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Abstract

Let G be a finite abelian group with exponent m, and let S be a sequence
of elements in G. Let f(S) denote the number of elements in G which can be
expressed as the sum over a nonempty subsequence of S. In this paper, we show
that, if |S| = m and S contains no nonempty subsequence with zero sum, then
f(S) ≥ 2m − 1. This answers an open question formulated by Gao and Leader.
They proved the same result with the restriction (m, 6) = 1.

1 Introduction

Let G be a finite abelian group of order n and exponent m, additively written. Let
S = (a1, . . . , ak) be a sequence of elements in G. By

∑
(S) we denote the set that consists

of all elements of G that can be expressed as the sum over a nonempty subsequence of S,
i.e.,

∑

(S) = {ai1 + . . . + ail : 1 ≤ i1 < . . . < il ≤ k}.

We write f(S) = |
∑

(S)|. If 0 6∈
∑

(S), we call S a zero-sum free sequence.

Let
∑

n(S) denote the set that consists of all elements in G which can be expressed
as the sum over a subsequence of S of length n, i.e.,

∑

n(S) = {ai1 + . . . + ain : 1 ≤ i1 < . . . < in ≤ k}.

If U is a subsequence of S, we write SU−1 for the subsequence obtained by deleting the
terms of U from S; if U and V are disjoint subsequences of S, we write UV for the subse-
quence obtained by adjoining the terms of U to V ; if U is a subsequence of S, we write U |S.
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Let D(G) be the Davenport’s constant of G, i.e., the smallest integer d such that every
sequence S of elements in G with |S| ≥ d satisfies 0 ∈

∑
(S); let s(G) be the smallest

integer t such that every sequence of elements in G with |S| ≥ t satisfies 0 ∈
∑

n(S).
In 1961, Erdős, Ginzburg and Ziv proved s(G) ≤ 2n − 1 for any finite abelian group of
order n. This result is now well known as the Erdős-Ginzburg-Ziv theorem. In 1996, Gao
proved s(G) = D(G) + n − 1 for any finite abelian group of order n. In 1999, Bollobás
and Leader investigated the problem of determining the minimal cardinality of |

∑

n(S)|
in terms of the length of |S| assuming that 0 6∈

∑

n(S).

For every positive integer r in the interval {1, . . . , D(G) − 1}, where D(G) is the
Davenport constant of G, let

fG(r) = minS,|S|=r|
∑

(S)|,

where S runs over all zero-sum free sequences of r elements in G.
In 2006, Gao and Leader proved the following result:

Theorem A.[8] Let S be a sequence of elements in a finite abelian group of order n.
Suppose |S| ≥ n and 0 6∈

∑

n(S). Set r = |S| − n + 1. Then, |
∑

n(S)| ≥ fG(r). The
equality can be achieved when we take S = (0, . . . , 0

︸ ︷︷ ︸

n−1

, a1, . . . , ar), where (a1, . . . , ar) is a

zero-sum free sequence in G with f((a1, . . . , ar)) = fG(r).

If 1 ≤ r < m, it is easy to see that fG(r) = r, where m is the exponent of G. However,
when r ≥ m, the problem of determining fG(r) becomes difficult. Gao and Leader[8]
proved fG(m) = 2m − 1 with the restriction (m, 6) = 1. They also conjectured the same
result without the restriction (m, 6) = 1. In this paper we show that fG(m) = 2m − 1
still holds without that restriction.

Theorem 1. If G is a finite non-cyclic abelian group of exponent m, then fG(m) = 2m−1.

Corollary 1 Let G be a finite abelian group of order n and exponent m, and let S
be a sequence of elements in G with |S| = n + m − 1. Then, either 0 ∈

∑

n(S) or
|
∑

n(S)| ≥ 2m − 1.

Proof. It follows from Theorem A and Theorem 1 immediately. �

2 Proof of Theorem 1

Lemma 2. [2] Let G be an abelian group, and let S be a zero-sum free sequence of elements
in G. Let S1, . . . , St be disjoint nonempty subsequences of S. Then, f(S) ≥

∑t

i=1 f(Si).

Lemma 3. [3] Let S be a zero-sum free sequence consisting of three distinct elements in
an abelian group G. If no element in S has order 2, then f(S) ≥ 6.
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Lemma 4. Let S be a zero-sum free sequence in G. If there is some element g in S with
order two, then |

∑
(S)| ≥ 2|S| − 1.

Proof. Set k = |S|. Suppose S = (g, a1, . . . , ak−1). Since S is zero-sum free and g = −g,
we have that

a1, a1 + a2, . . . , a1 + a2 + . . . + ak−1

g, g + a1, g + a1 + a2, . . . , g + a1 + a2 + . . . + ak−1

are 2k − 1 pairwise distinct elements in
∑

(S). Therefore,

|
∑

(S)| ≥ 2k − 1.

�

Lemma 5. Let S = S1S2 be a zero-sum free sequence in G. Let H = 〈S1〉 be the subgroup
of G generated by S1. Let φ be the natural homomorphism from G onto G/H. Set
h = |φ({0}

⋃∑
(S2))| = |({0}

⋃∑
(S2)) + H/H|. Then

f(S) ≥ hf(S1) + h − 1.

Proof. Set A = {0}
⋃∑

(S1). Since S is zero-sum free, we infer that 0 6∈
∑

(S1). There-
fore,

|A| = 1 + f(S1).

Suppose

φ({0}
⋃∑

(S2)) = {φ(a0), φ(a1), . . . , φ(ah−1)},

where a0 = 0 and ai ∈
∑

(S2) for i = 1, . . . , h − 1. Since A ⊆ H = 〈S1〉, we infer that

A \ {0}, a1 + A, . . . , ah−1 + A

are pairwise disjoint subsets of
∑

(S). Therefore

f(S) ≥ |A \ {0}| + |a1 + A| + . . . + |ah−1 + A|

= hf(S1) + h − 1.

�

For every a ∈ G, write va(S) for the number of occurrences of a in S.

Lemma 6. Let S be a zero-sum free sequence in G. Choose g ∈ G so that vg(S) =

maxa∈S{va(S)}. Then f(S) ≥ 2|S| − 1 or vg(S) ≥ 4|S|−f(S)
6

.
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Proof. By Lemma 4 we may assume that S contains no element with order 2.

Let l ≥ 0 be the maximal integer t such that S contains t disjoint subsets each
consisting of three distinct elements. Let A1, . . . , Al be l disjoint 3-subsets of S such that
the residual sequence T = S(A1 . . . Al)

−1 contains as many distinct elements as possible.
Clearly, T can be written in the form

T = (a, . . . , a
︸ ︷︷ ︸

u

, b, . . . , b
︸ ︷︷ ︸

v

),

where u ≥ v ≥ 0 and u + v = |T |.

We distinguish two cases:
Case 1. u ≤ 1. If v = 0, then l = |S|−u

3
. Since S contains no element with order 2, by

Lemma 2 and Lemma 3,

f(S) ≥
l∑

i=1

f(Ai) + |T |

≥ 6l + u

= 2|S| − u

≥ 2|S| − 1.

Now assume that v = 1. Then u = v = 1 and l = |S|−2
3

. Again by Lemmas 2 and 3,

f(S) ≥

l∑

i=1

f(Ai) + f((a, b))

≥ 6l + 3

= 2|S| − 1.

Case 2. u ≥ 2. If a 6∈ Ai for some 1 ≤ i ≤ l, take c ∈ Ai with c 6= b and set
A′

i = (Ai \{c})∪{a}. Then A1, . . . , Ai−1, A
′
i, Ai+1, . . . , Al are l disjoint 3-subsets of S and

the residual sequence contains one more distinct elements than T does, a contradiction
to the choice of A1, . . . , Al. This shows that a ∈ Ai for every i ∈ {1, . . . , l}. Therefore

vg(S) ≥ l + u.

By Lemma 2 and Lemma 3, we have that

f(S) ≥

l∑

i=1

f(Ai) + vf(a, b) + (u − v)f(a)

≥ 6l + 3v + u − v

= 6l + u + 2v.
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Hence

6l + u + v ≤ f(S) − v. (1)

Combining 3l + u + v = |S| with (1), we obtain that

3(2l + u + v) ≥ 4|S| − f(S) + v ≥ 4|S| − f(S).

Therefore,

vg(S) ≥ l + u ≥
2l + u + v

2
=

3(2l + u + v)

6
≥

4|S| − f(S)

6
.

�

Lemma 7. [12] Let G = Cn1

⊕
Cn2

with n1|n2. Then D(Cn1

⊕
Cn2

) = n1 + n2 − 1.

Lemma 8. [12] Every sequence S in Cn

⊕
Cn with |S| = 3n − 2 contains a zero-sum

subsequence T with 1 ≤ |T | ≤ n.

Proof of Theorem 1. Let S = (a1, . . . , am) be a zero-sum free sequence of m elements in
G. We have to prove that f(S) ≥ 2m−1. Choose g ∈ G so that vg(S) = maxa∈S{va(S)}.
By Lemma 6, we may assume that

vg(S) ≥
4|S| − f(S)

6
≥

4m − (2m − 2)

6
=

m + 1

3
,

else the proof is complete.
Let H be the cyclic subgroup generated by g. Write S = S1S2 such that all terms of

S1 are in H and no term of S2 is in H. Hence 〈S1〉 = 〈g〉 = H and |S1| ≥ vg(S) ≥ m+1
3

.
Let φ be the projection from G to G/H. Let

S2 = (b1, . . . , bw),

and set

φ(S2) = (φ(b1), . . . , φ(bw)).

If there is a subsequence W of S2 with |W | ≤ 3 such that |{0}
⋃∑

(φ(W )|) ≥ 4, then by
Lemma 2 and Lemma 5, we have that

f(S) ≥ f(S1W ) + f(S2W
−1)

≥ 4f(S1) + 3 + f(S2W
−1)

≥ 4f(S1) + 3 + |S2| − |W |

≥ 4|S1| + 3 + |S2| − |W |

≥ 4|S1| + |S2|

= 3|S1| + m > 2m − 1.
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Therefore, we may assume that

|{0}
⋃∑

φ(W )| ≤ 3 (2)

for every subsequence W of S2 with |W | ≤ 3.

Let us fix a ∈ S2. For every b ∈ S2, since |
∑

(φ(a), φ(b))
⋃
{0}| ≤ 3, we infer that

φ(a) = φ(b), or φ(a) 6= φ(b) and φ(a) + φ(b) = 0. Therefore,

S2 = (a + k1g, . . . , a + kug,−a + l1g, . . . ,−a + lvg),

where u ≥ v ≥ 0 and u ≥ 1 and ki, lj ∈ {0, 1, . . . , m − 1}.

Let G0 = 〈a, g〉 be the subgroup of G generated by a and g. Clearly, |G0| =
|〈φ(a)〉||〈g〉| = ord(φ(a))ord(g). Observe that S is a zero-sum free sequence in 〈S〉 = G0.
We distinguish two cases:

Case 1: ord(φ(a)) = 2, i.e., 2a ∈ 〈g〉 = H. Since S is zero-sum free we have
vg(S) < ord(g). Therefore, ord(g) > m+1

3
. Hence ord(g) = m or ord(g) = m

2
. If

ord(g) = m
2
, then |G0| = m and D(G0) ≤ m = |S|, a contradiction to the fact that S is

zero-sum free. Therefore, ord(g) = m and

G0
∼= C2

⊕

Cm.

By Lemma 7, it follows that D(G0) = m + 1.
For an arbitrary g′ ∈ G0 \{0}, set T = S(−g′). Then |T | = m+1 = D(G0). Therefore, T
contains a nonempty zero-sum subsequence W . Since S is zero-sum free, W = W0(−g′)
with W0|S. Therefore, σ(W0) + (−g′) = 0, or g′ = σ(W0) ∈

∑
(S). This shows that

∑
(S) = G0 \ {0}. Therefore,

f(S) = |
∑

(S)| = |G0| − 1 = 2m − 1.

Case 2: ord(φ(a)) ≥ 3. Hence m ≥ 3. If u = 1 and v = 0, then by Lemma 5 it
follows that

f(S) ≥ 2f(S1) + 1 ≥ 2|S1| + 1 = 2m − 1.

If u = 2 and v = 0, then since ord(φ(a)) ≥ 3, it follows that

|
∑

(φ(a + k1g), φ(a + k2g)) ∪ {0}| = 3.

Hence, since m ≥ 3, it follows in view of Lemma 5 that

f(S) ≥ 3f(S1) + 2 ≥ 3|S1| + 2 = 3(m − 2) + 2 ≥ 2m − 1.
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Now assume that either u ≥ 3, or else u = 2 and v ≥ 1. Hence, if ord(φ(a)) ≥ 4, then
either

|{0} ∪
∑

(φ(a + k1g), φ(a + k2g), φ(a + k3g))| ≥ 4,

or

|{0} ∪
∑

(φ(a + k1g), φ(a + k2g), φ(−a + l1g))| ≥ 4,

contradicting inequality (2) in both cases. Therefore, we conclude that

ord(φ(a)) = 3.

Hence,

|G0| = 3(ord(g)) and 3|m.

From the proof of Case 1, we know that ord(g) = m or ord(g) = m
2
. If ord(g) = m

2
, then

|G0| = 3m
2

. It follows from exp(G0)|m that G0 = C3

⊕
Cm

2
. Hence by Lemma 7, it follows

that D(G0) = m
2

+ 2 ≤ m = |S|, a contradiction. Hence ord(g) = m and

G0 = C3

⊕

Cm.

From ord(φ(a)) = 3, we infer that 3a = kg for some k ≥ 0. Therefore, m
3
kg = ma = 0.

Hence, m|m
3
k. This gives that 3|k. Set q = k

3
. Thus 3a = 3qg. Set a′ = a − qg. Hence

3a′ = 0 and ord(φ(a′)) = 3. Clearly,

S2 = (a′ + k′
1g, . . . , a′ + k′

ug, 2a′ + l′1g, . . . , 2a′ + l′vg),

where k′
i = ki + q and l′j = lj − q.

Now we have that

G0 = 〈a′〉 ⊕ 〈g〉.

Let H0 = 〈a′〉
⊕

〈m
3
g〉. Note H0

∼= C3

⊕
C3. Let ρ be the homomorphism from G0

onto H0 defined by :

ρ(ra′ + sg) = ra′ +
m

3
sg.

Clearly, ker(ρ) = 〈3g〉 ∼= Cm

3
.

Since vg(S) ≥ m+1
3

and m ≥ 3, it follows that vg(S) ≥ 2. Set S0 = S(a′ + k′
1g, a′ +

k′
2g, g, g)−1. Hence,

S = (a′ + k′
1g, a′ + k′

2g)(g, g)S0.

Suppose m ≥ 9. Hence applying Lemma 8 to the sequence ρ(S0) in H0
∼= C3

⊕
C3, one

can find m
3
− 3 disjoint subsequences T1, . . . , Tm

3
−3 of S0 such that

σ(ρ(Ti)) = 0 and 1 ≤ |Ti| ≤ 3.
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The residual sequence S0(T1 . . . Tm

3
−3)

−1 has length

|S0(T1 . . . Tm

3
−3)

−1| = |S0| − |T1 . . . Tm

3
−3|

≥ m − 4 − 3(
m

3
− 3)

= 5

= D(C3 ⊕ C3) = D(H0).

Therefore, S0(T1 . . . Tm

3
−3)

−1 contains a nonempty subsequence Tm

3
−2 (say) such that

σ(ρ(Tm

3
−2)) = 0. Now we have

σ(Ti) ∈ ker(ρ) = 〈3g〉 ∼= Cm

3

for every i ∈ {1, 2, . . . , m
3
− 2}.

Since S is zero-sum free, we know that (a + k′
1g, a + k′

2g, g, g, σ(T1), . . . , σ(Tm

3
−2)) is also

zero-sum free. By Lemma 5 and Lemma 2, we have that

f((g, g)(σ(T1), . . . , σ(Tm

3
−2))) ≥ 3f(σ(T1), . . . , σ(Tm

3
−2)) + 2

≥ 3(
m

3
− 2) + 2

= m − 4.

Again, by Lemma 5 and Lemma 2, we have that

f((a + k′
1g, a + k′

2g, g, g, σ(T1), . . . , σ(Tm

3
−2)))

≥ 3f((g, g)(σ(T1), . . . , σ(Tm

3
−2))) + 2

≥ 3(m − 4) + 2

= 3m − 10.

Since m ≥ 9, it follows that f(S) ≥ 3m − 10 ≥ 2m − 1.
So, we may assume that m ≤ 8. Consequently, since 3|m, it follows that m = 3 or m = 6.
Note that vg(S) ≥ m+1

3
and u ≥ 2. Therefore, m+1

3
+ 2 ≤ |S| = m. Hence m > 3. Thus,

m = 6.
Since vg(S) ≥ m+1

3
, we have that |S1| ≥ 3. Thus by Lemma 5,

f(S) ≥ f(S1(a
′ + k′

1g, a′ + k′
2g))

≥ 3f(S1) + 2

≥ 3|S1| + 2

≥ 3 · 3 + 2 = 2 · 6 − 1.

This proves that f(S) ≥ 2m − 1.
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The following example shows that fG(m) = 2m − 1. Let a, b be elements in G with
ord(a) = m and b 6∈ 〈a〉. Let S = (a, . . . , a

︸ ︷︷ ︸

m−1

, b). Clearly, S is zero-sum free and f(S) =

2m − 1. This completes the proof. �
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