yn−k+1

· · · · · ·
yk

yn−k+2

...

a2n

x2

y1

yn−1

...

yn−k+2

xk

· · · · · ·

xn−k+1

xk−1

...

a1
xn−1

yn
y2

...

yk−1

yn−k+1

· · · · · ·
yk

xn−k+2

...

Figure 5: The swapping operation when k = l and k is odd
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Figure 6: The swapping operation when k = l and k is even

The swapping operation exchanges the elements in the gray regions. The new ar-
rangement has a1 and a2n on different circles. As mentioned above, swapping the
numbers in the gray regions does not decrease the risk from the difference between
circles. Moreover, the illustrations indicate that the neighbors of a1, a2n, y1 and yn
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are not changed. Hence the only possibility that swapping may decrease the risk
is from the two pairs (xk, xn−k+2) and (yk, yn−k+2) which may have higher risk sum
than (xk, yn−k+2) and (yk, xn−k+2) do. However, since k = l, we have xk ≥ yk and
xn−k+2 > yn−k+2. By lemma 1, we have

|xk − xn−k+2|
q + |yk − yn−k+2|

q ≤ |xk − yn−k+2|
q + |yk − xn−k+2|

q .

Thus the risk function does not decrease after the swapping operation.

• k = r ≤ l: For k is odd, we swap xk−1, xn−k+3, xk−3, xn−k+5 · · · , x2, a2n with
yk−1, yn−k+3, yk−3, yn−k+5, · · · , y2, yn, respectively, as in figure 7. For k is even, we
swap xk−1, xn−k+3, xk−3, xn−k+5 · · · , xn−1, a1 with yk−1, yn−k+3, yk−3, yn−k+5, · · · , yn−1,
y1, respectively, as in figure 8.

a2n

x2

a1

xn−1

...
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xk

· · · · · ·

xn−k+1

xk−1
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· · · · · ·
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...
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· · · · · ·
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yn−k+2
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Figure 7: The swapping operation when k = r and k is odd
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...
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· · · · · ·
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Figure 8: The swapping operation when k = r and k is even

Similarly, the swapping operation puts a1 and a2n on different circles, and the only
possibility that swapping may decrease the risk is from the two pairs (xn−k+1, xk−1)
and (yn−k+1, yk−1) which may have higher risk sum than (xn−k+1, yk−1) and (yn−k+1,
xk−1) do. However, due to k = r, we have xn−k+1 ≤ yn−k+1 and xk−1 < yk−1. By
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lemma 1, we have

|xk−1 − xn−k+1|
q + |yk−1 − yn−k+1|

q ≤ |xk−1 − yn−k+1|
q + |yk−1 − xn−k+1|

q

Again, swapping does not decrease the risk function.

We conclude that there exists a maximum arrangement in the required form. 2

Proposition 2. For n ≥ 3, there exists a maximum partition (X∗, Y ∗) such that a1, a2n−1

∈ X∗ and a2, a2n ∈ Y ∗.

Proof. Let (X, Y ) be an arbitrary maximum partition. Let X = {x1, · · · , xn} with x1 ≤
· · · ≤ xn and Y = {y1, · · · , yn} with y1 ≤ · · · ≤ yn. By proposition 1, we can assume
x1 = a1 and yn = a2n. If a2 /∈ Y , then x2 = a2 since a2 is the second smallest element.
We obtain another arrangement with a2 on the inner circle by swapping a2 and y1, as in
the following illustration:

Before swapping After swapping
· · · a1 xn a2 xn−2 · · ·
· · · a2n y1 yn−1 y3 · · ·

· · · a1 xn y1 xn−2 · · ·
· · · a2n a2 yn−1 y3 · · ·

It is clear that a2 ≤ y1 and xn−2 ≤ a2n. By lemma 1, we have |a2n − y1|
q + |xn−2 − a2|

q ≤
|a2n − a2|

q + |xn−2 − y1|
q. Therefore the swapping operation does not decrease the risk

and the new arrangement is maximum. Hence, we can assume a2 ∈ Y from now on.
If a2n−1 /∈ X, then yn−1 = a2n−1 since a2n−1 is the second largest element. Similarly,

we can swap a2n−1 with xn to obtain an arrangement with a2n−1 on the outer circle:

Before swapping After swapping
· · · a1 xn x2 xn−2 · · ·
· · · a2n a2 a2n−1 y3 · · ·

· · · a1 a2n−1 x2 xn−2 · · ·
· · · a2n a2 xn y3 · · ·

It is clear that a2n−1 ≥ xn and y3 ≥ a1. By lemma 1, we have |a2n−1 − y3|
q + |xn − a1|

q ≤
|a2n−1 − a1|

q+|xn − y3|
q. The swapping operation does not decrease the risk. We conclude

that there exists a maximum partition satisfying the proposition. 2

Proposition 3. For n ≥ 3, there exists a maximum partition (X∗, Y ∗) such that a1, a2n−1,
a2n−2 ∈ X∗ and a2, a3, a2n ∈ Y ∗.

Proof. Let (X, Y ) be a maximum partition. Let X = {x1, · · · , xn} with x1 ≤ · · · ≤ xn

and Y = {y1, · · · , yn} with y1 ≤ · · · ≤ yn. By proposition 2, let x1 = a1, xn = a2n−1,
y1 = a2 and yn = a2n. There are 3 disjoint possible cases such that (X, Y ) does not satisfy
the proposition. We will reduce them to the required form case by case.

• Case 1: “a3 ∈ X and a2n−2 ∈ Y .” By theorem 2, we can assume x2 = a3 and
yn−1 = a2n−2. Note that this is the only case that (X, Y ) does not satisfy the
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proposition when n = 3. In this case, we can rotate the 2-by-2 block, which contains
a1, a2, a2n−1 and a2n, 180 degrees:

Before rotation After rotation
· · · xn−1 a1 a2n−1 a3 · · ·
· · · y2 a2n a2 a2n−2 · · ·

· · · xn−1 a2 a2n a3 · · ·
· · · y2 a2n−1 a1 a2n−2 · · ·

Since a1 ≤ a2 and a2n−2 ≥ xn−1, we have

|a1 − xn−1|
q + |a2 − a2n−2|

q ≤ |a1 − a2n−2|
q + |a2 − xn−1|

q .

Similarly, since a2n ≥ a2n−1 and a3 ≤ y2 we have

|a2n−1 − a3|
q + |a2n − y2|

q ≤ |a2n − a3|
q + |a2n−1 − y2|

q .

Therefore, the rotation operation does not decrease risk. It yields a maximum
partition as required.

• Case 2: “a3 ∈ X and a2n−2 ∈ X.” By theorem 2, we have x2 = a3 and xn−1 = a2n−2.
Moreover, we can assume that y2 > a3 and yn−1 < a2n−2, since if y2 = a3 or
yn−1 = a2n−2 then it reduces to case 1. Now we can swap a2n−1 with a2n as follows:

Before swapping After swapping
· · · a2n−2 a1 a2n−1 a3 · · ·
· · · y2 a2n a2 yn−1 · · ·

· · · a2n−2 a1 a2n a3 · · ·
· · · y2 a2n−1 a2 yn−1 · · ·

Since a2n−1 ≤ a2n and a3 < y2, we know the swapping operation does not decrease
risk. Since x2 = a3 < y2 and yn−1 < a2n−2 = xn−1, we can apply similar swapping
operations as in the proof of proposition 1 with k > 2. Depending on the values of
k and n, the adjustment will yield to one of the following arrangements:

Swapping upper-left with lower right Swapping upper-right with lower-left
· · · yn−1 a2 a2n a3 · · ·
· · · y2 a2n−1 a1 a2n−2 · · ·

· · · a2n−2 a1 a2n−1 y2 · · ·
· · · a3 a2n a2 yn−1 · · ·

However, both cases yield a maximum partition as required.

• Case 3: “a3 ∈ Y and a2n−2 ∈ Y .” In this case, we swap a1 and a2, and apply similar
operations as in proposition 1 to obtain an arrangement which yields a partition as
required. The analysis is analogous to case 2.

From the above, this completes the proof of this proposition. 2

Proposition 4. For n ≥ 4, there exists a maximum partition (X∗, Y ∗) such that a1, a4,
a2n−2, a2n−1 ∈ X∗ and a2, a3, a2n−3, a2n ∈ Y ∗. Moreover, for n > 4, suppose (X, Y ) is
a maximum partition satisfying proposition 2 for the sub-instance {a3, · · · , a2n−2}, then
(Y ∪ {a1, a2n−1}, X ∪ {a2, a2n}) is a maximum partition.
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Proof. First, we prove the “moreover” part. Since a1 ≤ a2 · · · ≤ a2n and (X, Y ) satisfies
proposition 2, the maximum arrangement corresponding to (Y ∪{a1, a2n−1}, X∪{a2, a2n})
is in the following form:

· · · a2n−2 a1 a2n−1 a4 · · ·
· · · a3 a2n a2 a2n−3 · · ·

Let ∆ = |a1 − a2n|
q+|a1 − a2n−1|

q+|a1 − a2n−2|
q+|a2 − a2n|

q+|a2 − a2n−1|
q+|a2 − a2n−3|

q

+ |a3 − a2n|
q + |a4 − a2n−1|

q−|a3 − a2n−3|
q−|a4 − a2n−2|

q. It is easy to check that rq(Y ∪
{a1, a2n−1}, X ∪ {a2, a2n}) = ∆ + rq(X, Y ).

By way of contradiction. Assume (Y ∪{a1, a2n−1}, X ∪{a2, a2n}) is not maximum. By
proposition 3, there exists a maximum arrangement in the following form:

· · · a2n−2 a1 a2n−1 x2 · · ·
· · · a3 a2n a2 yn−1 · · ·

Let (a1a2n−2 · · ·x2a2n−1, a2na3 · · · yn−1a2) be the arrangement above and ∆′ = |a1 − a2n|
q

+ |a1 − a2n−1|
q + |a1 − a2n−2|

q + |a2 − a2n|
q + |a2 − a2n−1|

q + |a2 − yn−1|
q + |a3 − a2n|

q +
|x2 − a2n−1|

q−|a3 − yn−1|
q−|x2 − a2n−2|

q. Again it is clear that rq(a1a2n−2 · · ·x2a2n−1, a2n

a3 · · · yn−1a2) = ∆′ + rq(a2n−2 · · ·x2, a3 · · ·yn−1). Since (X, Y ) is maximum for the sub-
problem {a3, · · · , a2n−2}, rq(X, Y ) ≥ rq(a2n−2 · · ·x2, a3 · · ·yn−1). It implies ∆ < ∆′. But

∆−∆′

= |a2 − a2n−3|
q + |a4 − a2n−1|

q − |a3 − a2n−3|
q − |a4 − a2n−2|

q

− |a2 − yn−1|
q − |x2 − a2n−1|

q + |a3 − yn−1|
q + |x2 − a2n−2|

q

≥ |a4 − a2n−1|
q − |a4 − a2n−2|

q − |x2 − a2n−1|
q + |x2 − a2n−2|

q

≥ 0

where the first inequality holds because a2 ≤ a3 and yn−1 ≤ a2n−3 and the second holds
because a4 ≤ x2 and a2n−2 ≤ a2n−1. A contradiction!

With the “moreover” part proved, the rest is to prove ({a1, a4, a6, a7}, {a2, a3, a5, a8}) is
maximum. Suppose not, then by proposition 3 and theorem 2, the only possible maximum
arrangement is (a1a6a5a7, a8a3a4a2). But rq(a1a6a5a7, a8a3a4a2)−rq(a1a6a4a7, a8a3a5a2) =
|a6 − a5|

q + |a7 − a5|
q − |a6 − a4|

q − |a7 − a4|
q + |a2 − a4|

q + |a3 − a4|
q − |a2 − a5|

q −
|a3 − a5|

q ≤ 0 due to a4 ≤ a5. A contradiction! Thus the proposition holds for n = 4 as
well. 2

4 Conclusion

We have resolved the 2-dartboard problem. However, it is still not clear how to solve the
k-dartboard problem when k > 2. It will be interesting to design an efficient algorithm
for it or prove it to be hard, say NP-hard, etc.
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