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Abstract

In this paper, we develop the Robinson-Schensted correspondence for the signed
Brauer algebra. The Robinson-Schensted correspondence gives the bijection be-
tween the set of signed Brauer diagrams d and the pairs of standard bi-domino
tableaux of shape λ = (λ1, λ2) with λ1 = (22f ), λ2 ∈ Γf,r where Γf,r = {λ|λ `
2(n − 2f) + |δr| whose 2−core is δr, δr = (r, r − 1, . . . , 1, 0)}, for fixed r ≥ 0 and
0 ≤ f ≤

[
n
2

]
. We also give the Robinson-Schensted for the signed Brauer algebra

using the vacillating tableau which gives the bijection between the set of signed
Brauer diagrams V n and the pairs of d-vacillating tableaux of shape λ ∈ Γf,r and
0 ≤ f ≤

[
n
2

]
. We derive the Knuth relations and the determinantal formula for

the signed Brauer algebra by using the Robinson-Schensted correspondence for the
standard bi-dominotableau whose core is δr, r ≥ n− 1.

1 Introduction

In [PK], it has been observed that the number of signed Brauer diagrams is the dimension
of the regular representation of the signed Brauer algebra, whereas by Artin-Wedderburn
structure theorem, the dimension of the regular representation is the sum of the squares
of the dimension of the irreducible representations of the signed Brauer algebra which are
indexed by partitions λ ∈ Γf,r where Γf,r = {λ|λ ` 2(n−2f)+|δr| whose 2−core is δr, δr =
(r, r− 1, . . . , 1, 0)}, for fixed r ≥ 0 and 0 ≤ f ≤

[
n
2

]
.

This motivated us to construct an explicit bijection between the set of signed Brauer
diagrams V n and the pairs of d-vacillating tableaux of shape λ ∈ Γf,r, for fixed r ≥ 0 and
0 ≤ f ≤

[
n
2

]
. We also construct the Robinson-Schensted correspondence for the signed

Brauer algebra which gives the bijection between the set of signed Brauer diagrams d and
the pairs of standard bi-dominotableaux of shape λ = (λ1, λ2) with λ1 = (22f), λ2 ∈ Γf,r,
for fixed r ≥ 0 and 0 ≤ f ≤

[
n
2

]
, which are generalisation of bitableaux introduced by
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Enyang [E], while constructing the cell modules for the Birman-Murakami-Wenzl algebras
and Brauer algebras with bases indexed by certain bitableau. We also give the method
for translating the vacillating tableau to the bi-domino tableau.

We also give the Knuth relations and the determinantal formula for the signed Brauer
algebra. Since the Brauer algebra is the subalgebra of the signed Brauer algebra, our
correspondence restricted to the Brauer algebra is the same as in [DS, HL, Ro1, Ro2, Su].
As a biproduct, we give the Knuth relations and the determinantal formula for the Brauer
algebra.

2 Preliminaries

We state the basic definitions and some known results which will be used in this paper.

Definition 2.1. [S] A sequence of non-negative integers λ = (λ1, λ2, . . .) is called a
partition of n, which is denoted by λ ` n, if

1. λi ≥ λi+1, for every i ≥ 1

2.
∞∑
i=1

λi = n

The λi are called the parts of λ.

Definition 2.2. [S] Suppose λ = (λ1, λ2, . . . , λl) ` n. The Young diagram of λ is an array
of n dots having l left justified rows with row i containing λi dots for 1 ≤ i ≤ l.

Example 2.3.

[λ] :=

∗ ∗ · · · ∗ λ1 nodes
∗ ∗ · · ∗ λ2 nodes
· · ·
· · ·
· · ·
∗ ∗ · · · ∗ λr nodes

Definition 2.4. [JK] Let α be a partition of n, denoted by α ` n. Then the (i, j)-hook of
α, denoted by Hα

i,j which is defined to be a Γ-shaped subset of diagram α which consists
of the (i, j)-node called the corner of the hook and all the nodes to the right of it in the
same row together with all the nodes lower down and in the same column as the corner.

The number hij of nodes of Hα
ij i.e.,

hij = αi − j + α′
j − i + 1

where α′
j = number of nodes in the jth column of α, is called the length of Hα

i,j, where
α = [α1, · · ·αk]. A hook of length q is called a q-hook. Then H[α] = (hij) is called the
hook graph of α.
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Definition 2.5. [R] We shall call the (i, j) node of λ, an r-node if and only if j − i ≡
r(mod2).

Definition 2.6. [R] A node (i, j) is said to be a (2, r) node if hij = 2m and the residue
of node (i, λi) in λ is r. i.e. λi − i ≡ r(mod2).

Definition 2.7. [R]. If we delete all the elements in the hook graph H[λ] not divisible
by 2, then the remaining elements,

hij = hr
ij(2), (r = 0, 1)

can be divided into disjoint sets whose (2, r) nodes constitute the diagram [λ]r2, (r = 0, 1)
with hook graph (hr

ij). The λ is written as (λ1, λ2) where the nodes in λ1 correspond to
(2, 0) nodes and the nodes in λ2 correspond to (2, 1) nodes.

Definition 2.8. [JK] Let λ ` n. An (i, j)-node of λ is said to be a rim node if there does
not exist any (i + 1, j + 1)-node of λ.

Definition 2.9. [JK] A 2-hook comprising of rim nodes is called a rim 2-hook.

Definition 2.10. [JK] A Young diagram λ which does not contain any 2-hook is called
2-core.

Definition 2.11. [JK] Each 2× 1 and 1× 2 rectangular boxes consisting of two nodes is
called as a domino.

Lemma 2.12. [PST] Let ρ ∈ Γ0,r, for fixed r ≥ 0. Then ρ can be associated to a pair
of partitions as in Definition 2.7, but when associated to a pair of partitions through the
map η we have, every domino in row i of ρ corresponds to a node of λi and every domino
in column j of ρ corresponds to a node of µ′

j.

Proposition 2.13. [PST] If x ∈ S̃n, the hyperoctahedral group of type Bn then P (x−1) =
Q(x) and Q(x−1) = P (x) where P (x), Q(x), P (x−1), Q(x−1) are the standard tableaux of
shape λ ∈ Γ0,r, for fixed r ≥ n− 1.

Proposition 2.14. [BI, PST] If x, y ∈ S̃n, the hyperoctahedral group of type Bn then

x
K
∼ y ⇐⇒ P (x) = P (y) where P (x), P (y) are the standard tableaux of shape λ ∈ Γ0,r,

for fixed r ≥ n− 1.

Definition 2.15. [PST] Let ρ ∈ Γ0,r, r ≥ 0. We define a map η : ρ 7→ (ρ(1), ρ(2)), λ `
l, µ ` m, l + m = n such that if r is even

ρ
(1)
i =

1

2
(ρi − (n− i)) if ρi > n− i

ρ
(2)
i =

∑

j

µ′

j≥i

1 where ρ
(2)′

j =
1

2
(ρ′

j − (n− j)) if ρ′
j > n− j
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if r is odd

ρ
(1)
i =

1

2
(ρi − (n− i) + 1) if ρi > n− i− 1

ρ
(2)
i =

∑

j

µ′

j≥i

1 where ρ
′(2)
j =

1

2
(ρ′

j − (n− j) + 1) if ρ′
j > n− j− 1

Proposition 2.16. [S] If λ = (λ1, λ2, . . . , λl) ` n then fλ = n!

∣∣∣∣
1

(λi − i + j)!

∣∣∣∣
l×l

.

2.1 The Brauer algebras

Definition 2.17. [Br] A Brauer graph is a graph on 2n vertices with n edges, vertices
being arranged in two rows each row consisting of n vertices and every vertex is the vertex
of only one edge.

1

Definition 2.18. [Br] Let Vn denote the set of Brauer graphs on 2n vertices. Let d, d′ ∈
Vn. The multiplication of two graphs is defined as follows:

1. Place d above d′.

2. join the ith lower vertex of d with ith upper vertex of d′

3. Let c be the resulting graph obtain without loops. Then ab = xrc, where r is the
number of loops, and x is a variable.

For example,

q

q

q q

q q

q q

q q

q

q

d =

q

q

q

q q q q q

d′ =

q

q

q q

q q

q q

q q

q

q

= c

q q q q

q

q

q q

q q

q q

q q

q

qq

q

q

q q q q q

q q q qd′d =

1

The Brauer algebra Dn(x), where x is an indeterminate, is the span of the diagrams
on n dots where the multiplication for the basis elements defined above. The dimension
of Dn(x) is (2n)!! = (2n− 1)(2n− 3) . . . 3.1.
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2.2 The signed Brauer algebras

Definition 2.19. [PK] A signed diagram is a Brauer graph in which every edge is labeled
by a + or a − sign.

µ
R

µ

1 2 3 4 5 6

1
′

2
′

3
′

4
′

5
′

6
′

1

Definition 2.20. [PK] Let Vn denote the set of all signed Brauer graphs on 2n vertices
with n signed edges.

Let Dn(x) denote the linear span of Vn where x is an indeterminate. The dimension
of Dn(x) is 2n(2n)!! = 2n(2n− 1)(2n− 3) . . . 3.1.

Let a, b ∈ V n. Since a, b are Brauer graphs, ab = xdc, the only thing we have to do is
to assign a direction for every edge. An edge α in the product ab will be labeled as a +
or a − sign according as the number of negative edges involved from a and b to make α
is even or odd.

A loop β is said to be a positive or a negative loop in ab according as the number of
negative edges involved in the loop β is even or odd. Then ab = x2d1+d2 , where d1 is the
number of positive loops and d2 is the number of negative loops. Then Dn(x) is a finite
dimensional algebra.

For example,

*

*

Y

1

* 1

Y

R

R

R

R

R
a =

b =

ba =

= x

1

Let Γ̃n,r =
[n
2
]⋃

f=0

Γf,r, where Γf,r = {λ|λ ` 2(n − 2f) + |δr| whose 2-core is δr, δr =

(r, r − 1, . . . , 1, 0)} for fixed r ≥ 0. Let B be the Bratteli diagram whose vertices on the

kth floor are members of Γ̃n,r. Note that 0th floor contains precisely the core δr. The ith

vertex on the kth floor and jth vertex on the (k− 1)th floor are joined whenever the latter
is obtained from the former by removing a rim 2-hook.

Definition 2.21. [PK] An up-down path p in B is defined as the sequence of partitions

in Γ̃n,r starting from the 0th floor to the nth floor. i.e. it can be considered as p =
[δr = λ0, λ1, . . . , λn] where λi is obtained from λi−1 either by adding or removing of only
one rim 2-hook.
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Let |Ω̃n| denote the number of up-down paths ending at the nth floor. |Ω̃n,λ| denotes
the number of up-down paths ending at λ in the nth floor.

The paths belong to Ω̃n,λ are called the d-vacillating tableau of shape λ, λ ∈ Γ̃n,r.

3 The Robinson-Schensted correspondence for the

signed Brauer algebras

3.1 The Robinson-Schensted correspondence using bi-domino

tableau

In this section, we define a Robinson-Schensted algorithm for the signed Brauer algebra
which gives the correspondence between the signed Brauer diagram d and the pairs of
standard bi-dominotableaux of shape λ = (λ1, λ2) with λ1 = (22f ), λ2 ∈ Γf,r, for fixed
r ≥ 0 and 0 ≤ f ≤

[
n
2

]
.

Definition 3.1. A domino in which all the nodes are filled with same number from the
set A = {1, 2, · · ·n} is defined as a tablet.

Definition 3.2. A bipartition ν of 2n will be an ordered pair of partitions (ν (1), ν(2))
where ν(1) = (22f) and ν(2) ∈ Γf,r, for fixed r ≥ 0.

Definition 3.3. A standard horizontal block is defined as the block consisting of two

horizontal tablets d(1), d(2) one above the other such that d(1) < d(2). i.e.
d(1) d(1)

d(2) d(2) .

We call d(1) as the first tablet of the horizontal block and d(2) as the second tablet of the
horizontal block. We call horizontal block as positive block.

Definition 3.4. A standard vertical block is defined as the block consisting of two vertical

tablets d(1), d(2) adjacent to each other such that d(1) < d(2). i.e.
d(1) d(2)

d(1) d(2) . We call d(1)

as the first tablet of the vertical block and d(2) as the second tablet of the vertical block.
We call vertical block as negative block.

Definition 3.5. A block tableau is a tableau consisting either of the horizontal block or
the vertical block.

Definition 3.6. A column standard block tableau is a block tableau if the head nodes of
the first tablets of each block are increasing read from top to bottom.

Definition 3.7. A standard tableau is a tableau consisting of tablets such that the head
nodes of the tablets are increasing along the rows and increasing along the columns.

Definition 3.8. Let ν(1), ν(2) be as in Definition 3.2. A ν-bi-dominotableau t is standard
if t(1) is the column standard block tableau and t(2) is the standard tableau. The collection
of standard ν-bi-dominotableaux will be denoted by Std(ν).
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Definition 3.9. Given a signed Brauer diagram d ∈ V n, we may associate a triple
[d1, d2, w] such that

d1 = { (i, d1(i), c(d1(i)))| the edge joining the vertices i and d1(i) in the first row with

sign c(d1(i))}

= {(i1, d1(i1), c(d1(i1))), (i2, d1(i2), c(d1(i2))), . . . , (if , d1(if ), c(d1(if )))}

d2 = { (j, d2(j), c(d2(j)))| the edge joining the vertices j and d2(j) in the second row

with sign c(d2(j))}

= {(i1, d2(i1), c(d2(i1))), (i2, d2(i2), c(d2(i2))), . . . , (if , d2(if ), c(d2(if )))}

w = { (k, w(k), c(w(k)))| the edge joining the vertex k in the first row and w(k) in

the second row with sign c(w(k))}

= {(i1, w(i1), c(w(i1))), (i2, w(i2), c(w(i2))), . . . , (in−2f , w(in−2f), c(w(in−2f)))}

such that i1 < i2 < . . . < in−2f where f is the number of horizontal edges in a row of d
and n − 2f is the number of vertical edges in d and c(x) = the sign of the edge joining
between x and its preimage, c(x) ∈ {±1}.

Theorem 3.10. The map d
R−S
←→ [(P1(d), P2(d)), (Q1(d), Q2(d))] provides a bijection be-

tween the set of signed Brauer diagrams d and the pairs of standard λ-bi-dominotableaux.

Proof. We first describe the map that, given a diagram d ∈ V n, produces a pair of bi-

dominotableaux. ′′d
R−S
←→ [(P1(d), P2(d)), (Q1(d), Q2(d))]′′

We construct a sequence of tableaux

∅ = P 0
1 , P 1

1 , . . . , P f
1

∅ = Q0
1, Q

1
1, . . . , Q

f
1

∅ = P 0
2 , P 1

2 , . . . , P n−2f
2

∅ = Q0
2, Q

1
2, . . . , Q

n−2f
2

where f is the number of horizontal edges, the edges joining the vertices (x1, x2) with the
sign c are inserted into P1(d), P2(d), Q1(d) and placed in Q2(d) so that shP k

1 =shQk
1 , for

all k and shP j
2 =shQj

2, for all j.
Begin with the tableau P 0

1 = Q0
1 = ∅ and P 0

2 = Q0
2 = t0, where t0 is the tableau of

shape δr, for fixed r ≥ 0 with entries 0’s. Then recursively define the standard tableau
by the following.

If (l′, m′) ∈ d2 then P k
1 = insertion of (l, m) in P k−1

1 .

If (l, m) ∈ d1 then Qk
1 = insertion of (l, m) in Qk−1

1 .

If (l, m′) ∈ w then P k
2 = insertion of m in P k−1

2 and place l in Qk−1
2 where the

insertion terminates in P k−1
2 when m is inserted.

The operations of insertion and placement will now be described.
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First we give the insertion on P1(d). Let (ik, d2(ik), c(d2(ik))) ∈ d2 and ik, d2(ik) be
the elements not in P1(d). To insert ik, d2(ik) with sign c(d2(ik)) into P1(d), we proceed
as follows.

If c(d2(ik)) = 1 then the positive block i.e.
ik ik

d2(ik) d2(ik)
is to be inserted into P1(d)

along the cells (i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1).

If c(d2(ik)) = −1 then the negative block i.e. βx =
ik d2(ik)
ik d2(ik)

is to be inserted into

P1(d) along the cells (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1).
Now place the block containing ik, d2(ik) below the block containing ik−1, d2(ik−1).

Insertion on Q1(d) is the same as in P1(d).
Insertion on P2(d) is the same as in the case of hyperoctahedral group. We give it

here for the sake of completion.
Algorithm BDT

Let w(x) be the element not in P2(d). To insert w(x) in P2(d), we proceed as follows.
If c(w(x)) = 1 then the horizontal tablet αw(x) = w(x) w(x) is to be inserted into

P2(d) along the cells (i, j) and (i, j +1). The (i, j +1)th cell of αx is called the head node
of αw(x) and the (i, j)th cell of αw(x) is called the tail node of αw(x).

If c(w(x)) = −1 then the vertical tablet βw(x) =
w(x)
w(x)

is to be inserted into P2(d)

along the cells (i, j) and (i+1, j). The (i, j)th cell of βw(x) is called the head node of βw(x)

and the (i + 1, j)th cell of βw(x) is called the tail node of βw(x).
If c(w(x)) = 1 then,

A Set row i := 1, head node of αw(x) := w(x) and tail node of αw(x) := w(x).

B If head node of αw(x) is less than some element of row i then

Let y1 be the smallest element of row i greater than
w(x) such that the north west most corner of the
domino containing y1 is in the cell (i, j) and y2 be
the element in the cell (i, j + 1).

y1 y2 i
j

2 cases arise,

(BI) tablet containing y1 is horizontal i.e., αy1
.

(y1 = y2)

y1 y1 i
j

(BII) tablet containing y1 is vertical i.e., βy1
.

(y1 6= y2)

y1 y2 i
y1

j

BI If the tablet containing y1 is αy1
(head node of αy1

is in the cell (i, j + 1) and
the tail node of αy1

is in the cell (i, j) ) i.e. y1 = y2 then, replace tablet αy1
by

tablet αw(x). Set tablet αw(x) := tablet αy1
, Row i := i + 1 and go to B.
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BII If the tablet containing y1 is βy1
. (i.e. head node of βy1

is in the cell (i, j) and
the tail node of βy1

is in the cell (i + 1, j) ) i.e. y1 6= y2 then

Let w1 be the element in the cell (i + 1, j + 1). y1 y2 i
y1 w1

j

2 cases arise

BIIa w1 = y2
y1 y2 i
y1 y2

j

BIIb w1 6= y2
y1 y2 i
y1 w1

j

BIIa If w1 = y2 then replace w1 by y1 and set tablet βw(x) = y2 and column
j := j+2 and go to B′. (B′ is the case as in B by replacing row by column,
column by row, positive tablet by negative tablet and negative tablet by
positive tablet.)

BIIb If w1 6= y2 then let w2 be the element in the cell (i+1, j+2). Replace w1

and w2 by y1 and y2 respectively, and set y1 := w1, y2 := w2, row i := i+1.
If x1 = x2 then set row i := i + 1 and go to B

else go to BII.

C Now head node of αw(x) is greater than every element of row i so place the tablet αw(x)

at the end of the row i and stop.

If c(w(x)) = −1 then, replace row by column, column by row, positive tablet by negative
tablet and negative tablet by positive tablet in the positive case.

The placement of the tablet of an element in a tableau is even easier than the insertion.
Suppose that Q2(d) is a partial tableau of shape µ and if k is greater than every element
of Q2(d), then place the tablet of k in Q2(d) along the cells where the insertion in P2(d)
terminates.

To prove ′′[(P1(d), P2(d)), (Q1(d), Q2(d))]
R−S
−→ d′′. We merely reverse the preceding

algorithm step by step. We begin by defining

[(P f
1 , P n−2f

2 ), (Qf
1 , Q

n−2f
2 )] = [(P1(d), P2(d)), (Q1(d), Q2(d))]

where f is the number of horizontal edges in a row of d and n − 2f is the number of
vertical edges in d.
Reverse Algorithm BDT. Assuming that P k

2 and Qk
2 has been constructed we will find

the pair (xk, w(xk), c(w(xk))) and [(P k−1
1 , P k−1

2 ), (Qk−1
1 , Qk−1

2 )].
Find the cells containing the tablet of xk in Qxk

2 .
2 cases arise,
† The cells containing tablet of xk in Qxk

2 are (i, j − 1) and (i, j)
‡ The cells containing tablet of xk in Qxk

2 are (i− 1, j) and (i, j)
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case † If the cells containing tablet of xk in Qxk

2 are (i, j − 1) and (i, j), then since this
is the largest element whose tablet appears in Qxk

2 , P i,j−1
2 , P i,j

2 must have been the
last element to be placed in the construction of P xk

2 .

We can now use the following procedure to delete P i,j−1
2 , P i,j

2 from P2(d). For
convenience, we assume the existence of an empty zeroth row above the first row of
P xk

2 and empty zeroth column to the left of the first column of P xk

2 .

Set x1 := P i,j−1
2 , x2 := P i,j

2 and erase P i,j−1
2 , P i,j

2 .

2 cases arise,

(A) x1 = x2

(B) x1 6= x2

case A If x1 = x2 then

case AI Set head node of αx := x2 and tail node of αx := x1 and Row
i := (i− 1)th row of P xk

2 .

case AII If Row i is not the zeroth row of P xk

2 then
Let y be the largest element of Row i smaller than w(x) which is in the
cell (i, l)
(2 cases arise,
(AIIa) the tablet containing y is αy

(AIIb) the tablet containing y is βy)

case AIIa If the tablet containing y is αy then
replace tablet αy by tablet αx. Set tablet αx := tablet αy, Row i := i−1
and goto AII

case AIIb If the tablet containing y is βy then
Let z be the element in the cell (i, l − 1) and replace tail node of βy

and z by tablet αx. Set x1 := z and x2 := tail node of βy and go to B.

case AIII Now the tablet αx has been removed from the first row, so set
w(xk) := x and c(w(xk)) = 1.

case B If x1 6= x2 then

2 cases arise,

(B1) the tablet containing x1 is βx1

(B2) the tablet containing x1 is αx1

case B1 If the tablet containing x1 is βx1
then

replace head node of βx1
by tail node of βx2

. Set tablet βw(x) := tablet
βx1

and Column j := j − 2 and go to A′II. (A′II is the case as in AII

by replacing row by column, column by row, positive tablet by negative
tablet and negative tablet by positive tablet.)

case B2 If the tablet containing x1 is αx1
then

replace the elements in the cell (i−1, j−2) and (i−1, j−1) by head node
of αx1

and tail node of βx2
respectively. Set x1 := the element in the cell
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(i− 1, j− 2), x2 := the element in the cell (i− 1, j− 1) and if x1 = x2 then
Row i := i− 1 and go to A else Column j = j − 1 and go to B.

case ‡ follows as in case † by replacing row by column, column by row, positive tablet
by negative tablet and negative tablet by positive tablet.

It is easy to see that P xk−1
2 is P xk

2 after the deletion process complete and Qxk−1
2 is Qxk

2

with the tablet of xk erased. Continuing in this way, we recover all the elements of w in
reverse order.

We are yet to find the elements in d1, d2.
We may recover the elements of d2 such that the pair (xk, d2(xk), c(d2(xk))) is the

block in the cells ((2k − 1, 1), (2k − 1, 2), (2k, 1), (2k, 2)) of P1(d), for every k and the
c(d2(xk)) = 1 (c(d2(xk)) = −1) if the block is positive block (negative block).

Similarly, we may recover the elements of d1 such that the pair (xk, d1(xk), c(d1(xk)))
is the element in the cells ((2k− 1, 1), (2k− 1, 2), (2k, 1), (2k, 2)) of Q1(d), for every k and
the c(d1(xk)) = 1 (c(d1(xk)) = −1) if the block is positive block (negative block).

Thus we recover the triple d1, d2, w from the pair of bi-dominotableaux

[(P1(d), P2(d)), (Q1(d), Q2(d))].

Hence [(P1(d), P2(d)), (Q1(d), Q2(d))]
R−S
−→ d which completes the proof.

Example 3.11. Let

µ

R

µ

1 2 3 4 5 6 7

1
′

2
′

3
′

4
′

5
′

6
′

7
′

d =

1

d1 = {(1, 3,−1), (4, 6, 1)} d2 = {(2′, 4′, 1), (3′, 6′,−1)} w = {(2, 1′,−1), (5, 7′, 1), (7, 5′, 1)}

P 0
1 = ∅ P 1

1 =
2 2
4 4

P 2
1 =

2 2
4 4
3 6
3 6

Q0
1 = ∅ Q1

1 =
1 3
1 3

Q2
1 =

1 3
1 3
4 4
6 6

For the core δr, r = 0, we have

P 0
2 = ∅ P 1

2 =
1
1

P 2
2 =

1 7 7
1

P 3
2 =

1 5 5
1 7 7
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Q0
2 = ∅ Q1

2 =
2
2

Q2
2 =

2 5 5
2

Q3
2 =

2 5 5
2 7 7

Thus

d
R−S
←→







2 2
4 4
3 6
3 6

,

1 3
1 3
4 4
6 6


 ,

(
1 5 5
1 7 7

,
2 5 5
2 7 7

)



For the core δr, r = (2, 1), the above diagram gives

P 0
2 =

0 0
0

P 1
2 =

0 0
0
1
1

P 2
2 =

0 0 7 7
0
1
1

P 3
2 =

0 0 5 5
0 7 7
1
1

Q0
2 =

0 0
0

Q1
2 =

0 0
0
2
2

Q2
2 =

0 0 5 5
0
2
2

Q3
2 =

0 0 5 5
0 7 7
2
2

Thus

d
R−S
←→







2 2
4 4
3 6
3 6

,

1 3
1 3
4 4
6 6


 ,




0 0 5 5
0 7 7
1
1

,

0 0 5 5
0 7 7
2
2







Remark 3.12. If d ∈ V n has no horizontal edges (d1 = d2 = ∅) then d is an element in the
hyperoctahedral group. Hence

P1(d) = ∅, P2(d) = P, Q1(d) = ∅, Q2(d) = Q

where P1(d), Q1(d) are the column standard block tableau and P2(d), Q2(d) are the stan-
dard tableau constructed by the above insertion and P, Q are the tableaux of shape
λ ∈ Γ0,r, for fixed r ≥ 0 constructed by the Robinson-Schensted correspondence for the
hyperoctahedral group of type Bn.

Corollary 3.13. The map d
R−S
←→ [(P1(d), P2(d)), (Q1(d), Q2(d))] provides a bijection

between the set of Brauer diagrams d and the pairs of standard bitableaux of shape
λ = (λ1, λ2) with λ1 = (2f), λ2 ∈ Γf where Γf = {λ|λ ` n− 2f} and 0 ≤ f ≤ [n

2
].
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Proof. Each signed Brauer diagram is a Brauer diagram if and only if each edge is labelled
by a positive sign and the proof follows by replacing each positive tablet x by the node x
in Theorem 3.10.

Definition 3.14. The flip of any signed Brauer diagram d is the diagram of d reflected
over its horizontal axis, which is denoted by flip(d).

Proposition 3.15. Let d ∈ V n. If d −→ [(P1(d), P2(d)), (Q1(d), Q2(d))]. Then

flip(d) −→ [(Q1(d), Q2(d)), (P1(d), P2(d))]

where P1(d), Q1(d) are the column standard block tableaux and P2(d), Q2(d) are the
standard tableaux constructed by the above insertion.

Proof. Suppose d ∈ V n, then we can recover the triple [d1, d2, w] by the Definition 3.9. By
the definition flip(d) has the triple [d2, d1, w

−1]. Hence the proof follows by Proposition
2.13.

3.2 The Robinson-Schensted correspondence using vacillating

tableau

In this section, we follow the Robinson-Schensted correspondence using vacillating tableau
for the Partition algebras in [HL], to construct the Robinson-Schensted correspondence
for the signed Brauer algebras.

Let us denote by T̃n(λ) the set of d-vacillating tableaux of shape λ and length n + 1.

Thus |Ω̃n,λ| = |T̃n(λ)|.
To give a combinatorial proof of

2n(2n)!! =
∑

λ∈eΓf,r

|Ω̃n,λ|
2 for fixed r ≥ 0 and 0 ≤ f ≤

[n

2

]

we find a bijection of the form

V n ←→
⊔

λ∈Γf,r ,r≥0

T̃n(λ)× T̃n(λ) for fixed r ≥ 0 and 0 ≤ f ≤
[n

2

]

by constructing a function that takes a signed Brauer diagram d ∈ V n and produces a
pair (Pλ, Qλ) of d-vacillating tableaux.

We will draw diagrams d ∈ V n using a standard representation as a single row repre-
sentation with 2n vertices labeled 1, 2, . . . , 2n, where we relabel vertex j ′ with the label
(2n − j + 1). We draw the edges of the standard representation of d ∈ V n in a specific
way such that: Connect the vertices i and j for i ≤ j if and only if i and j are related in
d. In this way, connect each vertex. We label each positive edge of the diagram d with
(2n −m + 1) where m is the right vertex and each negative edge of the diagram d with
−(2n−m + 1).

the electronic journal of combinatorics 14 (2007), #R49 13



Definition 3.16. The insertion sequence of a diagram d ∈ V n to be the sequence I (d,n) =
(I

(d,n)
j ) indexed by j in the sequence 1, 2, . . . , 2n, where

I
(d,n)
j =






a, if vertex j is left endpoint of positive edge a;
−a, if vertex j is left endpoint of negative edge a;

(a, ∅), if vertex j is right endpoint of either a positive or a negative edge a.

Thus the insertion sequence is
j 1 2 · · · 2n

I
(d,n)
j x1 x2 · · · x2n

Proposition 3.17. d ∈ V n is completely determined by its insertion sequence.

Proof. The proof is the same as in [HL], we give it here for the sake of completion.
Since the insertion sequence of a diagram d completely determines the edges, the proof
follows.

Note. I
(d,n)
j

d
←− T (j−1) means the domino containing I

(d,n)
j is deleted from T (j−1) and

I
(d,n)
j

R−S
−→ T (j−1) means the domino containing I

(d,n)
j is to be inserted in T (j−1) using

algorithm BDT in theorem 3.10.

For d ∈ V n with insertion sequence I (d,n) = (I
(d,n)
j ), we will produce a pair (Pλ, Qλ) of

d-vacillating tableaux.
Let T (0) be the tableau of shape δr with entries 0’s. Then recursively define standard

tableau T (j+1) by

T (j+1) =

{
I

(d,n)
j+1

R−S
−→ T (j) if I

(d,n)
j+1 = xk

I
(d,n)
j+1

d
←− T (j) if I

(d,n)
j+1 = (xk, ∅).

Let λ(i) be the shape of T (i). Define

Qλ = (δr, λ
(1), . . . , λ(n)) ∈ T̃n(λ) (3.1)

Pλ = (λ(2n), . . . , λ(n)) ∈ T̃n(λ) (3.2)

In this way, we associate a pair of d-vacillating tableaux (Pλ, Qλ) to d ∈ V n which we

denote by d
R−S
−→
V n

(Pλ, Qλ).

Theorem 3.18. The map d
R−S
←→
V n

(Pλ, Qλ) provides a bijection between the set of signed

Brauer diagrams V n and the pairs of d-vacillating tableaux of shape λ ∈ Γf,r, for fixed
r ≥ 0 and 0 ≤ f ≤

[
n
2

]
. i.e.

V n ←→
⊔

λ∈Γf,r ,r≥0

T̃n(λ)× T̃n(λ)
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Proof. The proof is same as in [HL], we give it here for the sake of completion. We prove

the theorem by constructing the inverse of d
R−S
−→
V n

(Pλ, Qλ). First we use Qλ followed by

Pλ in reverse order to construct the sequence λ(1), λ(2), . . . , λ(2n). We initialize T (2n) = ∅.

We now show how to construct T (i) and I
(d,n)
i+1 so that T (i+1) =

(
I

(d,n)
i+1

R−S
−→ T (i)

)
. If

λ(i+1)/λ(i) is a tablet a, and we use reverse algorithm BDT on the value in the tablet a to

produce T (i) and I
(d,n)
i+1 such that T (i+1) =

(
I

(d,n)
i+1

R−S
−→ T (i)

)
. Since we remove the value

in position a by using reverse Robinson-Schensted algorithm, we know that T (i) has shape
λ(i).

We then show how to construct T (i) and I
(d,n)
i+1 so that T (i+1) =

(
I

(d,n)
i+1

d
←− T (i)

)
.

If λ(i)/λ(i+1) is a tablet a. Let T (i) be the tableau of shape λ(i) with the same entries

as T (i+1) and having the entry 2n − i in tablet a. Let I
(d,n)
i+1 = 2n − i. At any given

step i, 2n − i is the largest domino added to the tableau thus far, so T (i) is standard.

Furthermore, T (i+1) =
(

I
(d,n)
i+1

d
←− T (i)

)
, since I

(d,n)
i+1 = 2n− i is already in the rim hook

and thus simply delete it.
This iterative process will produce I

(d,n)
2n , I

(d,n)
2n−1, . . . , I

(d,n)
1 which completely determines

d. By the way we have constructed d, we have d
R−S
←→
V n

(Pλ, Qλ).

Example 3.19. Let d be the diagram as in Example 3.11. Then the single row represen-
tation of d is

R jR

1 2 3 4 5 6 7 8 9 10 11 12 13 14

−1

2
−357

912

1

and the insertion sequence is

j 1 2 3 4 5 6 7 8

I
(d,n)
j 12 −1 (12, ∅) 9 7 (9, ∅) 5 (7, ∅)

j 9 10 11 12 13 14

I
(d,n)
j −3 (5, ∅) 2 (−3, ∅) (2, ∅) (−1, ∅)

For the core δr, r = 0, we have

j I
(d,n)
j T (j) j I

(d,n)
j T (j)

0 ∅ 14 (−1, ∅)
d
←− ∅
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j I
(d,n)
j T (j) j I

(d,n)
j T (j)

1 12
R−S
−→ 12 12 13 (2, ∅)

d
←−

1
1

2 −1
R−S
−→

1 12
1 12

12 (−3, ∅)
d
←−

1 2 2
1

3 (12, ∅)
d
←−

1
1

11 2
R−S
−→

1 2 2
1
3
3

4 9
R−S
−→

1 9 9
1

10 (5, ∅)
d
←−

1
1
3
3

5 7
R−S
−→

1 7 7
1 9 9

9 −3
R−S
−→

1 5 5
1
3
3

6 (9, ∅)
d
←−

1 7 7
1

8 (7, ∅)
d
←−

1 5 5
1

7 5
R−S
−→

1 5 5
1 7 7

7 5
R−S
−→

1 5 5
1 7 7

Hence d
R−S
−→
V n

(Pλ, Qλ) where

Pλ =


 ∅, , , , , , ,




Qλ =

(
∅, , , , , , ,

)

Remark 3.20.

1. Replace the domino as a node in the above procedure, we get the Robinson-Schensted
correspondence for the Brauer algebra, which gives the same vacillating tableau as
in [DS, HL, Ro1, Ro2, Su].
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2. We can pass from vacillating tableau to the bi-domino tableau by the following proce-
dure:

Let (Pλ, Qλ) be the vacillating tableau obtained using the Robinson-Schensted cor-
respondence for the vacillating tableau.

If a positive (negative) domino is added at the ith step in Pλ then put i in that
domino. If a domino is removed at the ith step in a vacillating tableau Pλ then
perform reverse algorithm BDT in Theorem 3.10. A number j with positive or
negative sign is uninserted.

Now add the positive or negative domino block in P1(d). The final tableau obtained
using the above procedure is P1(d). Similarly, construct Q1(d) and Q2(d) using Qλ.

4 Applications of Robinson-Schensted

correspondence for the signed Brauer

algebra using bidomino tableau

4.1 The Knuth relations

In this section, we derive the Knuth relations for the signed Brauer algebra by using the
Robinson-Schensted correspondence for the standard bi-dominotableau whose 2-core is
δr, r ≥ n− 1.

Definition 4.1. A generalized signed permutation is a two-line array of integers

x =

(
i1 i2 . . . in

εx1
x1 εx2

x2 . . . εxn
xn

)

where εxi
∈ {±1}, ∀i whose column are in lexicographic order, with the top entry taking

precedence and xl 6= xm, ∀ l, m. The set of all generalized signed permutations is denoted
by GSP(n)

Proposition 4.2. If x ∈ GSP(n) then P (x−1) = Q(x) and Q(x−1) = P (x) where P (x),
P (x−1), Q(x), Q(x−1) be the standard tableaux of shape λ ∈ Γ0,r, for fixed r ≥ n− 1

Proof. The proof is as in Proposition 2.13.

Definition 4.3. The generalized signed permutations x and y differ by a Knuth relation

of first kind, denoted by x
e1
∼ y if

x = εx1
x1 . . . εxi−1

xi−1εxi
xiεxi+1

xi+1 . . . εxn
xn and

y = εx1
x1 . . . εxi−1

xi−1εxi+1
xi+1εxi

xi . . . εxn
xn

such that xi < xi−1 < xi+1 and εxi−1
= εxi

= εxi+1
.

They differ by a Knuth relation of second kind, denoted by x
e2
∼ y if
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x = εx1
x1 . . . εxi

xiεxi+1
xi+1εxi−1

xi−1 . . . εxn
xn and

y = εx1
x1 . . . εxi+1

xi+1εxi
xiεxi−1

xi−1 . . . εxn
xn

such that xi < xi−1 < xi+1 and εxi−1
= εxi

= εxi+1
.

They differ by a Knuth relation of third kind, denoted by x
e3
∼ y if

x = εx1
x1 . . . εxi

xiεxi+1
xi+1 . . . εxn

xn and y = εx1
x1 . . . εxi+1

xi+1εxi
xi . . . εxn

xn

such that εxi
= −εxi+1

.

The two permutations are Knuth equivalent, denoted by x
eK
∼ y if there is a sequence

of permutations such that

x = z1
i
∼ z2

j
∼ · · ·

l
∼ zk = y where i, j, . . . , l ∈ {1̃, 2̃, 3̃}.

Definition 4.4. If P is a tableau of shape λ ∈ Γ0,r, r ≥ n− 1, then the domino word πP

of P is the signed permutation

πP = (−Cm)(−Cm−1) . . . (−C1)(Rl)(Rl−1) . . . (R1)

where R1, . . . , Rl are the rows having horizontal dominoes and C1, . . . , Cm are the columns
having vertical dominoes.

For example,

P =

0 0 0 0 0 1 1 5 5 7 7
0 0 0 0 8 8
0 0 0
0 0 9
0 3 9
2 3
2 6
4 6
4

then the domino word is πP = (−9)(−3)(−6)(−2)(−4)(8)(1)(5)(7)

Proposition 4.5. If x, y ∈ GSP(n) then x
eK
∼ y ⇐⇒ P (x) = P (y) where P (x), P (y) are

the standard tableaux of shape λ ∈ Γ0,r, for fixed r ≥ n − 1 obtained using Algorithm
BDT in theorem 3.10.

Proof. The proof is as in Proposition 2.14. We give it for the sake of completion.
We prove as in the case of symmetric group.

x = εx1
x1 . . . εxi−1

xi−1εxi
xiεxi+1

xi+1 . . . εxn
xn

y = εx1
x1 . . . εxi−1

xi−1εxi+1
xi+1εxi

xi . . . εxn
xn.
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Since all elements inserted before εxi−2
xi−2 are same, it suffices to prove that for any partial

tableau inserting εxi−1
xi−1, εxi

xi, εxi+1
xi+1 and εxi−1

xi−1, εxi+1
xi+1, εxi

xi in the respective
order yield the same tableau. Suppose εxi−1

= εxi
= εxi+1

= +1.
If we denote by Ixi

(P ) the tableau rewriting from inserting εxi
xi in P , we have to

prove

Ixi−1
Ixi

Ixi+1
(P ) = Ixi−1

Ixi+1
Ixi

(P ) (4.1)

The proof is same as in the case of symmetric group, we give for the sake of completion.
We prove this claim by induction on the number of rows in P . For P = δr, both sides of
equation 4.1 yields the same tableau.

× × · · · × xi xi xi−1 xi−1

× × · · · xi+1 xi+1

× · · · ×
× × ×
× ×
×

Now assume that P has r rows. Suppose the tablet xi−1 xi−1 enters in the first

row along kth and (k + 1)th column by replacing x′
i−1 x′

i−1 , we examine both sides

of the equation 4.1. Assume that xi xi is inserted next. Since xi < xi−1, xi xi

replaces some x′
i x′

i from columns j, j + 1 with j < k. Also x′
i < x′

i−1. This follows
from Lemma 2.12.

Similarly pi+1 > pi that xi+1 xi+1 replaces some element x′
i+1 x′

i+1 from the
columns l, l + 1 with l > k and x′

i+1 > x′
i. Considering the right hand side of the

equation 4.1, we get that xi+1 xi+1 and xi xi if inserted in this respective order,

replace the same elements x′
i+1 x′

i+1 and x′
i x′

i from the same columns l, l + 1 and
j, j + 1.

Therefore the first rows of two tableau obtained are the same. Moreover the rest of
tableau is obtained by inserting x′

i−1, x
′
i, x

′
i+1 and x′

i−1, x
′
i+1, x

′
i in a tableau of a strictly

smaller number of rows in this respective order. Since the same order x′
i < x′

i−1 < x′
i+1

still holds we appeal to induction to asset that the rest of the tableau are also the same.
Suppose εxi−1

= εxi
= εxi+1

= −1, then the proof follows by replacing rows by columns
in the above case. The argument is the same since positive dominoes insertion along the
rows is replaced by negative dominoes insertions along columns.

Similar argument like that of Knuth relation of first kind works for the Knuth relation
of third kind. This completes one half of the proof.

We will show that π
1
∼ πP .

Since Knuth relations are transitive, the converse of the theorem follows.
We induct on n. The base case is trivial for n = 1, π = πP .
Now assume that x is the last element of π, that is, π is written in one line notation

as π = . . . x if x > 0.
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On π = π′x, where π′ is sequence of n− 1 elements. Therefore, by induction we have

π′ 1
∼ πP ′ where P ′ = P (π′). Thus it suffices to prove that πP ′x

1
∼ πP .

Let R1, . . . , Rl, C1, . . . , Cm be rows and columns of P ′. Assume R1 = p1 · · · pk. If the
domino x enters P ′ in column j, j + 1, then p1 < . . . < pj−1 < x < pj < . . . < pk.

Therefore, we have the following Knuth operation

πP ′x = (−Cm) . . . (−C1)(Rl) . . . (R2)p1 . . . pkx
1
∼ (−Cm) . . . (−C1)(Rl) . . . (R2)p1 . . . pk−1xpk

...
1
∼ (−Cm) . . . (−C1)(Rl) . . . (R2)p1 . . . pj−1pjxpj+1 . . . pk

2
∼ (−Cm) . . . (−C1)(Rl) . . . (R2)p1 . . . pjpj−1xpj+1 . . . pk

...
2
∼ (−Cm) . . . (−C1)(Rl) . . . (R2)pjp1 . . . pj−1xpj+1 . . . pk

Therefore the Knuth relation generate exactly the first row of P (π). Also the element
replaced by x from the first row comes at the end of R2. The above sequence of operations
can be repeated for each row to get the same tableau. The other case is done by replacing
row by column. Since the Knuth relation of third kind does not change the relative
ordering of elements within the residues of the P -tableau remain the same.

Definition 4.6. The generalized signed permutations x and y differ by a dual Knuth

relation of first kind, denoted by x
e1∗
∼ y if

x = εx1
x1 . . . εxi

xi . . . εxi−1
xi−1 . . . εxi+1

xi+1 . . . εxn
xn and

y = εx1
x1 . . . εxi+1

xi+1 . . . εxi−1
xi−1 . . . εxi

xi . . . εxn
xn

such that xi < xi−1 < xi+1 and εxi−1
= εxi

= εxi+1
.

They differ by a Knuth relation of second kind, denoted by x
e2∗
∼ y if

x = εx1
x1 . . . εxi−1

xi−1 . . . εxi+1
xi+1 . . . εxi

xi . . . εxn
xn and

y = εx1
x1 . . . εxi

xi . . . εxi+1
xi+1 . . . εxi−1

xi−1 . . . εxn
xn

such that xi < xi−1 < xi+1 and εxi−1
= εxi

= εxi+1
.

They differ by a Knuth relation of third kind, denoted by x
e3∗
∼ y if

x = εx1
x1 . . . εxi

xi . . . εxi+1
xi+1 . . . εxn

xn and

y = εx1
x1 . . . εxi+1

xi+1 . . . εxi
xi . . . εxn

xn

such that εxi
= −εxi+1

.

The two permutations are Knuth equivalent, denoted by x
eK∗

∼ y if there is a sequence
of permutations such that

x = z1
i∗

∼ z2
j∗

∼ · · ·
l∗

∼ zk = y where i, j, . . . , l ∈ {1̃, 2̃, 3̃}.
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Lemma 4.7. If x, y ∈ GSP(n) then x
eK
∼ y ⇐⇒ x−1

eK∗

∼ y−1.

Proof. The proof follows from the Definitions 4.3 and 4.6.

Proposition 4.8. If x, y ∈ GSP(n) then x
eK∗

∼ y ⇐⇒ Q(x) = Q(y) where Q(x), Q(y) are
the standard tableaux of shape λ ∈ Γ0,r, for fixed r ≥ n − 1 obtained using Algorithm
BDT in theorem 3.10.

Proof. The proof is as in the case of symmetric group.

x
eK∗

∼ y ⇐⇒ x−1
eK
∼ y−1 (Lemma 4.7)

⇐⇒ P (x−1) = P (y−1) (Proposition 4.5)
⇐⇒ Q(x) = Q(y) (Proposition 4.2).

Definition 4.9. Let d, d′ ∈ V n. Then d and d′ are Knuth equivalent, denoted by d
K
∼ d′

if the following condition holds.

1. d2 = d′
2.

2. w
eK
∼ w′ where w, w′ ∈ GSP(t), t is the number of vertical edges in d.

Proposition 4.10. Let d, d′ ∈ V n. Then d
K
∼ d′ ⇐⇒ (P1(d), P2(d)) = (P1(d

′), P2(d
′))

where P1(d), P1(d
′) are the column standard block tableaux of shape λ1 = (22f ) and

P2(d), P2(d
′) are the standard tableaux of shape λ2 ∈ Γf,r, for fixed r ≥ n − 1 and

0 ≤ f ≤
[n

2

]
.

Proof. The proof follows from the Definition 4.9 and by the Proposition 4.5

Corollary 4.11. Let d and d′ be any two Brauer diagrams in V n having only positive

edges. Then d
K
∼ d′ ⇐⇒ (P1(d), P2(d)) = (P1(d

′), P2(d
′)) where P1(d), P1(d

′) are the
column standard tableaux of shape λ1 = (2f) and P2(d), P2(d

′) are the standard tableaux
of shape λ2, λ2 ∈ Γf where Γf = {λ|λ ` n− 2f} and 0 ≤ f ≤ [n

2
].

Proof. The proof follows by the above proposition and the corollary 3.13.

Definition 4.12. Let d, d′ ∈ V n. Then d and d′ are dual Knuth equivalent, denoted by

d
K∗

∼ d′ if the following condition holds.

1. d1 = d′
1.

2. w
eK∗

∼ w′ where w, w′ ∈ GSP(t), t is the number of vertical edges in d.

Proposition 4.13. Let d, d′ ∈ V n. Then d
K∗

∼ d′ ⇐⇒ (Q1(d), Q2(d)) = (Q1(d
′), Q2(d

′))
where Q1(d), Q1(d

′) are the column standard block tableaux of shape λ1 = (22f ) and
Q2(d), Q2(d

′) are the standard tableaux of shape λ2 ∈ Γf,r, for fixed r ≥ n − 1 and

0 ≤ f ≤
[n

2

]
.
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Proof. The proof follows from the Definition 4.12 and by the Proposition 4.8

Corollary 4.14. Let d and d′ be any two Brauer diagrams V n having only positive edges.

Then d
K∗

∼ d′ ⇐⇒ (Q1(d), Q2(d)) = (Q1(d
′), Q2(d

′)) where Q1(d), Q1(d
′) are the column

standard tableaux of shape λ1 = (2f) and Q2(d), Q2(d
′) are the standard tableaux of

shape λ2, λ2 ∈ Γf where Γf = {λ|λ ` n− 2f} and 0 ≤ f ≤ [n
2
].

Proof. The proof follows by the above proposition and the corollary 3.13.

4.2 The Determinantal Formula

Set
1

r!
= 0 if r < 0.

Lemma 4.15.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

211!

1

222!

1

233!
. . .

1

2ff !
1

200!

1

211!

1

222!
. . .

1

2f−1(f − 1)!

0
1

200!

1

211!
. . .

1

2f−2(f − 2)!
...

...
...

...
...

0 0 0 . . .
1

211!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2ff !

Proof. Let Af =




1

211!

1

222!

1

233!
. . .

1

2ff !
1

200!

1

211!

1

222!
. . .

1

2f−1(f − 1)!

0
1

200!

1

211!
. . .

1

2f−2(f − 2)!
...

...
...

...
...

0 0 0 . . .
1

211!




. We prove the lemma by

induction.

|Af | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

211!

1

222!

1

233!
. . .

1

2ff !
1

200!

1

211!

1

222!
. . .

1

2f−1(f − 1)!

0
1

200!

1

211!
. . .

1

2f−2(f − 2)!
...

...
...

...
...

0 0 0 . . .
1

211!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
1

211!
|Af−1| −

1

222!
|Af−2|+ · · ·+

(−1)f

2f−1(f − 1)!
|A1|+

(−1)f+1

2ff !

=
1

211!

1

2f−1(f − 1)!
−

1

222!

1

2f−2(f − 2)!
+ · · ·+

(−1)f

2f−1(f − 1)!

1

211!

+
(−1)f+1

2ff !
(by induction)

=
1

2f1!(f − 1)!
−

1

2f2!(f − 2)!
+ · · ·+

(−1)f

2f(f − 1)!1!
+

(−1)f+1

2ff !

=
1

2f

[
1

1!(f − 1)!
−

1

2!(f − 2)!
+ · · ·+

(−1)f

(f − 1)!1!
+

(−1)f+1

f !

]

=
1

2ff !

Proposition 4.16. If λ = (22f) then

g(λ) = 2f(2f)!! = 2f(2f)!

∣∣∣∣
1

2(λi−i+j−1)(λi − i + j − 1)!

∣∣∣∣
f×f

where the determinant is f × f and g(λ) is the number of column standard block tableau
of shape λ = (22f ).

Proof. Let 1, 2, . . . , 2f be the 2f digits. Split the digits into f pairs (il, jl), l = 1, 2, . . . , f
by choosing the pairs such that for l, m = 1, 2, . . . , f and r = 1, 2, . . . , f − 1,

ir < ir+1, il < jl, il 6= jm for l 6= m, jl 6= jm for l 6= m.

Number of such choices is (2f)!! and the number of standard bidomino of shape (22)
is 2. i.e. The number of row standard bi-dominotableau of shape λ = (22f ) is 2f(2f)!!.

It suffices to prove (2f)!! = (2f)!

∣∣∣∣
1

2(λi−i+j−1)(λi − i + j − 1)!

∣∣∣∣
f×f

.

i.e.

∣∣∣∣
1

2(λi−i+j−1)(λi − i + j − 1)!

∣∣∣∣
f×f

=
(2f)!!

(2f)!
=

1

2ff !
.
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Since λi = 2, ∀ 1 ≤ i ≤ f ,
∣∣∣∣

1

2(λi−i+j−1)(λi − i + j − 1)!

∣∣∣∣
f×f

=

∣∣∣∣
1

2(j−i+1)(j − i + 1)!

∣∣∣∣
f×f

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

211!

1

222!

1

233!
. . .

1

2ff !
1

200!

1

211!

1

222!
. . .

1

2f−1(f − 1)!

0
1

200!

1

211!
. . .

1

2f−2(f − 2)!
...

...
...

...
...

0 0 0 . . .
1

211!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2ff !
(by Lemma 4.15).

Theorem 4.17. (Determinantal Formula) If ρ = (λ, µ) with λ = (22f), µ ∈ Γf,r, for fixed

r ≥ 0 where 0 ≤ f ≤
[n

2

]
then

hρ = 2fn!

∣∣∣∣
1

2(λi−i+j−1)(λi − i + j − 1)!

∣∣∣∣
f×f

∣∣∣∣
1

(µ
(1)
i − i + j)!

∣∣∣∣
l×l∣∣∣∣

1

(µ
(2)
i − i + j)!

∣∣∣∣
n−2f−l×n−2f−l

where µ(1) ` l and µ(2) ` n−2f−l as in Definition 2.15 and hρ is the standard ρ-bi-domino
tableau.

Proof. Let µ ∈ Γf,r, for fixed r ≥ 0 where 0 ≤ f ≤
[n

2

]
then by Definition 2.15,

µ = (µ(1), µ(2)) where µ(1) ` l and µ(2) ` n− 2f − l.

hρ =

(
n

2f

)
g(λ)fµ

=

(
n

2f

)
2f(2f)!

∣∣∣∣
1

2(λi−i+j−1)(λi − i + j − 1)!

∣∣∣∣
f×f

(n− 2f)!

∣∣∣∣
1

(µ
(1)
i − i + j)!

∣∣∣∣
l×l∣∣∣∣

1

(µ
(2)
i − i + j)!

∣∣∣∣
n−2f−l×n−2f−l

(by Proposition 2.16 and Proposition 4.16)

= 2fn!

∣∣∣∣
1

2(λi−i+j−1)(λi − i + j − 1)!

∣∣∣∣
f×f

∣∣∣∣
1

(µ
(1)
i − i + j)!

∣∣∣∣
l×l∣∣∣∣

1

(µ
(2)
i − i + j)!

∣∣∣∣
n−2f−l×n−2f−l
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Corollary 4.18. If ρ = (λ, µ) with λ = (2f), µ ∈ Γf where Γf = {λ|λ ` n − 2f} and
0 ≤ f ≤ [n

2
] then

hρ = n!

∣∣∣∣
1

2(λi−i+j−1)(λi − i + j − 1)!

∣∣∣∣
f×f

∣∣∣∣
1

(µi − i + j)!

∣∣∣∣
n−2f×n−2f

where hρ is the standard ρ-bi tableau.

Proof. The proof follows by the above theorem and the corollary 3.13.
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