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Abstract

We show that for any two linear homogeneous equations &gy, £1, each with at least
three variables and coefficients not all the same sign, any 2-coloring of Z* admits
monochromatic solutions of color 0 to £y or monochromatic solutions of color 1 to &;.
We define the 2-color off-diagonal Rado number RR(&y, £1) to be the smallest N such
that [1, N] must admit such solutions. We determine a lower bound for RR(Ey, &1)
in certain cases when each &; is of the form a12x1 + ...+ ayx, = z as well as find the
exact value of RR(&p, £1) when each is of the form 1 + asxs + ... + apz, = 2. We
then present a Maple package that determines upper bounds for off-diagonal Rado
numbers of a few particular types, and use it to quickly prove two previous results
for diagonal Rado numbers.

0 Introduction

For r > 2, an r-coloring of the positive integers Z is an assignment y : ZT — {0,1,...,r—
1}. Given a diophantine equation £ in the variables zi, ..., z,, we say a solution {z;}! ,
is monochromatic if x(z;) = x(z;) for every i, j pair. A well-known theorem of Rado
states that, for any » > 2, a linear homogeneous equation cix1 + ...+ ¢,x, = 0 with each
¢; € Z admits a monochromatic solution in Z* under any r-coloring of Z* if and only if
some nonempty subset of {¢;}? ; sums to zero. The smallest N such that any r-coloring
of {1,2,..., N} = [1, N] satisfies this condition is called the r-color Rado number for the
equation £. However, Rado also proved the following, much lesser known, result.

Theorem 0.1 (Rado [6]) Let £ be a linear homogeneous equation with integer coefficients.
Assume that &£ has at least 3 variables with both positive and negative coefficients. Then
any 2-coloring of Z* admits a monochromatic solution to £.

*This work was done as part of a summer REU, funded by Colgate University, while the first author
was an undergraduate at Colgate University, under the directorship of the second author.
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Remark. Theorem 0.1 cannot be extended to more than 2 colors, without restriction on
the equation. For example, Fox and Radoici¢ [2] have shown, in particular, that there
exists a 3-coloring of Z* that admits no monochromatic solution to x + 2y = 4z. For
more information about equations that have finite colorings of Z* with no monochromatic
solution see [1] and [2].

In [4], the 2-color Rado numbers are determined for equations of the form ayz; +. ..+
a,x, = z where one of the a;’s is 1. The case when min(ay,...,a,) = 2 is done in [5],
while the general case is settled in [3].

In this article, we investigate the “off-diagonal” situation. To this end, for r € Z*
define an off-diagonal Rado number for the equations &;, 0 < ¢ < r — 1, to be the least
integer N (if it exists) for which any r-coloring of [1, N] must admit a monochromatic
solution to &; of color i for some i € [0, —1]. In this paper, when r = 2 we will prove the
existence of such numbers and determine particular values and lower bounds in several
specific cases when the two equations are of the form a;z; + ...+ a,z, = 2.

1 Existence

The authors were unable to find an English translation of the proof of Theorem 0.1. For
the sake of completeness, we offer a simplified version of Rado’s original proof.

Proof of Theorem 0.1 (due to Rado [6]) Let S a;z; = S2'_, By be our equation,
where k > 2, 0 > 1, 0, € Z" for 1 < ¢ < k, and §; € Z* for 1 < i < (. By setting

T=T1=2Xyg="-"=Tp_1, Y =Tk, and 2 = y; = yp = - - - = ¥y, we may consider solutions
to
ar + by = cz,
where a = Zf:_ll a;, b=c, and ¢ = Zle B;. We will denote ax + by = cz by €£.
Let m = lem ﬁwb)’ ch,c)) Let (xo, Yo, z0) be the solution to £ with max(z,y, z)

a minimum, where the maximum is taken over all solutions of positive integers to £. Let
A = max(xg, Yo, 20)-

Assume, for a contradiction, that there exists a 2-coloring of Z* with no monochro-
matic solution to £. First, note that for any n € Z*, the set {in:i=1,2,..., A} cannot
be monochromatic, for otherwise x = xon, y = yon, and z = zyn is a monochromatic
solution, a contradiction.

Let x = m so that %m, bf € Z*. Letting red and blue be our two colors, we may
assume, without loss of generality, that x is red. Let y be the smallest number in {im :
i=1,2,..., A} that is blue. Say y = fm so that 2 </ < A.

For some n € Z*, we have that z = 2(y—z)n is blue, otherwise {i2(y—z) :i =1,2,...}
would be red, admitting a monochromatic solution to £. Then w = %z + l—c’y must be red,
for otherwise az + by = cw and z, y, and w are all blue, a contradiction. Since x and w are
both red, we have that ¢ = w— 22 = 2(y—z)(n+1) must be blue, for otherwise z, w, and
g give a red solution to £. As a consequence, we see that {Zg(y —z):i=n,n+1,.. }
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is monochromatic. This gives us that {zg(y —x)n:i=1,2,..., A} is monochromatic, a
contradiction. O
Using the above result, we offer an “off-diagonal” consequence.

Theorem 1.1 Let & and &; be linear homogeneous equations with integer coefficients.
Assume that & and &; each have at least 3 variables with both positive and negative
coefficients. Then any 2-coloring of Z* admits either a solution to & of the first color or
a solution to &; of the second color.

Proof. Let ag, ay, by, by, c € Z* and denote by G; the equation a;x + b;y = cz for i = 0, 1.
Via the same argument given in the proof to Theorem 0.1, we may consider solutions to
Go and G;. (The coefficients of z may be taken to be the same in both equations by finding
the lem of the original coefficients of z and adjusting the other coefficients accordingly.)

Let the colors be red and blue. We want to show that any 2-coloring admits either a
red solution to Gy or a blue solution to G;. From Theorem 0.1, we have monochromatic
solutions to each of these equations. Hence, we assume, for a contradiction, that any
monochromatic solution to Gy is blue and that any monochromatic solution to G; is red.
This gives us that for any i € Z™, if ci is blue, then (a; + by)i is red (else we have a blue
solution to Gy).

Now consider monochromatic solutions in ¢Z*. Via the obvious bijection between
colorings of ¢Z* and Z* and the fact that linear homogeneous equations are unaffected
by dilation, Theorem 0.1 gives us the existence of monochromatic solutions in cZ*. If
cx,cy, cz solve Gy and are the same color, then they must be blue. Hence, & = (a; +
bi)x,y = (a1 + b1)y, and Z = (a1 + by)z are all red. But, z, 9, Z solve Gy. Thus, we have a
red solution to Gy, a contradiction. O

2 Two Lower Bounds

Given the results in the previous section, we make a definition, which uses the following
notation.

Notation For n € Z* and @ = (a1, as, .. .,a,) € Z", denote by &,(a@) the linear homoge-
neous equation Z?:l a;x; = 0.

Definition For k,¢ > 3,b € ZF, and @ € Z, we let RR(Ex(b), E,(?)) be the minimum
integer N, if it exists, such that any 2-coloring of [1, N] admits either a solution to £x(b)
of the first color or a solution to &(¢) of the second color.

We now develop a general lower bound for certain types of those numbers guaranteed
to exist by Theorem 1.1.

Theorem 2.1 For k, ¢ > 2, let by, by, ..., bx_1,¢1,C, ..., o1 € ZT. Consider &, = & (b,
by, ..., bp_1,—1) and & = &E(ci, ¢, ..., co-1,—1), written so that by = min(by, by, . ..,
bg—1) and ¢; = min(cy,co,...,c1). Assume that ¢ = by = ¢;. Let ¢ = 252—21 b; and
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s = Zf:zl ¢;. Let (without loss of generality) ¢ > s. Then

RR(E, &) > t(t +q)(t + ) + 5.

Proof. Let N = t(t + q)(t + s) + s and consider the 2-coloring of [1, N — 1] defined by
coloring [s +¢,(q +t)(s +t) — 1] red and its complement blue. We will show that this
coloring avoids red solutions to & and blue solutions to &,.

We first consider any possible red solution to &. The value of x; would have to be at
least t(s +t) +q(s+t) = (¢ +t)(s+t). Thus, there is no suitable red solution. Next,
we consider &. If {z1,29,..., 21} C [1,s 4+t — 1], then zy < (¢ +t)(s +t). Hence, the
smallest possible blue solution to & has z; € [(¢+1)(s +1t), N — 1] for some i € [1,£—1].
However, this gives x;, > t(¢ +t)(s +t) +s > N — 1. Thus, there is no suitable blue
solution. O

The case when k£ = ¢ = 2 in Theorem 2.1 can be improved somewhat in certain cases,
depending upon the relationship between ¢, ¢, and s. This result is presented below.

Theorem 2.2 Let t,j € Z*. Let Fj represent the equation tx + jy = z. Let ¢,s € Z7*

with ¢ > s > t. Define m = g%iﬁii’;ﬁ). Then

RR(FLFL) > t(t+ q)(t + s) +ms.

Proof. Let N = t(t +q)(t + s) +ms and consider the 2-coloring y of [1, N — 1] defined by
coloring

R=[s+t(g+t)(s+t)—1U{tlt+q{t+s)+is:1<i<m-—1}

red and B = [1, N — 1] \ R blue. We will show that this coloring avoids red solutions to
Fi and blue solutions to F.

We first consider any possible red solution to .7-";. The value of z would have to
be at least t(s +t) + q(s +t) = (¢ +t)(s +t) and congruent to 0 modulo m. Since
t(t+q)(t+s) =0 (mod m) but is # 0 (mod m) for 1 < i < m—1, there is no suitable red
solution. Next, we consider FL. If {x,y} C[1,s+t—1], then s+t < z < (¢ +t)(s +1).
Hence, the smallest possible blue solution to F! has z or y in [(¢ + t)(s +t), N — 1].
However, this gives z > t(¢ +t)(s +t) +s > N — 1. By the definition of the coloring, z
must be red. Thus, there is no suitable blue solution to F!. O

3 Some Exact Numbers
In this section, we will determine some of the values of RR1(q, s) = RR(x+qy = z,x+sy =
z), where 1 < s < ¢. The subscript 1 is present to emphasize the fact that we are using

t = 1 as defined in Theorem 2.1. In this section we will let RR;(q,s) = RR(tx + qy =
z,tx + sy = z) and we will denote the equation tx + jy = z by f;.
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Theorem 3.1 Let 1 < s < g¢. Then

2q+22 41 fors=1
RR\(q. ) = 7]
(g+1)(s+1)+s fors>2.

Proof. We start with the case s = 1. Let N = 2¢ 4 2 L%J + 1. We first improve the
lower bound given by Theorem 2.1 for this case.

Let v be the 2-coloring of [1, N — 1] defined as follows. The first 2| <+ | — 1 integers
alternate colors with the color of 1 being blue. We then color [2 L%lj,Qq + 1} red. We
color the last 2 qullj — 1 integers with alternating colors, where the color of 2¢+ 2 is blue.

First consider possible blue solutions to z +y = z. If z,y < QL%J — 1, then z < 2g¢.
Under ~, such a z must be red. Now, if exactly one of  and y is greater than 2¢+ 1, then
z is odd and greater than 2¢ + 1. Again, such a z must be red. Finally, if both z and y
are greater than 2¢q 4 1, then z is too big. Hence, v admits no blue solution to x +y = 2.

g+1

Next, we consider possible red solutions to z+qy = 2. If z,y < [%~] —1, then z must

be even. Also, since x and y must both be at least 2 under v, we see that z > 2q + 2.
Under =, such a z must be blue. If one (or both) of @ or y is greater than [ 21| — 1, then
z > N — 1, with equality possible. However, with equality, the color of z is blue. Hence,
~ admits no red solution to x + qy = 2.

We move onto the upper bound. Let y be a 2-coloring of [1, N] using the colors red
and blue. Assume, for a contradiction, that there is no red solution to F! and no blue

q
solution to F}. We break the argument into 3 cases.

Case 1. 1lisred. Then ¢+ 1 must be blue since otherwise (z,y,2) = (1,1,q + 1) would
be a red solution to F,. Since (¢ + 1,q + 1,2¢ + 2) satisfies F|, we have that 2¢ + 2
must be red. Now, since (¢ + 2,1,2q + 2) satisfies .7-"(11, we see that ¢ + 2 must be blue.
Since (2,q + 2,q + 4) satisfies F] we have that ¢ + 4 must be red. This implies that 4
must be blue since (4,1, q + 4) satisfies . But then (2,2,4) is a blue solution to F}, a
contradiction.

Case 2. 1is blue and ¢ is odd. Note that in this case we have N = 3¢+2. Since 1 is blue,
2 must be red, which, in turn, implies that 2¢ + 2 must be blue. Since (¢+1,q+ 1,2+ 2)
solves F}, we see that ¢ + 1 must be red. Now, since (j,2q + 2,2q + j + 2) solves F| and
(j+2,2,2¢q + j + 2) solves fql, we have that for any 7 € {1,3,5,...,q}, the color of j is
blue. With 2 and ¢ both red, we have that 3¢ is blue, which implies that 3¢ + 1 must be
red. Since (¢ + 1,2,3q+ 1) solves Fql, we see that ¢ + 1 must be blue, and hence ¢ + 2 is
red. Considering (¢ + 2,2, 3¢ + 2), which solves F!, and (¢, 2q + 2, 3¢ + 2), which solves
Fl, we have an undesired monochromatic solution, a contradiction.

Case 3. 1is blue and ¢ is even. Note that in this case we have N = 3¢+ 1. As in Case
2, we argue that for any 7 € {1,3,5,...,¢— 1}, the color of j is blue. As in Case 2, both
2 and g+ 1 must be red, so that 3¢ + 1 must be blue. But (¢ — 1,2¢+ 2,3¢+ 1) is then a
blue solution to F}, a contradiction.
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Next, consider the cases when s > 2. From Theorem 2.1, we have RRi(q,s) >
(g+1)(s+ 1) +s. We proceed by showing that RR1(q,s) < (¢+ 1)(s+ 1) + s.

In the case when s = 1 we used an obvious “forcing” argument. As such, we have
automated the process in the Maple package SCHAAL [8]. The package is detailed in the
next subsection, but first we finish the proof. Using SCHAAL we find the following (where
we use the fact that s > 2):

1) If 1 is red, then the elements in {s,¢+ s+ 1,¢s+ ¢+ s+ 1} must be both red and blue,
a contradiction.

2) If 1 is blue and s — 1 is red, then the elements in {1,2,2¢—1,2s+ 1,29+ 1,2¢+2s—1,
2q + 2s 4+ 1} must be both red and blue, a contradiction.

3) If 1 and s — 1 are both blue, the analysis is a bit more involved. First, by assuming
s > 2 we find that 2 must be red and s must be blue. Hence, we cannot have s = 2 or
s = 3, since if s = 2 then 2 is both red and blue, and if s = 3 then since s — 1 is blue, we
again have that 2 is both red and blue. Thus, we may assume that s > 4. Using SCHAAL
with s > 4 now produces the result that the elements in {4,s + 1,¢+ 1,25 — 1,2s,¢ +
2s+1,3s+1,5q+1,4q¢+ s+ 1,49+ 2s — 1,49 + 2s,4q + 3s + 1,5q¢ + 25 + 1,qs — 3q +
1,gs—3q+2s+1,gs—3¢+s—1,qgs+q+1,gs+q+s—1,gs+ g+ 2s+ 1} must be both
red and blue, a contradiction.

This completes the proof of the theorem. O

Using the above theorem, we offer the following corollary.

Corollary 3.2 For k.0 € Z*, let aq,...,a,,by,...,b, € ZT. Assume Zle a; > Zle b;.
Then RRy = Ry (24 S0, aigs = 20+ X0 by = 2) s

V4
41
2Zal+2{ ’12a+ J+1 for Y b, =1
i=1

k l ¢ V4
<Zai+1> (Zbﬁl) +) b for Y b >2.
\ i=1 i=1 i=1 i=1

Proof. We start by proving that the coloring given in the proof of Theorem 3.1 which
provides the lower bound for the case s = 1 also provides (with a slight modification)
a lower bound for the case when Zle b; = 1. In this situation, we must show that the
Z§:1 ai+l
2
blue. We then color [QLMJ 25 ai+ 1} red. We color the last 2 LMJ —1

integers with alternating colors, where the color of 2 Zz:1 a; + 2 is blue. An obvious
parity argument shows that there is no blue solution to x + y = z (this is the case when

Zle b; = 1) exists, so it remains to show that no red solution to = + Zle a;y; = %

coloring where the first 2 L J — 1 integers alternate colors with the color of 1 being
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koo
exists under this coloring. Now, if x and all the y;’s are less than 2 L#J, then z

would be even and have value at least 22?21 a; + 2. 'This is not possible, so at least

ko koo
one of x,y1,...,yr must have value at least 2 {#J Ifz>2 {MJ, then

B
2>2%F a4+ 2 {M . Hence, either z is blue or too big. So, assume, without

k .
loss of generality, that ; > 2 L%J Ifap = 1, then z = & + 1 + S, am; >

k P k a; . . .
2+2 {MJ +2 Zsz a; =2 L#J +2 Zle a; and again either z is blue or too
big. If a; > 2 (and we may assume that k£ > 2 so that Zle a; +1 > 4), then z =
k 9 Sk a4 o9k > 9 >k a4 93k .
THayi ),y > a2 | =E= 23 ay > 2(a+ [ SR )H2) 0 ay =

2 {#J) +23°% a;y; and z is too big.

Next, by coupling the above lower bound with Theorem 2.1 (using ¢t = 1), it remains
to prove that the righthand sides of the theorem’s equations serve as upper bounds for
N = RRy(z + Zle a;y; = 2, + Zle biy; = z). Letting ¢ = Zle a; and s = Zle b;,
any solution to x + qy = z (resp., = + sy = z) is a solution to = + Zle a;y; (resp.,
x+ Zle biy; = z) by letting all y;’s equal y. Hence, N < RR;(q, s) and we are done. [

Remark. When a; =1 for 1 <i <k, =1, and b; = 1 the numbers in Corollary 3.2 are
called the off-diagonal generalized Schur numbers. In this case, the values of the numbers
have been determined [7].

3.1 About the Maple Package SCHAAL

This package is used to try to automatically provide an upper bound for the off-diagonal
Rado-type numbers RR;(q,s). The package employs a set of rules to follow, while the
overall approach is an implementation of the above “forcing” argument.

Let t > 2 be given, keep q > s as parameters, and define N = tgs +t%q+ (t*+1)s +13.
We let R and B be the set of red, respectively blue, elements in [1, N]. The package
SCHAAL uses the following rules.

For z,y € R,
R1) if ¢|(y — tz) and y — tx > 0, then y—th € B;
R2) if t|(y — ¢v) and y — gz > 0, then =% € B;
R3) if (¢ + t)|z then 5 € B.

For z,y € B,
B1) if s|/(y — tx) and y — to > 0, then =2 € R;
B2) if t|(y — sz) and y — sz > 0, then = € R;

)
B3) if (s +t)|z then ;5 € R.

We must, of course, make sure that the elements whose colors are implied by the above
rules are in [1, N]. This is done by making sure that the coefficients of ¢s, ¢, and s, as well
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as the constant term are nonnegative and at most equal to the corresponding coefficients
in tqgs + t2q + (1> + 1)s + t* (hence the need for ¢ to be an integer and not a parameter).
See the Maple code for more details.

The main program of SCHAAL is dan. The program dan runs until R N B # () or until
none of the above rules produce a color for a new element.

3.2 Some Diagonal Results Using SCHAAL

Included in the package SCHAAL is the program diagdan, which is a cleaned-up version
of dan in the case when ¢ = s. Using diagdan we are able to reprove the main results
found in [4] and [5]. However, our program is not designed to reproduce the results in [3],
which keeps t as a parameter and confirms the conjecture of Hopkins and Schaal [4] that
Ri(q,q) = t¢* + (2t* + 1)qg + t°.

Theorem 3.3 (Jones and Schaal [5]) Ri(q,q) = ¢* +3q+ 1

Proof. By running diagdan({1}, {}, 1, ¢) we find immediately that the elements in {1, 2, ¢,
2¢ +1,¢* + 2q + 1} must be both red and blue, a contradiction. Il

Theorem 3.4 (Hopkins and Schaal [4]) Ra(q,q) = 2¢> +9q + 8

Proof. By running diagdan({1}, {q}, 2, q) we find immediately that the elements in {q +
2,2q¢* + 5q, %(q2 + 3¢)} must be both red and blue. We then run diagdan({1,q},{},2,q)
and find that the elements in {2, ¢ + 2,2q, 6q, ¢*> + 6} must be both red and blue. The
program ran for about 10 seconds to obtain this proof. 0

3.3 Some Values of RR;(q,s)

We end this paper with some values of RR;(q, s) for small values of ¢, ¢ and s.

t|q |s| Value t|q |s| Value
213 |2 43 315 |4 172
214 |2 50 316 |4 201
215 |2 58 3|17 |4 214
216 |2 66 318 |4 235
217 |2 74 319 |4 264
218 |2 82 3110 |4 277
219 |2 90 316 |5 231
211012 98 317 |5 245
214 |3 66 318 |5 269
215 |3 73 319 |5 303

Table 1: Small Values of RR;(q, s)
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t|qg |s| Value t|q |s| Value
216 |3 86 3110 |5 317
207 |3 93 3|17 |6 276
218 |3 106 318 |6 303
219 |3 112 319 |6 330
211013 126 31106 357
215 |4 88 3|18 |7 337
216 |4 100 319 |7 381
2|17 |4 112 31107 397
218 |4 124 319 |8 420
219 |4 136 31108 437
2110 |4 148 311019 477
216 |5 122 415 |4 292
217 |5 131 416 |4 324
218 |5 150 4|17 |4 356
219 |5 159 418 |4 388
211015 178 419 |4 432F
2|7 |6 150 41104 452
218 |6 166 416 |5 370
219 |6 182 417 |5 401
211016 198 418 |5 452
218 |7 194 419 |5 473
219 |7 205 411015 514
211017 230 4|17 |6 446
219 |8 228 418 |6 492
21108 248 419 |6 526
211019 282 411016 566
314 |3 129 418 |7 556
315 |3 147 419 |7 579
316 |3 165 411017 630
3|7 [ 3| 192* 419 |8 632
318 |3 201 411018 680
319 |3 219 411019 746
311013 237 5111 |5| 820*

Table 1 cont’d: Small Values of RR;(q, s)

These values were calculated by matching Theorem 2.2’s lower bound with the Maple
package SCHAAL’s upper bound. We use SCHAAL by letting 1 be red and then letting 1 be
blue. In many cases this is sufficient, however in many of the remaining cases, we must
consider subcases depending upon whether 2 is red or blue. If this is still not sufficient, we
consider subsubcases depending upon whether the value in Table 1 (in the value column),
the integer 3, the integer 4, or the integer 5, is red or blue. This is sufficient for all values
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*

in Table 1, expect for those marked with an *. This is because, except for those three
values marked with an *; all values agree with the lower bound given by Theorem 2.2. For
these three exceptional values, we can increase the lower bound given in Theorem 2.2.

Theorem 3.3 Let ¢ > 3. Then R;(2t + 1,t) > 6t% + 2t* + 4t.

Proof. Tt is easy to check that the 2-coloring of [1,6t3 + 2t> + 4¢ — 1] defined by coloring
{1,2,6t} U{6t +3,...,6t> +2t — 1} U {6t +2t < i < 12t> + 4t : i = 0(mod t)} red
and its complement blue avoids red solutions to tx 4 (2t + 1)y = z and blue solutions to

tr +ty = z. (We use t > 2 so that 6t is the minimal red element that is congruent to 0
modulo ¢.) O

Remark. The lower bound in the above theorem is not tight. For example, when ¢t = 6, the
2-coloring of [1,1392] given by coloring {1, 2, 3, 37, 39, 40, 41,43, 46, 47,48, 49, 50, 52, 56} U
[58,228] U {234 < i < 558 : i =0 (mod 6)}U{570,576,594, 606,612, 648,684} red and its
complement blue avoids red solutions to 6z + 13y = z and blue solutions to 6z + 6y = z.
Hence, RR,(2t + 1,t) > 6t3 + 2t% + 4t for t = 6.

We are unable to explain why (b,¢) = (2t + 1,¢) produces these “anomalous” values
while others, e.g., (b,¢) = (2t — 1, 1), appear not to do so.
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