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Abstract

We show that for any two linear homogeneous equations E0, E1, each with at least
three variables and coefficients not all the same sign, any 2-coloring of Z

+ admits
monochromatic solutions of color 0 to E0 or monochromatic solutions of color 1 to E1.
We define the 2-color off-diagonal Rado number RR(E0, E1) to be the smallest N such
that [1, N ] must admit such solutions. We determine a lower bound for RR(E0, E1)
in certain cases when each Ei is of the form a1x1 + . . .+anxn = z as well as find the
exact value of RR(E0, E1) when each is of the form x1 + a2x2 + . . . + anxn = z. We
then present a Maple package that determines upper bounds for off-diagonal Rado
numbers of a few particular types, and use it to quickly prove two previous results
for diagonal Rado numbers.

0 Introduction

For r ≥ 2, an r-coloring of the positive integers Z
+ is an assignment χ : Z

+ → {0, 1, . . . , r−
1}. Given a diophantine equation E in the variables x1, . . . , xn, we say a solution {x̄i}

n
i=1

is monochromatic if χ(x̄i) = χ(x̄j) for every i, j pair. A well-known theorem of Rado
states that, for any r ≥ 2, a linear homogeneous equation c1x1 + . . .+ cnxn = 0 with each
ci ∈ Z admits a monochromatic solution in Z

+ under any r-coloring of Z
+ if and only if

some nonempty subset of {ci}
n
i=1 sums to zero. The smallest N such that any r-coloring

of {1, 2, . . . , N} = [1, N ] satisfies this condition is called the r-color Rado number for the
equation E . However, Rado also proved the following, much lesser known, result.

Theorem 0.1 (Rado [6]) Let E be a linear homogeneous equation with integer coefficients.
Assume that E has at least 3 variables with both positive and negative coefficients. Then
any 2-coloring of Z

+ admits a monochromatic solution to E .

∗This work was done as part of a summer REU, funded by Colgate University, while the first author
was an undergraduate at Colgate University, under the directorship of the second author.
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Remark. Theorem 0.1 cannot be extended to more than 2 colors, without restriction on
the equation. For example, Fox and Radoičić [2] have shown, in particular, that there
exists a 3-coloring of Z

+ that admits no monochromatic solution to x + 2y = 4z. For
more information about equations that have finite colorings of Z

+ with no monochromatic
solution see [1] and [2].

In [4], the 2-color Rado numbers are determined for equations of the form a1x1 + . . .+
anxn = z where one of the ai’s is 1. The case when min(a1, . . . , an) = 2 is done in [5],
while the general case is settled in [3].

In this article, we investigate the “off-diagonal” situation. To this end, for r ∈ Z
+

define an off-diagonal Rado number for the equations Ei, 0 ≤ i ≤ r − 1, to be the least
integer N (if it exists) for which any r-coloring of [1, N ] must admit a monochromatic
solution to Ei of color i for some i ∈ [0, r− 1]. In this paper, when r = 2 we will prove the
existence of such numbers and determine particular values and lower bounds in several
specific cases when the two equations are of the form a1x1 + . . . + anxn = z.

1 Existence

The authors were unable to find an English translation of the proof of Theorem 0.1. For
the sake of completeness, we offer a simplified version of Rado’s original proof.

Proof of Theorem 0.1 (due to Rado [6]) Let
∑k

i=1 αixi =
∑`

i=1 βiyi be our equation,
where k ≥ 2, ` ≥ 1, αi ∈ Z

+ for 1 ≤ i ≤ k, and βi ∈ Z
+ for 1 ≤ i ≤ `. By setting

x = x1 = x2 = · · · = xk−1, y = xk, and z = y1 = y2 = · · · = y`, we may consider solutions
to

ax + by = cz,

where a =
∑k−1

i=1 αi, b = ck, and c =
∑`

i=1 βi. We will denote ax + by = cz by E .

Let m = lcm
(

a
gcd(a,b)

, c
gcd(b,c)

)

. Let (x0, y0, z0) be the solution to E with max(x, y, z)

a minimum, where the maximum is taken over all solutions of positive integers to E . Let
A = max(x0, y0, z0).

Assume, for a contradiction, that there exists a 2-coloring of Z
+ with no monochro-

matic solution to E . First, note that for any n ∈ Z
+, the set {in : i = 1, 2, . . . , A} cannot

be monochromatic, for otherwise x = x0n, y = y0n, and z = z0n is a monochromatic
solution, a contradiction.

Let x = m so that bx
a
, bx

c
∈ Z

+. Letting red and blue be our two colors, we may
assume, without loss of generality, that x is red. Let y be the smallest number in {im :
i = 1, 2, . . . , A} that is blue. Say y = `m so that 2 ≤ ` ≤ A.

For some n ∈ Z
+, we have that z = b

a
(y−x)n is blue, otherwise {i b

a
(y−x) : i = 1, 2, . . .}

would be red, admitting a monochromatic solution to E . Then w = a
c
z + b

c
y must be red,

for otherwise az+by = cw and z, y, and w are all blue, a contradiction. Since x and w are
both red, we have that q = c

a
w− b

a
x = b

a
(y−x)(n+1) must be blue, for otherwise x, w, and

q give a red solution to E . As a consequence, we see that
{

i b
a
(y − x) : i = n, n + 1, . . .

}
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is monochromatic. This gives us that
{

i b
a
(y − x)n : i = 1, 2, . . . , A

}

is monochromatic, a
contradiction. �

Using the above result, we offer an “off-diagonal” consequence.

Theorem 1.1 Let E0 and E1 be linear homogeneous equations with integer coefficients.
Assume that E0 and E1 each have at least 3 variables with both positive and negative
coefficients. Then any 2-coloring of Z

+ admits either a solution to E0 of the first color or
a solution to E1 of the second color.

Proof. Let a0, a1, b0, b1, c ∈ Z
+ and denote by Gi the equation aix + biy = cz for i = 0, 1.

Via the same argument given in the proof to Theorem 0.1, we may consider solutions to
G0 and G1. (The coefficients of z may be taken to be the same in both equations by finding
the lcm of the original coefficients of z and adjusting the other coefficients accordingly.)

Let the colors be red and blue. We want to show that any 2-coloring admits either a
red solution to G0 or a blue solution to G1. From Theorem 0.1, we have monochromatic
solutions to each of these equations. Hence, we assume, for a contradiction, that any
monochromatic solution to G0 is blue and that any monochromatic solution to G1 is red.
This gives us that for any i ∈ Z

+, if ci is blue, then (a1 + b1)i is red (else we have a blue
solution to G1).

Now consider monochromatic solutions in cZ+. Via the obvious bijection between
colorings of cZ+ and Z

+ and the fact that linear homogeneous equations are unaffected
by dilation, Theorem 0.1 gives us the existence of monochromatic solutions in cZ+. If
cx, cy, cz solve G0 and are the same color, then they must be blue. Hence, x̂ = (a1 +
b1)x, ŷ = (a1 + b1)y, and ẑ = (a1 + b1)z are all red. But, x̂, ŷ, ẑ solve G0. Thus, we have a
red solution to G0, a contradiction. �

2 Two Lower Bounds

Given the results in the previous section, we make a definition, which uses the following
notation.

Notation For n ∈ Z
+ and ~a = (a1, a2, . . . , an) ∈ Z

n, denote by En(~a) the linear homoge-
neous equation

∑n

i=1 aixi = 0.

Definition For k, ` ≥ 3,~b ∈ Z
k, and ~c ∈ Z

`, we let RR(Ek(~b), E`(~c)) be the minimum

integer N , if it exists, such that any 2-coloring of [1, N ] admits either a solution to Ek(~b)
of the first color or a solution to E`(~c) of the second color.

We now develop a general lower bound for certain types of those numbers guaranteed
to exist by Theorem 1.1.

Theorem 2.1 For k, ` ≥ 2, let b1, b2, . . . , bk−1, c1, c2, . . . , c`−1 ∈ Z
+. Consider Ek = Ek(b1,

b2, . . . , bk−1,−1) and E` = E`(c1, c2, . . . , c`−1,−1), written so that b1 = min(b1, b2, . . . ,

bk−1) and c1 = min(c1, c2, . . . , c`−1). Assume that t = b1 = c1. Let q =
∑k−1

i=2 bi and
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s =
∑`−1

i=2 ci. Let (without loss of generality) q ≥ s. Then

RR(Ek, E`) ≥ t(t + q)(t + s) + s.

Proof. Let N = t(t + q)(t + s) + s and consider the 2-coloring of [1, N − 1] defined by
coloring [s + t, (q + t)(s + t) − 1] red and its complement blue. We will show that this
coloring avoids red solutions to Ek and blue solutions to E`.

We first consider any possible red solution to Ek. The value of xk would have to be at
least t(s + t) + q(s + t) = (q + t)(s + t). Thus, there is no suitable red solution. Next,
we consider E`. If {x1, x2, . . . , x`−1} ⊆ [1, s + t − 1], then x` < (q + t)(s + t). Hence, the
smallest possible blue solution to E` has xi ∈ [(q + t)(s + t), N − 1] for some i ∈ [1, `− 1].
However, this gives x` ≥ t(q + t)(s + t) + s > N − 1. Thus, there is no suitable blue
solution. �

The case when k = ` = 2 in Theorem 2.1 can be improved somewhat in certain cases,
depending upon the relationship between t, q, and s. This result is presented below.
Theorem 2.2 Let t, j ∈ Z

+. Let F t
j represent the equation tx + jy = z. Let q, s ∈ Z

+

with q ≥ s ≥ t. Define m = gcd(t,q)
gcd(t,q,s)

. Then

RR(F t
q,F

t
s) ≥ t(t + q)(t + s) + ms.

Proof. Let N = t(t + q)(t + s) + ms and consider the 2-coloring χ of [1, N − 1] defined by
coloring

R = [s + t, (q + t)(s + t) − 1] ∪ {t(t + q)(t + s) + is : 1 ≤ i ≤ m − 1}

red and B = [1, N − 1] \ R blue. We will show that this coloring avoids red solutions to
F t

q and blue solutions to F t
s.

We first consider any possible red solution to F t
q. The value of z would have to

be at least t(s + t) + q(s + t) = (q + t)(s + t) and congruent to 0 modulo m. Since
t(t+ q)(t+ s) ≡ 0 (mod m) but is 6≡ 0 (mod m) for 1 ≤ i ≤ m−1, there is no suitable red
solution. Next, we consider F t

s. If {x, y} ⊆ [1, s + t − 1], then s + t ≤ z < (q + t)(s + t).
Hence, the smallest possible blue solution to F t

s has x or y in [(q + t)(s + t), N − 1].
However, this gives z ≥ t(q + t)(s + t) + s > N − 1. By the definition of the coloring, z

must be red. Thus, there is no suitable blue solution to F t
s. �

3 Some Exact Numbers

In this section, we will determine some of the values of RR1(q, s) = RR(x+qy = z, x+sy =
z), where 1 ≤ s ≤ q. The subscript 1 is present to emphasize the fact that we are using
t = 1 as defined in Theorem 2.1. In this section we will let RRt(q, s) = RR(tx + qy =
z, tx + sy = z) and we will denote the equation tx + jy = z by F t

j .
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Theorem 3.1 Let 1 ≤ s ≤ q. Then

RR1(q, s) =







2q + 2
⌊

q+1
2

⌋

+ 1 for s = 1

(q + 1)(s + 1) + s for s ≥ 2.

Proof. We start with the case s = 1. Let N = 2q + 2
⌊

q+1
2

⌋

+ 1. We first improve the
lower bound given by Theorem 2.1 for this case.

Let γ be the 2-coloring of [1, N − 1] defined as follows. The first 2b q+1
2
c − 1 integers

alternate colors with the color of 1 being blue. We then color
[

2b q+1
2
c, 2q + 1

]

red. We

color the last 2b q+1
2
c− 1 integers with alternating colors, where the color of 2q +2 is blue.

First consider possible blue solutions to x + y = z. If x, y ≤ 2b q+1
2
c − 1, then z ≤ 2q.

Under γ, such a z must be red. Now, if exactly one of x and y is greater than 2q +1, then
z is odd and greater than 2q + 1. Again, such a z must be red. Finally, if both x and y

are greater than 2q + 1, then z is too big. Hence, γ admits no blue solution to x + y = z.
Next, we consider possible red solutions to x+qy = z. If x, y ≤ b q+1

2
c−1, then z must

be even. Also, since x and y must both be at least 2 under γ, we see that z ≥ 2q + 2.
Under γ, such a z must be blue. If one (or both) of x or y is greater than b q+1

2
c− 1, then

z ≥ N − 1, with equality possible. However, with equality, the color of z is blue. Hence,
γ admits no red solution to x + qy = z.

We move onto the upper bound. Let χ be a 2-coloring of [1, N ] using the colors red
and blue. Assume, for a contradiction, that there is no red solution to F 1

q and no blue
solution to F1

1 . We break the argument into 3 cases.

Case 1. 1 is red. Then q + 1 must be blue since otherwise (x, y, z) = (1, 1, q + 1) would
be a red solution to F 1

q . Since (q + 1, q + 1, 2q + 2) satisfies F 1
1 , we have that 2q + 2

must be red. Now, since (q + 2, 1, 2q + 2) satisfies F 1
q , we see that q + 2 must be blue.

Since (2, q + 2, q + 4) satisfies F 1
1 we have that q + 4 must be red. This implies that 4

must be blue since (4, 1, q + 4) satisfies F 1
q . But then (2, 2, 4) is a blue solution to F 1

1 , a
contradiction.

Case 2. 1 is blue and q is odd. Note that in this case we have N = 3q+2. Since 1 is blue,
2 must be red, which, in turn, implies that 2q +2 must be blue. Since (q +1, q +1, 2q +2)
solves F1

1 , we see that q + 1 must be red. Now, since (j, 2q + 2, 2q + j + 2) solves F 1
1 and

(j + 2, 2, 2q + j + 2) solves F 1
q , we have that for any j ∈ {1, 3, 5, . . . , q}, the color of j is

blue. With 2 and q both red, we have that 3q is blue, which implies that 3q + 1 must be
red. Since (q + 1, 2, 3q + 1) solves F 1

q , we see that q + 1 must be blue, and hence q + 2 is
red. Considering (q + 2, 2, 3q + 2), which solves F 1

q , and (q, 2q + 2, 3q + 2), which solves
F1

1 , we have an undesired monochromatic solution, a contradiction.

Case 3. 1 is blue and q is even. Note that in this case we have N = 3q + 1. As in Case
2, we argue that for any j ∈ {1, 3, 5, . . . , q − 1}, the color of j is blue. As in Case 2, both
2 and q + 1 must be red, so that 3q + 1 must be blue. But (q − 1, 2q + 2, 3q + 1) is then a
blue solution to F 1

1 , a contradiction.
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Next, consider the cases when s ≥ 2. From Theorem 2.1, we have RR1(q, s) ≥
(q + 1)(s + 1) + s. We proceed by showing that RR1(q, s) ≤ (q + 1)(s + 1) + s.

In the case when s = 1 we used an obvious “forcing” argument. As such, we have
automated the process in the Maple package SCHAAL [8]. The package is detailed in the
next subsection, but first we finish the proof. Using SCHAAL we find the following (where
we use the fact that s ≥ 2):

1) If 1 is red, then the elements in {s, q + s+1, qs+ q + s+1} must be both red and blue,
a contradiction.

2) If 1 is blue and s− 1 is red, then the elements in {1, 2, 2q− 1, 2s+1, 2q +1, 2q +2s− 1,
2q + 2s + 1} must be both red and blue, a contradiction.

3) If 1 and s − 1 are both blue, the analysis is a bit more involved. First, by assuming
s ≥ 2 we find that 2 must be red and s must be blue. Hence, we cannot have s = 2 or
s = 3, since if s = 2 then 2 is both red and blue, and if s = 3 then since s − 1 is blue, we
again have that 2 is both red and blue. Thus, we may assume that s ≥ 4. Using SCHAAL

with s ≥ 4 now produces the result that the elements in {4, s + 1, q + 1, 2s − 1, 2s, q +
2s + 1, 3s + 1, 5q + 1, 4q + s + 1, 4q + 2s − 1, 4q + 2s, 4q + 3s + 1, 5q + 2s + 1, qs − 3q +
1, qs− 3q + 2s + 1, qs− 3q + s− 1, qs+ q +1, qs + q + s− 1, qs+ q + 2s+ 1} must be both
red and blue, a contradiction.

This completes the proof of the theorem. �

Using the above theorem, we offer the following corollary.

Corollary 3.2 For k, ` ∈ Z
+, let a1, . . . , ak, b1, . . . , b` ∈ Z

+. Assume
∑k

i=1 ai ≥
∑`

i=1 bi.

Then RR1 = RR1

(

x +
∑k

i=1 aiyi = z, x +
∑`

i=1 biyi = z
)

is

RR1 =































2

k
∑

i=1

ai + 2

⌊

∑k

i=1 ai + 1

2

⌋

+ 1 for
∑̀

i=1

bi = 1

(

k
∑

i=1

ai + 1

)(

∑̀

i=1

bi + 1

)

+
∑̀

i=1

bi for
∑̀

i=1

bi ≥ 2.

Proof. We start by proving that the coloring given in the proof of Theorem 3.1 which
provides the lower bound for the case s = 1 also provides (with a slight modification)
a lower bound for the case when

∑`

i=1 bi = 1. In this situation, we must show that the

coloring where the first 2
⌊

P

k

i=1
ai+1

2

⌋

−1 integers alternate colors with the color of 1 being

blue. We then color
[

2b
P

k

i=1
ai+1

2
c, 2
∑k

i=1 ai + 1
]

red. We color the last 2
⌊

P

k

i=1
ai+1

2

⌋

− 1

integers with alternating colors, where the color of 2
∑k

i=1 ai + 2 is blue. An obvious
parity argument shows that there is no blue solution to x + y = z (this is the case when
∑`

i=1 bi = 1) exists, so it remains to show that no red solution to x +
∑k

i=1 aiyi = z
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exists under this coloring. Now, if x and all the yi’s are less than 2
⌊

P

k

i=1
ai+1

2

⌋

, then z

would be even and have value at least 2
∑k

i=1 ai + 2. This is not possible, so at least

one of x, y1, . . . , yk must have value at least 2
⌊

P

k

i=1
ai+1

2

⌋

. If x ≥ 2
⌊

P

k

i=1
ai+1

2

⌋

, then

z ≥ 2
∑k

i=1 ai + 2
⌊

P

k

i=1
ai+1

2

⌋

. Hence, either z is blue or too big. So, assume, without

loss of generality, that y1 ≥ 2
⌊

P

k

i=1
ai+1

2

⌋

. If a1 = 1, then z = x + y1 +
∑k

i=2 aiyi ≥

2 + 2
⌊

P

k

i=1
ai+1

2

⌋

+ 2
∑k

i=2 ai = 2
⌊

P

k

i=1
ai+1

2

⌋

+ 2
∑k

i=1 ai and again either z is blue or too

big. If a1 ≥ 2 (and we may assume that k ≥ 2 so that
∑k

i=1 ai + 1 ≥ 4), then z =

x+a1y1 +
∑k

i=2 aiyi > a1 ·2
⌊

P

k

i=1
ai+1

2

⌋

+2
∑k

i=2 aiyi ≥ 2(a1 +
⌊

P

k

i=1
ai+1

2

⌋

)+2
∑k

i=2 aiyi =

2
⌊

P

k

i=1
ai+1

2

⌋

) + 2
∑k

i=1 aiyi and z is too big.

Next, by coupling the above lower bound with Theorem 2.1 (using t = 1), it remains
to prove that the righthand sides of the theorem’s equations serve as upper bounds for
N = RR1(x +

∑k

i=1 aiyi = z, x +
∑`

i=1 biyi = z). Letting q =
∑k

i=1 ai and s =
∑`

i=1 bi,

any solution to x + qy = z (resp., x + sy = z) is a solution to x +
∑k

i=1 aiyi (resp.,

x +
∑`

i=1 biyi = z) by letting all yi’s equal y. Hence, N ≤ RR1(q, s) and we are done. �

Remark. When ai = 1 for 1 ≤ i ≤ k, ` = 1, and b1 = 1 the numbers in Corollary 3.2 are
called the off-diagonal generalized Schur numbers. In this case, the values of the numbers
have been determined [7].

3.1 About the Maple Package SCHAAL

This package is used to try to automatically provide an upper bound for the off-diagonal
Rado-type numbers RRt(q, s). The package employs a set of rules to follow, while the
overall approach is an implementation of the above “forcing” argument.

Let t ≥ 2 be given, keep q ≥ s as parameters, and define N = tqs+ t2q +(t2 +1)s+ t3.
We let R and B be the set of red, respectively blue, elements in [1, N ]. The package
SCHAAL uses the following rules.

For x, y ∈ R,
R1) if q|(y − tx) and y − tx > 0, then y−tx

q
∈ B;

R2) if t|(y − qx) and y − qx > 0, then y−qx

t
∈ B;

R3) if (q + t)|x then x
q+t

∈ B.

For x, y ∈ B,
B1) if s|(y − tx) and y − tx > 0, then y−tx

s
∈ R;

B2) if t|(y − sx) and y − sx > 0, then y−sx

t
∈ R;

B3) if (s + t)|x then x
s+t

∈ R.

We must, of course, make sure that the elements whose colors are implied by the above
rules are in [1, N ]. This is done by making sure that the coefficients of qs, q, and s, as well
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as the constant term are nonnegative and at most equal to the corresponding coefficients
in tqs + t2q + (t2 + 1)s + t3 (hence the need for t to be an integer and not a parameter).
See the Maple code for more details.

The main program of SCHAAL is dan. The program dan runs until R∩ B 6= ∅ or until
none of the above rules produce a color for a new element.

3.2 Some Diagonal Results Using SCHAAL

Included in the package SCHAAL is the program diagdan, which is a cleaned-up version
of dan in the case when q = s. Using diagdan we are able to reprove the main results
found in [4] and [5]. However, our program is not designed to reproduce the results in [3],
which keeps t as a parameter and confirms the conjecture of Hopkins and Schaal [4] that
Rt(q, q) = tq2 + (2t2 + 1)q + t3.

Theorem 3.3 (Jones and Schaal [5]) R1(q, q) = q2 + 3q + 1

Proof. By running diagdan({1}, {}, 1, q) we find immediately that the elements in {1, 2, q,
2q + 1, q2 + 2q + 1} must be both red and blue, a contradiction. �

Theorem 3.4 (Hopkins and Schaal [4]) R2(q, q) = 2q2 + 9q + 8

Proof. By running diagdan({1}, {q}, 2, q) we find immediately that the elements in {q +
2, 2q2 + 5q, 1

2
(q2 + 3q)} must be both red and blue. We then run diagdan({1, q}, {}, 2, q)

and find that the elements in {2, q + 2, 2q, 6q, q2 + 6q} must be both red and blue. The
program ran for about 10 seconds to obtain this proof. �

3.3 Some Values of RRt(q, s)

We end this paper with some values of RRt(q, s) for small values of t, q and s.

t q s Value t q s Value

2 3 2 43 3 5 4 172

2 4 2 50 3 6 4 201

2 5 2 58 3 7 4 214

2 6 2 66 3 8 4 235

2 7 2 74 3 9 4 264

2 8 2 82 3 10 4 277

2 9 2 90 3 6 5 231

2 10 2 98 3 7 5 245

2 4 3 66 3 8 5 269

2 5 3 73 3 9 5 303

Table 1: Small Values of RRt(q, s)
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t q s Value t q s Value

2 6 3 86 3 10 5 317

2 7 3 93 3 7 6 276

2 8 3 106 3 8 6 303

2 9 3 112 3 9 6 330

2 10 3 126 3 10 6 357

2 5 4 88 3 8 7 337

2 6 4 100 3 9 7 381

2 7 4 112 3 10 7 397

2 8 4 124 3 9 8 420

2 9 4 136 3 10 8 437

2 10 4 148 3 10 9 477

2 6 5 122 4 5 4 292

2 7 5 131 4 6 4 324

2 8 5 150 4 7 4 356

2 9 5 159 4 8 4 388

2 10 5 178 4 9 4 432∗

2 7 6 150 4 10 4 452

2 8 6 166 4 6 5 370

2 9 6 182 4 7 5 401

2 10 6 198 4 8 5 452

2 8 7 194 4 9 5 473

2 9 7 205 4 10 5 514

2 10 7 230 4 7 6 446

2 9 8 228 4 8 6 492

2 10 8 248 4 9 6 526

2 10 9 282 4 10 6 566

3 4 3 129 4 8 7 556

3 5 3 147 4 9 7 579

3 6 3 165 4 10 7 630

3 7 3 192∗ 4 9 8 632

3 8 3 201 4 10 8 680

3 9 3 219 4 10 9 746

3 10 3 237 5 11 5 820∗

Table 1 cont’d: Small Values of RRt(q, s)

These values were calculated by matching Theorem 2.2’s lower bound with the Maple
package SCHAAL’s upper bound. We use SCHAAL by letting 1 be red and then letting 1 be
blue. In many cases this is sufficient, however in many of the remaining cases, we must
consider subcases depending upon whether 2 is red or blue. If this is still not sufficient, we
consider subsubcases depending upon whether the value in Table 1 (in the value column),
the integer 3, the integer 4, or the integer 5, is red or blue. This is sufficient for all values
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in Table 1, expect for those marked with an ∗. This is because, except for those three
values marked with an ∗, all values agree with the lower bound given by Theorem 2.2. For
these three exceptional values, we can increase the lower bound given in Theorem 2.2.

Theorem 3.3 Let t ≥ 3. Then Rt(2t + 1, t) ≥ 6t3 + 2t2 + 4t.

Proof. It is easy to check that the 2-coloring of [1, 6t3 + 2t2 + 4t − 1] defined by coloring
{1, 2, 6t} ∪ {6t + 3, . . . , 6t2 + 2t − 1} ∪ {6t2 + 2t ≤ i ≤ 12t2 + 4t : i ≡ 0 (mod t)} red
and its complement blue avoids red solutions to tx + (2t + 1)y = z and blue solutions to
tx + ty = z. (We use t > 2 so that 6t is the minimal red element that is congruent to 0
modulo t.) �

Remark. The lower bound in the above theorem is not tight. For example, when t = 6, the
2-coloring of [1, 1392] given by coloring {1, 2, 3, 37, 39, 40, 41, 43, 46, 47, 48, 49, 50, 52, 56}∪
[58, 228]∪ {234 ≤ i ≤ 558 : i ≡ 0 (mod 6)} ∪ {570, 576, 594, 606, 612, 648, 684} red and its
complement blue avoids red solutions to 6x + 13y = z and blue solutions to 6x + 6y = z.
Hence, RRt(2t + 1, t) > 6t3 + 2t2 + 4t for t = 6.

We are unable to explain why (b, c) = (2t + 1, t) produces these “anomalous” values
while others, e.g., (b, c) = (2t − 1, t), appear not to do so.

References

[1] B. Alexeev, J. Fox, and R. Graham, On Minimal colorings Without Monochromatic Solutions to
a Linear Equation, to appear in Integers: El. J. Combinatorial Number Theory, preprint available at
http://www.princeton.edu/∼jacobfox/∼publications.html, 2007.
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