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Abstract

Cooperstein [6], [7] proved that every finite symplectic dual polar space DW (2n−
1, q), q 6= 2, can be generated by

(
2n
n

)
−

(
2n

n−2

)
points and that every finite Hermitian

dual polar space DH(2n − 1, q2), q 6= 2, can be generated by
(2n

n

)
points. In

the present paper, we show that these conclusions remain valid for symplectic and
Hermitian dual polar spaces over infinite fields. A consequence of this is that every
Grassmann-embedding of a symplectic or Hermitian dual polar space is absolutely
universal if the (possibly infinite) underlying field has size at least 3.

1 Introduction

Let Γ = (P, L, I) be a partial linear space, i.e. a rank 2 geometry with point-set P , line-set
L and incidence relation I ⊆ P ×L for which every line is incident with at least two points
and every two distinct points are incident with at most 1 line. A subspace of Γ is a set of
points which contains all the points of a line as soon as it contains at least two points of
it. If X is a nonempty set of points of Γ, then 〈X〉Γ denotes the smallest subspace of Γ
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containing the set X. The minimal number gr(Γ) := min{|X| : X ⊆ P and 〈X〉Γ = P}
of points which are necessary to generate the whole point-set P is called the generating

rank of Γ.
A full embedding e of Γ into a projective space Σ is an injective mapping e from P

to the point-set of Σ satisfying: (i) 〈e(P )〉Σ = Σ; (ii) e(L) := {e(x) | x ∈ L} is a line
of Σ for every line L of Γ. The numbers dim(Σ) and dim(Σ) + 1 are respectively called
the projective dimension and the vector dimension of the embedding e. The maximal
dimension of a vector space V for which Γ has a full embedding into PG(V ) is called the
embedding rank of Γ and is denoted by er(Γ). Certainly, er(Γ) is only defined when Γ
admits a full embedding, in which case it holds that er(Γ) ≤ gr(Γ).

Two embeddings e1 : Γ → Σ1 and e2 : Γ → Σ2 of Γ are called isomorphic (e1
∼= e2)

if there exists an isomorphism f : Σ1 → Σ2 such that e2 = f ◦ e1. If e : Γ → Σ is a full
embedding of Γ and if U is a subspace of Σ satisfying (C1): 〈U, e(p)〉Σ 6= U for every point
p of Γ, (C2): 〈U, e(p1)〉Σ 6= 〈U, e(p2)〉Σ for any two distinct points p1 and p2 of Γ, then
there exists a full embedding e/U of Γ into the quotient space Σ/U mapping each point p
of Γ to 〈U, e(p)〉Σ. If e1 : Γ → Σ1 and e2 : Γ → Σ2 are two full embeddings of Γ, then we
say that e1 ≥ e2 if there exists a subspace U in Σ1 satisfying (C1), (C2) and e1/U ∼= e2.
If e : Γ → Σ is a full embedding of Γ, then by Ronan [17], there exists a unique (up to

isomorphism) full embedding ẽ : Γ → Σ̃ satisfying (i) ẽ ≥ e, (ii) if e′ ≥ e for some full
embedding e′ of Γ, then ẽ ≥ e′. We say that ẽ is universal relative to e. If ẽ ∼= e for some
full embedding e of Γ, then we say that e is relatively universal. A full embedding e of Γ
is called absolutely universal if it is universal relative to any full embedding of Γ defined
over the same division ring as e. Kasikova and Shult [14] gave sufficient conditions for an
embeddable geometry to have an absolutely universal embedding.

The problem of determining generating sets of small size for a given point-line geometry
Γ is very important for embedding problems. Suppose X is a finite generating set of a
geometry Γ such that there exists a full embedding e of Γ into a projective space PG(V )
with dim(V ) = |X|. Then since |X| = dim(V ) ≤ er(Γ) ≤ gr(Γ) ≤ |X|, we necessarily
have er(Γ) = gr(Γ) = |X|. It follows that e is a relatively universal embedding. If
moreover the conditions of Kasikova and Shult are satisfied, then we can conclude that e
is absolutely universal.

Let Π be a non-degenerate polar space of rank n ≥ 2. With Π there is associated a
point-line geometry ∆ whose points are the maximal singular subspaces of Π, whose lines
are the next-to-maximal singular subspaces of Π and whose incidence relation is reverse
containment. We call ∆ a dual polar space (Cameron [4]).

If x and y are two points of ∆, then d(x, y) denotes the distance between x and y in
the point or collinearity graph of ∆. Every convex subspace of ∆ consists of the maximal
singular subspaces through a given (possibly empty) singular subspace of Π. The maximal
distance between two points of a convex subspace A of ∆ is called the diameter of A. The
convex subspaces of diameter 2, respectively n − 1, are called the quads, respectively
maxes, of ∆. Every dual polar space is an example of a near polygon (Shult and Yanushka
[18]; De Bruyn [10]). This means that for every point x and every line L, there exists
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a unique point πL(x) on L nearest to x. More generally, the following property holds in
every dual polar space ∆: if x is a point and A is a convex subspace, then A contains a
unique point πA(x) nearest to x and d(x, y) = d(x, πA(x)) + d(πA(x), y) for every point y
of A. We call πA(x) the projection of x onto A. If M is a max of ∆, then d(x, M) ≤ 1 for
every point x of ∆.

If e is a full embedding of a thick generalized quadrangle Q into a projective space
Σ, then the underlying division ring of Σ is uniquely determined by Q by Tits [19, 8.6].
In view of the existence of quads in dual polar spaces, a similar conclusion holds for full
embeddings of thick dual polar spaces of rank at least 2. By Kasikova and Shult [14, 4.6],
every full embedding of a thick dual polar space admits the absolutely universal embed-
ding. By the above we know that the underlying division ring of this absolutely universal
embedding space is uniquely determined by ∆; in other words: ∆ admits essentially only
one absolutely universal embedding.

In this paper we will determine the generating rank and absolutely universal embed-
ding of all symplectic and Hermitian dual polar spaces whose underlying fields are not
isomorphic to the finite field F2 of order 2. Previously, this information was only available
in the finite case (see Cooperstein [6], [7]). Several of the lemmas which we will give
in this paper are also contained in [6] and [7]. Our intention was to offer the reader a
complete and clear discussion of what is known on the generating and embedding ranks
of these two families of dual polar spaces. The arguments given in the symplectic and the
Hermitian case are very similar, but it has taken us much more effort for the Hermitian
dual polar spaces to extend the original results to the infinite case.

We first discuss the symplectic case. Let V be a 2n-dimensional vector space (n ≥ 2)
over a field K equipped with a non-degenerate alternating form (·, ·). Let PG(2n −
1, K) denote the projective space associated with V and let ζ denote the symplectic
polarity of PG(2n−1, K) associated with (·, ·). The subspaces of PG(2n−1, K) which are
totally isotropic with respect to ζ define a polar space which we denote by W (2n− 1, K).
Let DW (2n − 1, K) denote the dual polar space associated with W (2n − 1, K). If K is
isomorphic to the finite field Fq of order q, then W (2n − 1, K) and DW (2n − 1, K) are
also denoted by W (2n − 1, q) and DW (2n − 1, q).

Let
∧n V denote the n-th exterior power of V . For every maximal totally isotropic

subspace α = 〈v̄1, v̄2, . . . , v̄n〉 of PG(2n − 1, K), let e(α) be the point 〈v̄1 ∧ v̄2 ∧ · · · ∧
v̄n〉 of PG(

∧n V ). Then e defines a full embedding of DW (2n − 1, K) into a subspace
of PG(

∧n V ). This embedding is called the Grassmann-embedding of DW (2n − 1, K).
The Grassmann-embedding of DW (2n − 1, K) has vector dimension

(
2n

n

)
−

(
2n

n−2

)
, see for

instance Burau [3, 82.7] or De Bruyn [11].
Cooperstein [7] showed that gr(DW (2n − 1, q)) = er(DW (2n − 1, q)) =

(
2n

n

)
−

(
2n

n−2

)

for any prime power q 6= 2. The proof in [7] makes use of some finite group theory,
namely some results of Kantor [13]. In the present paper, we give a purely geometrical
proof of the above-mentioned result of [7]. This proof does not rely on the finiteness of
the underlying field.
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Theorem 1.1 (Section 2) Suppose n ∈ N \ {0, 1} and K is a possibly infinite field not

isomorphic to F2. Then there exists a set of
(
2n

n

)
−

(
2n

n−2

)
points of DW (2n− 1, K) which

generate DW (2n − 1, K).

So, if K 6∼= F2 then er(DW (2n − 1, K)) ≤ gr(DW (2n − 1, K)) ≤
(
2n

n

)
−

(
2n

n−2

)
. Since

the Grassmann-embedding of DW (2n − 1, K) has vector-dimension
(
2n

n

)
−

(
2n

n−2

)
, we can

conclude

Corollary 1.2 Suppose n ∈ N \ {0, 1} and K is a possibly infinite field not isomorphic to

F2. Then

(i) the embedding and generating ranks of DW (2n − 1, K) are equal to
(
2n

n

)
−

(
2n

n−2

)
;

(ii) the Grassmann-embedding of DW (2n−1, K) is the absolutely universal embedding

of DW (2n − 1, K).

Remark. If K is a field of odd characteristic, then the result of Theorem 1.1 is also
covered by a more general result of Blok [1]. The (inductive) proof given in [1] does
however not allow to remove the condition on the characteristic of K.

We will now discuss the Hermitian case. Let K and K
′ be fields such that K

′ is a
quadratic Galois extension of K, let θ denote the unique nontrivial element of Gal(K′/K)
and let n ∈ N \ {0, 1}. Let V be a 2n-dimensional vector space over K

′ equipped with
a non-degenerate θ-Hermitian form (·, ·) of maximal Witt-index n. (θ-Hermitian means
that (w̄, v̄) = (v̄, w̄)θ for all vectors v̄, w̄ ∈ V .) Throughout this paper we always assume
that a Hermitian form of a vector space is linear in the first argument and semi-linear in
the second. Notice that if ε ∈ K

′ \{0} such that εθ = −ε (for instance, ε = λθ−λ for some
λ ∈ K

′\K), then (·, ·)′ := ε ·(·, ·) is a skew-θ-Hermitian form in V . Now, let PG(2n−1, K′)
denote the projective space associated with V and let ζ denote the Hermitian polarity
of PG(2n − 1, K′) associated with the form (·, ·). The points of PG(2n − 1, K′) which
are totally isotropic with respect to ζ define a θ-Hermitian variety H(2n − 1, K′, θ). The
subspaces of PG(2n − 1, K′) lying on H(2n − 1, K′, θ) define a polar space. We denote
the associated dual polar space by DH(2n − 1, K′, θ). If K ∼= Fq, K

′ ∼= Fq2 and θ : Fq2 →
Fq2 ; x 7→ xq, then we denote H(2n− 1, K′, θ) and DH(2n− 1, K′, θ) also by H(2n− 1, q2)
and DH(2n − 1, q2).

Let
∧n V denote the n-th exterior power of V . For every maximal subspace α =

〈v̄1, v̄2, . . . , v̄n〉 of H(2n− 1, K′, θ), let e(α) be the point 〈v̄1 ∧ v̄2 ∧ · · · ∧ v̄n〉 of PG(
∧n V ).

By Cooperstein [6] and De Bruyn [12], e defines a full embedding of DH(2n − 1, K′, θ)
into a Baer-K-subgeometry of PG(

∧n V ) of dimension
(
2n

n

)
. This embedding is called the

Grassmann-embedding of DH(2n − 1, K′, θ).
Cooperstein [6] showed that gr(DH(2n− 1, q2)) = er(DH(2n− 1, q2)) =

(
2n

n

)
for any

prime power q 6= 2. The proof in [6] makes use of some finite group theory, namely some
results of Kantor [13]. In the present paper, we give a purely geometrical proof of the
above-mentioned result of [6]. This proof does not rely on the finiteness of the underlying
field.

the electronic journal of combinatorics 14 (2007), #R54 4



Theorem 1.3 (Section 3) Suppose n ∈ N \ {0, 1} and K 6∼= F2. Then there exists a set

of
(
2n

n

)
points of DH(2n − 1, K′, θ) which generate DH(2n − 1, K′, θ).

So, if K 6∼= F2 then er(DH(2n − 1, K′, θ)) ≤ gr(DH(2n − 1, K′, θ)) ≤
(
2n

n

)
. Since the

Grassmann-embedding of DH(2n − 1, K′, θ) has vector-dimension
(
2n

n

)
, we can conclude

Corollary 1.4 Suppose n ∈ N \ {0, 1} and K 6∼= F2. Then

(i) the embedding and generating ranks of DH(2n − 1, K′, θ) are equal to
(
2n

n

)
;

(ii) the Grassmann-embedding of DH(2n− 1, K′, θ) is the absolutely universal embed-

ding of DH(2n − 1, K′, θ).

Remarks. (1) The Grassmann-embedding of DW (2n − 1, 2), n ≥ 2, is not absolutely
universal. By Blokhuis and Brouwer [2] or Li [15], the vector dimension of the absolutely

universal embedding of DW (2n − 1, 2) is equal to (2n+1)(2n−1+1)
3

. For 2 ≤ n ≤ 5, the

generating rank of DW (2n − 1, 2) is also equal to (2n+1)(2n−1+1)
3

(Cooperstein [5]). The
generating rank of DW (2n − 1, 2) is unknown for n ≥ 6.

(2) The Grassmann-embedding of DH(2n − 1, 4), n ≥ 3, is not absolutely universal.
By Li [16], the vector dimension of the absolutely universal embedding of DH(2n− 1, 4),
n ≥ 2, is equal to 4n+2

3
. For n ∈ {2, 3}, the generating rank of DH(2n− 1, 4) is also equal

to 4n+2
3

(Cooperstein [8]). The generating rank of DH(2n − 1, 4) is unknown for n ≥ 4.
(3) A lot of information on generating and embeddings ranks of point-line geometries

(including some of the above geometries) is contained in the survey paper [9].

2 Proof of Theorem 1.1

2.1 Preliminary lemmas

Let n ∈ N \ {0, 1} and let K be a field. Let V be a 2n-dimensional vector space over K

equipped with a non-degenerate alternating form (·, ·). Choose a basis {ē1, . . . , ēn, f̄1, . . . ,
f̄n} in V such that

(ēi, ēj) = (f̄i, f̄j) = 0, (ēi, f̄j) = δij

for all i, j ∈ {1, . . . , n}. Here, δij denotes the Kronecker δ symbol. Let PG(2n − 1, K) =
PG(V ) denote the projective space associated with V and let ζ denote the symplectic
polarity of PG(2n − 1, K) associated with (·, ·). Two points p1 and p2 of PG(2n − 1, K)
are called orthogonal if p1 ∈ pζ

2. If p1 and p2 are two non-orthogonal points, then p1p2 is
called a hyperbolic line. If π is a subspace of PG(2n−1, K), then the set of all points p ∈ π
for which π ⊆ pζ is called the radical of π and is denoted as Rad(π). Obviously, Rad(π)
is a subspace of π. A subspace π of PG(2n − 1, K) is called degenerate if Rad(π) 6= ∅.

Lemma 2.1 There exist 2n points p1, p2, . . . , p2n in PG(2n−1, K) such that the following

holds for the subspaces πi := 〈p1, p2, . . . , pi〉, i ∈ {1, . . . , 2n}:
(1) for every i ∈ {1, . . . , n}, the subspace π2i is non-degenerate;
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(2) for every i ∈ {1, . . . , n − 1}, π2i+1 is degenerate and Rad(π2i+1) is a point;

(3) for every i ∈ {2, . . . , n − 1}, pζ
i+1 ∩ πi = πi−1;

(4) π2n = PG(2n − 1, K).

Proof. Put

• p1 = 〈ē1〉,

• p2i = 〈f̄i〉 for every i ∈ {1, . . . , n},

• p2i+1 = 〈ēi + ēi+1〉 for every i ∈ {1, . . . , n − 1}.

Obviously, π2n = 〈ē1, . . . , ēn, f̄1, . . . , f̄n〉 = PG(2n − 1, K). It is straightforward to
verify that π2i = 〈ē1, . . . , ēi, f̄1, . . . , f̄i〉, i ∈ {1, . . . , n}, is non-degenerate and π2i+1 =
〈ē1, ē2, . . . , ēi, f̄1, f̄2, . . . , f̄i, ēi+1〉, i ∈ {1, . . . , n − 1}, is degenerate with Rad(π2i+1) =
{〈ēi+1〉}.

If j1, j2 ∈ {1, . . . , 2n} with j1 ≤ j2 − 2, then clearly pj1 ∈ pζ
j2

. If j ∈ {1, . . . , 2n − 1},

then pj 6∈ pζ
j+1. This proves Claim (3). �

Consider now the following point-line incidence structure N :

• the points of N are the points of PG(2n − 1, K);

• the lines of N are the hyperbolic lines of PG(2n − 1, K);

• the incidence relation of N is derived from the one of PG(2n − 1, K).

Lemma 2.2 Suppose K 6∼= F2 and let p1, p2, . . . , p2n be 2n points in PG(2n − 1, K) sat-

isfying the properties (1) – (4) of Lemma 2.1. Then 〈p1, p2, . . . , pi〉N = πi \ Rad(πi) for

every i ∈ {2, . . . , 2n}.

Proof. We will prove the lemma by induction on i.
If i = 2, then πi = π2 = 〈p1, p2〉 = 〈p1, p2〉N and Rad(π2) = ∅. Suppose therefore that

i ≥ 3 and that the lemma holds for smaller values of i.
Suppose i ≥ 3 is odd and let p∗ denote the unique point in Rad(πi). Then p∗ 6∈

πi−1 since Rad(πi−1) = ∅. By the induction hypothesis, πi−1 = 〈p1, p2, . . . , pi−1〉N ⊆
〈p1, p2, . . . , pi〉N . By considering lines through pi, we see that every point of πi \ (pζ

i ∩ πi)
belongs to 〈p1, p2, . . . , pi〉N . Now, let p be an arbitrary point of (pζ

i ∩ πi) \ {p
∗} and let L

denote a line of πi through p not contained in (pζ
i ∩πi)∪(pζ∩πi). Since L is a hyperbolic line

and L \ {p} ⊆ 〈p1, p2, . . . , pi〉N , also the point p belongs to 〈p1, p2, . . . , pi〉N . This proves
that πi \ Rad(πi) ⊆ 〈p1, p2, . . . , pi〉N and hence that πi \ Rad(πi) = 〈p1, p2, . . . , pi〉N .

Suppose i ≥ 4 is even and let p∗ denote the unique point in Rad(πi−1). Since
Rad(πi−2) = ∅, p∗ 6∈ πi−2 and hence p∗ 6∈ (pζ

i ∩ πi). By the induction hypothesis,
πi−1 \ {p∗} = 〈p1, p2, . . . , pi−1〉N ⊆ 〈p1, . . . , pi〉N . By considering lines through pi, we
see that every point of πi \ ((pζ

i ∩ πi)∪ pip
∗) belongs to 〈p1, p2, . . . , pi〉N . Now, let p be an

arbitrary point of (pζ
i ∩ πi) \ {pi} and let L denote a line of πi through p not contained

in (pζ ∩ πi) ∪ (pζ
i ∩ πi) ∪ 〈p, pip

∗〉. (Notice that if i = 4, we need the fact that |K| 6= 2
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for the existence of such a line.) Since L is a hyperbolic line and L \ {p} ⊆ 〈p1, . . . , pi〉N ,
also p belongs to 〈p1, . . . , pi〉N . This proves that πi \ pip

∗ ⊆ 〈p1, p2, . . . , pi〉N . Now, let p′

denote an arbitrary point of pip
∗ and let L′ denote an arbitrary line of πi through p′ not

contained in (p′ζ ∩πi)∪pip
∗. Since L′ is a hyperbolic line and L′ \{p′} ⊆ 〈p1, p2, . . . , pi〉N ,

also the point p′ belongs to 〈p1, . . . , pi〉N . This proves that 〈p1, . . . , pi〉N = πi. �

2.2 A sequence of numbers

For every n ∈ N \ {0} and every j ∈ {0, . . . , n}, we now define a number f(n, j). For
n = 1, we define

f(1, 0) = f(1, 1) = 1.

Suppose that for some n ≥ 1, we have defined f(n, j) for all j ∈ {0, . . . , n}. Then we
define

λ(n) :=
n∑

i=0

f(n, i),

f(n + 1, 0) := λ(n),

f(n + 1, j) :=

n∑

i=j−1

f(n, i) for every j ∈ {1, . . . , n + 1}.

Notice that f(n + 1, 1) = λ(n). The numbers f(n, j), λ(n) were defined in Cooperstein
[7]. He also proved the following.

Lemma 2.3 ([7, Proposition 4.3]) Let n ≥ 1. Then

f(n, 0) =

(
2n − 2

n − 1

)
−

(
2n − 2

n − 3

)
,

f(n, j) =

(
2n − 1 − j

n − j

)
−

(
2n − 1 − j

n − 2 − j

)
for every j ∈ {1, . . . , n},

λ(n) =

(
2n

n

)
−

(
2n

n − 2

)
.

2.3 A generating set of DW (2n − 1, K), |K| 6= 2

We keep the notations introduced in Section 2.1. Let W (2n − 1, K) and ∆ := DW (2n −
1, K) denote the polar and dual polar space associated with the symplectic polarity ζ of
PG(2n− 1, K). The maximal singular subspaces of W (2n− 1, K) through a given point x
of PG(2n− 1, K) determine a max M(x) of ∆. The discussion in this subsection is based
on Cooperstein [7].

Lemma 2.4 Suppose x, y are non-orthogonal points of W (2n − 1, K) and let L denote

the hyperbolic line spanned by x and y. Then 〈M(x), M(y)〉∆ =
⋃

z∈L M(z).
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Proof. Let α be an arbitrary point of M(z), z ∈ L. We will show that α ∈ 〈M(x),
M(y)〉∆. Obviously, this holds if z ∈ {x, y}. So, suppose x 6= z 6= y. Let αx denote
the unique maximal singular subspace through x meeting α in an (n − 2)-dimensional
subspace. Then L ∩ (αx ∩ α) = ∅. Since x, z ∈ (αx ∩ α)ζ, also y ∈ (αx ∩ α)ζ . Hence,
αy := 〈y, αx ∩ α〉 is a maximal singular subspace through y. Now, αx, αy and α are
collinear points of ∆. Since αx ∈ M(x) and αy ∈ M(y), α ∈ 〈M(x), M(y)〉∆.

By the previous paragraph,
⋃

z∈L M(z) ⊆ 〈M(x), M(y)〉∆. Notice that M(x)∪M(y) ⊆⋃
z∈L M(z). So, it remains to show that

⋃
z∈L M(z) is a subspace. Let α1 and α2 be two

distinct maximal singular subspaces of
⋃

z∈L M(z) which are collinear regarded as points
of ∆. Then dim(α1 ∩ α2) = n − 2. Let α denote an arbitrary maximal singular subspace
through α1 ∩ α2. Let x1 and x2 be the unique points of L such that x1 ∈ α1 and x2 ∈ α2.
If x1 = x2, then x1 ∈ α and hence α ∈ Mx1

⊆
⋃

z∈L M(z). Suppose x1 6= x2. Then
(α1 ∩ α2)

ζ = 〈α1 ∩ α2, x1, x2〉. So, the maximal singular subspace α ⊆ (α1 ∩ α2)
ζ meets

x1x2 in a point x3 ∈ L. Hence, α ∈ Mx3
⊆

⋃
z∈L M(z). �

Lemma 2.5 Suppose x and y are distinct orthogonal points of W (2n − 1, K). Then

〈M(x), M(y)〉∆ = M(x) ∪ M(y).

Proof. Clearly, M(x)∩M(y) is a convex subspace of diameter n− 2 corresponding with
the line xy of W (2n − 1, K).

Let u ∈ M(x) and v ∈ M(y) be two distinct collinear points. We show that u, v ∈
M(x) or u, v ∈ M(y) (or both). If u ∈ M(y), then we are done. So, suppose u ∈
M(x) \ M(y). Since v ∈ M(y) ∩ ∆1(u), v is the unique point of M(y) collinear with
u. This point coincides with the unique point of M(x) ∩ M(y) collinear with u. Hence,
v ∈ M(x).

Since u, v ∈ M(x) or u, v ∈ M(y), the line uv is contained in M(x) or M(y). It follows
that 〈M(x), M(y)〉∆ = M(x) ∪ M(y). �

Lemma 2.6 Suppose K is not isomorphic to F2. Let p1, . . . , p2n be points of PG(2n−1, K)
satisfying the properties (1) – (4) of Lemma 2.1. Then 〈M(p1), M(p2), . . . , M(pn+1)〉∆
coincides with the whole point set of ∆.

Proof. Put C = 〈p1, . . . , pn+1〉. Then the projective dimension dim(C) of C is equal to
n. By Lemmas 2.2, 2.4 and 2.5,

〈M(p1), M(p2), . . . , M(pn+1)〉∆ =
⋃

z∈C\Rad(C)

M(z).

If n + 1 is even, then Rad(C) = ∅ and hence

〈M(p1), M(p2), . . . , M(pn+1)〉∆ =
⋃

z∈C

M(z).

If n + 1 is odd, then Rad(C) is a singleton {p∗}. If x ∈ M(p∗), then as both C and x
(regarded as subspaces of PG(2n− 1, K)) are contained in p∗ζ , dim(C ∩x) ≥ 1. It follows

the electronic journal of combinatorics 14 (2007), #R54 8



that x ∈
⋃

z∈C\Rad(C) M(z). So, also if n + 1 is odd, we have that

〈M(p1), M(p2), . . . , M(pn+1)〉∆ =
⋃

z∈C

M(z).

Now, let x denote an arbitrary point of ∆. As dim(x) = n − 1 and dim(C) = n, dim(x ∩
C) ≥ 0. Hence, x ∈

⋃
z∈C M(z) = 〈M(p1), M(p2), . . . , M(pn+1)〉∆. This proves the

lemma. �

Lemma 2.7 Suppose K is not isomorphic to F2. Let p1, p2, . . . , p2n be 2n points satisfying

the conditions (1) – (4) of Lemma 2.1. Put B0 = ∅ and Bj = 〈M(p1), . . . , M(pj)〉∆ for

every j ∈ {1, . . . , n}. Then for every j ∈ {0, . . . , n}, there exists a set X of points in

M(pj+1) satisfying

(i) |X| = f(n, j);

(ii) 〈(Bj ∩ M(pj+1)) ∪ X〉∆ = M(pj+1).

Proof. We will prove the lemma by induction on n.
Suppose n = 2 and j ∈ {0, 1}. Then there exists a set X of size f(2, j) = 2 such that

〈X〉∆ = M(pj+1). Hence, also 〈(Bj ∩ M(pj+1)) ∪ X〉∆ = M(pj+1).
Suppose n = 2 and j = 2. The point 〈p1, p3〉 of ∆ belongs to B2 ∩ M(p3). Hence,

there exists a set X of size f(2, 2) = 1 such that 〈(B2 ∩ M(p3)) ∪ X〉∆ = M(p3).
Suppose that n ≥ 3 and that the lemma holds for smaller values of n. By the induction

hypothesis and Lemma 2.6, every M(pi), i ∈ {1, . . . , 2n}, can be generated by λ(n− 1) =∑n−1
i=0 f(n − 1, i) points. As a consequence, the claim holds if j = 0. So, suppose j ≥ 1.

The singular subspaces through pj+1 define a polar space W (2n− 3, K) which lives in the

projective space pζ
j+1/pj+1. Let DW (2n − 3, K) denote the dual polar space associated

with W (2n − 3, K). There exists a natural bijective correspondence between the points
of DW (2n − 3, K) and the points of the max M(pj+1). Now, let ḡi, i ∈ {1, . . . , 2n}, be a
nonzero vector of V such that pi = 〈ḡi〉. Put

• p′i = pi = 〈ḡi〉 for every i ∈ {1, . . . , j − 1},

• p′j = 〈(ḡj+1, ḡj+2)ḡj − (ḡj+1, ḡj)ḡj+2〉,

• p′i = pi+2 = 〈ḡi+2〉 for every i ∈ {j + 1, . . . , 2n − 2}.

Notice that each of these points belongs to pζ
j+1. Put p′′i = p′ipj+1 for every i ∈ {1, . . . , 2n−

2}. Then p′′i , i ∈ {1, . . . , 2n−2}, are points of W (2n−3, K) satisfying the properties (1) –
(4) of Lemma 2.1. Let M ′(p′′i ), i ∈ {1, . . . , 2n− 2}, denote the max of M(pj+1) consisting
of all maximal singular subspaces through p′

ipj+1. Then M ′(p′′i ) = M(p′i) ∩ M(pj+1).
The subspace Bj ∩ M(pj+1) of M(pj+1) contains the maxes M(pi) ∩ M(pj+1) = M(p′i) ∩
M(pj+1) = M ′(p′′i ), i ∈ {1, . . . , j−1}. By Lemma 2.6 and the induction hypothesis applied
to the maxes M ′(p′′i ), i ∈ {j, . . . , 2n−2}, of M(pj+1), we see that there exists a set X of size
f(n−1, j−1)+ · · ·+f(n−1, n−1) = f(n, j) such that 〈(Bj∩M(pj+1))∪X〉∆ = M(pj+1).
This proves the lemma. �

The following corollary is precisely Theorem 1.1.
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Corollary 2.8 The dual polar space DW (2n−1, K), |K| 6= 2 and n ≥ 2, can be generated

by
∑n

j=0 f(n, j) = λ(n) =
(
2n

n

)
−

(
2n

n−2

)
points.

Proof. By Lemmas 2.6 and 2.7. �

3 Proof of Theorem 1.3

3.1 Some definitions

Let K and K
′ be fields such that K

′ is a quadratic Galois extension of K, let θ denote the
unique nontrivial element of Gal(K′/K) and let n ∈ N \ {0}. Suppose H is a θ-Hermitian
variety of PG(n, K′). Then one of the following cases occurs for a line L of PG(n, K′):

(1) L ∩ H = ∅;
(2) |L ∩ H| = 1;
(3) L ⊆ H;
(4) L ∩H is a Baer-K-subline of L, i.e., with respect to a suitable reference system of

L, the points of L∩H are precisely those points of L whose coordinates can be chosen in
the subfield K of K

′.

If case (1), (2), (3), respectively (4) occurs, then L is called an exterior line, a tangent

line, a totally isotropic line, respectively a secant line.
Let N (H) denote the point-line incidence structure whose points are the points of H,

whose lines are the secant lines and whose incidence relation is containment.

3.2 A useful lemma

Lemma 3.1 Let H be a non-degenerate Hermitian variety of Witt-index 1 in PG(2, K′).
Then any three non-collinear points of N (H) generate the whole point-set of N (H).

Proof. Let θ be the involutory automorphism of K
′ associated with H and let K denote

the fixed field of θ. Let (·, ·) denote a skew-θ-Hermitian form of a 3-dimensional vector
space V over K

′ which gives rise to the Hermitian variety H of PG(V ) = PG(2, K′).
Let p1, p2 and p3 be three mutually distinct points of N := N (H) which are not

contained in a line of N (H). We choose vectors ē1, ē2 and ē3 in V such that p1 = 〈ē1〉,
p2 = 〈ē2〉, p3 = 〈ē3〉, (ē1, ē2) = 1 and (ē1, ē3) = 1. Put λ := (ē2, ē3). The matrix associated
with the skew-Hermitian form (·, ·) is equal to

M =




0 1 1
−1 0 λ
−1 −λθ 0


 .

The fact that H is nonsingular implies that det(M) 6= 0, or equivalently that λ 6∈ K. So,
{1, λθ} is a basis of K

′ regarded as two-dimensional vector space over K.
Let S denote the smallest subspace of N containing the points p1, p2 and p3. Let U

denote the set of points x on p1p2 such that p3x ∩H ⊆ S. We will show that U coincides
with the whole point-set of p1p2.
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Claim I. The points 〈ē1〉, 〈ē2〉 and 〈ē1 −
1

λθ+1 λ
θē2〉 of p1p2 belong to U .

Proof. Since p1p3 and p2p3 are secant lines and p1, p2, p3 ∈ S, 〈ē1〉, 〈ē2〉 ∈ U . Since
(ē1 −

1
λθ+1 λ

θē2, ē3) = 0, the line 〈ē1 −
1

λθ+1 λ
θē2, ē3〉 of PG(2, K′) intersects H in only the

point p3 = 〈ē3〉. Hence 〈ē1 −
1

λθ+1 λ
θē2〉 ∈ U .

Claim II. All points 〈ē1 + (a + bλθ)ē2〉, a, b ∈ K with a 6= 0, belong to U .

Proof. A point of (p1p3∩H)\{p3} has the form 〈ē1+kē3〉, k ∈ K. The points of H \{p2}
on a line through 〈ē1+kē3〉, k ∈ K, and 〈ē2〉 are of the form 〈ē1+kē3+(k′−kk′λθ)ē2〉, k′ ∈
K. Hence, for all k, k′ ∈ K, 〈ē1 +(k′−kk′λθ)ē2〉 ∈ U . It follows that 〈ē1 +(a+bλθ)ē2〉 ∈ U
for all a, b ∈ K with a 6= 0.

Claim III. Every point 〈ē1 + bλθē2〉, b ∈ K \ {0,− 1
λθ+1}, belongs to U .

Proof. Let b ∈ K \ {0,− 1
λθ+1}. Since (ē1 + bλθ ē2, ē3) = 1 + bλθ+1 6= 0, the line through

〈ē1 + bλθē2〉 and p3 = 〈ē3〉 is a secant line and hence there exists a point of H of the form
〈ē1 + bλθē2 + k∗ē3〉. Since H does not contain lines, (ē1 + bλθē2 + k∗ē3, ē2) = 1− k∗λθ 6= 0.
The points 〈ē1 + bλθ ē2 + k∗ē3 + k(1 − k∗λθ)ē2〉, k ∈ K, all belong to H.

If (1−k∗λθ) is a K-multiple of λθ, then 〈ē1 +k∗ē3〉 ∈ H (so, k∗ ∈ K) and 〈ē1 + bλθ ē2 +
k∗ē3〉 lies on the line connecting 〈ē1 + k∗ē3〉 ∈ H with 〈ē2〉 ∈ H. By the discussion in the
proof of Claim II, 〈ē1 + bλθē2 + k∗ē3〉 = 〈ē1 + kē3 + (k′ − kk′λθ)ē2〉 for certain k, k′ ∈ K.
So, k∗ = k, k′ = 0 and kk′ = −b, which is impossible since b 6= 0.

Hence, 1−k∗λθ is not a K-multiple of λθ. By Claim II, 〈ē1+bλθē2+k∗ē3+(1−k∗λθ)ē2〉 ∈
S. Since also 〈ē2〉 ∈ S, we have 〈ē1 + bλθē2 + k∗ē3〉 ∈ S. It follows that 〈ē1 + bλθē2〉 ∈ U .

By Claims I, II and III, U coincides with the whole point-set of p1p2. This implies that
S = H. �

3.3 On the generation of the geometry N (H)

Let K and K
′ be fields such that K

′ is a quadratic Galois extension of K, let θ denote the
unique nontrivial element in Gal(K′/K) and let n ∈ N \ {0, 1}.

Let V be a 2n-dimensional vector space over the field K
′ equipped with a non-

degenerate skew-θ-Hermitian form (·, ·). Associated with the form (·, ·), there is a Her-
mitian polarity ζ and a Hermitian variety H(2n − 1, K′, θ) of PG(V ) = PG(2n − 1, K′).
We assume that the Witt-index of H(2n − 1, K′, θ) is equal to n. Two points p1 and p2

of PG(2n − 1, K′) are called orthogonal if p1 ∈ pζ
2. If π is a subspace of PG(2n − 1, K′),

then the set of all points p ∈ π for which π ⊆ pζ is called the radical of π and is denoted
as Rad(π). Obviously, Rad(π) is a subspace of π. A subspace π is called degenerate if
Rad(π) 6= ∅.

Lemma 3.2 There exist points p1, p2, . . . , p2n in H(2n− 1, K′, θ) satisfying the following

properties:

(1) πi := 〈p1, . . . , pi〉 is non-degenerate for every i ∈ {2, . . . , 2n};
(2) πi ∩ pζ

i+1 = πi−1 for every i ∈ {3, . . . , 2n − 1};
(3) π2n = PG(2n − 1, K′).
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Proof. Choose a basis {ē1, ē2, . . . , ēn, f̄1, f̄2, . . . , f̄n} in V such that

(ēi, ēj) = (f̄i, f̄j) = 0, (ēi, f̄j) = δij

for all i, j ∈ {1, . . . , n}. Here, δij denotes the Kronecker δ symbol.

Choose µ ∈ K
′ \ K and put λ1 = µθ

µ
and λ2 = µθ+1

µ+1
. Then λ1 6= 1 6= λ2 6= λ1. Choose

λ ∈ {λ1, λ2} such that λ 6= −1. Notice that λθ+1 = 1 and λ 6∈ K since λθ = 1
λ
6= λ. Now,

put

p1 = 〈ē1〉,

p2k = 〈f̄k〉, k ∈ {1, . . . , n},

p2k+1 = 〈ēk + λf̄k + f̄k+1 + λēk+1〉, k ∈ {1, . . . , n − 1}.

Since (ēk + λf̄k + f̄k+1 + λēk+1, ēk + λf̄k + f̄k+1 + λēk+1) = 0, all these points belong to
H(2n − 1, K′, θ). Obviously, π2n = 〈ē1, . . . , ēn, f̄1, . . . , f̄n〉 = PG(2n − 1, K′) and π2i =
〈p1, . . . , p2i〉 = 〈ē1, f̄1, ē2, f̄2, . . . , ēi, f̄i〉 is non-degenerate for any i ∈ {1, . . . , n}. Suppose
that for a certain i ∈ {1, . . . , n − 1}, π2i+1 = 〈ē1, f̄1, . . . , ēi, f̄i, f̄i+1 +λēi+1〉 is degenerate.
Let 〈v̄〉 = 〈a1ē1 +b1f̄1 + · · ·+aiēi +bif̄i +c(f̄i+1 +λēi+1)〉 be a point in the radical of π2i+1.
Since 〈v̄〉 is orthogonal with 〈ēj〉 and 〈f̄j〉, we have aj = bj = 0 for every j ∈ {1, . . . , i}. So,
〈v̄〉 = 〈f̄i+1 +λēi+1〉, but this is impossible since (f̄i+1 +λēi+1, f̄i+1 +λēi+1) = −λθ +λ 6= 0
(recall λ 6∈ K). We will now prove Claim (2).

Choose a k ∈ {2, . . . , n} and consider the point p2k = 〈f̄k〉. Obviously, p2k = 〈f̄k〉 and
p2k−1 = 〈ēk−1 + λf̄k−1 + f̄k + λēk〉 are not orthogonal. It is also obvious that p2k and pi

are orthogonal for every i ∈ {1, . . . , 2k − 2}.
Choose a k ∈ {2, . . . , n− 1} and consider the point p2k+1 = 〈ēk + λf̄k + f̄k+1 + λēk+1〉.

Obviously, p2k+1 = 〈ēk + λf̄k + f̄k+1 + λēk+1〉 and p2k = 〈f̄k〉 are not orthogonal. It is also
clear that p2k+1 and pi are orthogonal for every i ∈ {1, . . . , 2k− 2}. Since (ēk−1 +λf̄k−1 +
f̄k +λēk, ēk +λf̄k + f̄k+1 +λēk+1) = −1+λθ+1 = 0, also p2k+1 and p2k−1 are orthogonal. �

Put N := N (H(2n − 1, K′, θ)).

Lemma 3.3 Suppose K 6∼= F2 and let p1, p2, . . . , p2n be 2n points of H(2n − 1, K′, θ)
satisfying the properties (1), (2) and (3) of Lemma 3.2. Then 〈p1, p2, . . . , pi〉N = πi ∩
H(2n − 1, K′, θ) for every i ∈ {1, . . . , 2n}.

Proof. We will prove the lemma by induction on i. Obviously, the lemma holds if i ≤ 2.
If i = 3, then the lemma holds by Lemma 3.1. Suppose therefore that i ≥ 4 and that the
lemma holds for smaller values of i. By the induction hypothesis, πi−1∩H(2n−1, K′, θ) =
〈p1, . . . , pi−1〉N ⊆ 〈p1, . . . , pi〉N .

(I) Let p denote an arbitrary point of πi ∩ H(2n − 1, K′, θ) not contained in pζ
i . If pip

intersects πi−1 in a point of H(2n − 1, K′, θ) (and hence also of 〈p1, p2, . . . , pi〉N ), then
p ∈ 〈p1, . . . , pi〉N . Suppose therefore that pip intersects πi−1 in a point p′ not belonging
to H(2n − 1, K′, θ).
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Claim. There exists a secant line L ⊆ πi−1 through p′ which intersects πi−2 in a point

not belonging to H(2n − 1, K′, θ).
Proof. Notice first that the tangent lines of πi−1 through p′ are precisely those lines
through p′ which contain a point of (p′ζ ∩ πi−1) ∩ H(2n − 1, K′, θ).

The points of H(2n−1, K′, θ)∩πi−1 generate πi−1. Hence, there exists a line M ⊆ πi−1

through p′ containing a point of H(2n − 1, K′, θ) \ (p′ζ ∩ πi−1). If the unique point in
M ∩ (p′ζ ∩ πi−1) is contained in H(2n − 1, K′, θ), then M ∩ H(2n − 1, K′, θ) contains
at least two points, a contradiction, since every line through p′ containing a point of
(p′ζ ∩ πi−1) ∩ H(2n − 1, K′, θ) is a tangent line. Hence,

M ∩ (p′
ζ
∩ πi−1) ∩ H(2n − 1, K′, θ) = ∅. (1)

By (1), M is not a tangent line. So, M is a secant line since M ∩H(2n− 1, K′, θ) 6= ∅. If
the unique point in M ∩ πi−2 is not contained in H(2n− 1, K′, θ), then we are done (take
L = M). So, suppose M ∩ πi−2 ⊆ H(2n − 1, K′, θ). Since πi−2 is non-degenerate, there
exists a secant line M1 ⊆ πi−2 through M ∩ πi−2. Let α be the plane 〈M, M1〉 and put
M2 := α ∩ (p′ζ ∩ πi−1). By (1), M ∩ M2 6⊆ H(2n − 1, K′, θ). So, M2 cannot be contained
in H(2n − 1, K′, θ). Obviously, Rad(α) ⊆ α ∩ (p′ζ ∩ πi−1) = M2. One readily sees that α
is degenerate if and only if M2 ∩ H(2n − 1, K′, θ) is a singleton (the radical of α).

Suppose α is degenerate and let x∗ denote the unique point in M2 ∩ H(2n − 1, K′, θ).
Then any line of α through p′ not containing x∗ is a secant line. Now, the lines of α
through p′ intersecting M1 ∩ H(2n− 1, K′, θ) non-trivially define a Baer-K-subline of the
quotient space α/p′ (which is a projective line over K

′). The line p′x∗ defines a point of
α/p′. It follows that there exists a line L ⊆ α through p′ different from p′x∗ intersecting M1

in a point not belonging to H(2n− 1, K′, θ). This line L satisfies the required conditions.
Suppose α is non-degenerate and M2 ∩H(2n− 1, K′, θ) = ∅. Let Lp′ denote the set of

lines of α through p′ intersecting M1 in a point of H(2n − 1, K′, θ). If there exists a line
L 6∈ Lp′ in α through p′ containing a point of H(2n−1, K′, θ), then this line L satisfies all
required conditions. Suppose therefore that all points of α∩H(2n−1, K′, θ) are contained
in a line of Lp′. Let L1 and L2 denote two distinct lines of Lp′. Put {u1} = L1 ∩ M1 and
let u2 denote the unique point of L2 such that u1u2 is a tangent line. Let x denote an
arbitrary point of L2 \ {p′, u2}. Then the line u1x is a secant line. Hence, the set of lines
through p′ meeting u1x in a point of H(2n − 1, K′, θ) is a Baer-K-subline of the quotient
space α/p′ which necessarily coincides with Lp′. It follows that x ∈ H(2n−1, K′, θ). Since
x was an arbitrary point of L2\{p

′, u2}, L2\{p
′, u2} is contained in H(2n−1, K′, θ). Since

|K′ \K| > 2 (recall K 6∼= F2), this implies that L2 ⊆ H(2n−1, K′, θ), in contradiction with
p′ 6∈ H(2n − 1, K′, θ).

Suppose α is non-degenerate and M2 ∩ H(2n − 1, K′, θ) is a Baer-K-subline of M2.
Let xi, i ∈ {1, 2}, denote an arbitrary point of (Mi ∩ H(2n − 1, K′, θ)) \ M3−i. Then
x1x2∩H(2n−1, K′, θ) is a Baer-K-subline of x1x2. So, p′ 6∈ x1x2. (Recall that lines through
p′ containing a point of M2 ∩ H(2n − 1, K′, θ) are tangent lines.) If u ∈ x1x2 ∩ H(2n −
1, K′, θ)\{x2}, then the line p′u is a secant line and intersects M2 in a point not belonging
to H(2n−1, K′, θ). If p′u intersects M1 in a point not belonging to H(2n−1, K′, θ), then we
are done (take L = p′u). So, suppose that all lines p′u, u ∈ x1x2 ∩H(2n− 1, K′, θ) \ {x2}
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intersect M1 in a point of H(2n − 1, K′, θ). Let L1 denote the set of lines through p′

intersecting M1 in a point of H(2n− 1, K′, θ) and let L2 denote the set of lines through p′

intersecting x1x2 in a point of H(2n− 1, K′, θ). Then L1 and L2 are two Baer-K-sublines
of α/p′. Since |L1 ∩ L2| ≥ |K| ≥ 3, L1 coincides with L2. This implies that the line p′x2

intersects M1 in a point of H(2n−1, K′, θ). So, p′x2 is a secant line. But this is impossible:
since p′x2 intersects M2 in a point of H(2n − 1, K′, θ), it should also be a tangent line.

Now, let L be a secant line through p′ intersecting πi−2 in a point not belonging to
H(2n − 1, K′, θ). We will show that the plane 〈L, pip〉 is non-degenerate. Suppose p∗

belongs to the radical of 〈L, pip〉. Then the line pip
∗ is contained in pζ

i ∩ H(2n − 1, K′, θ)
and intersects πi−1 in a point of L∩H(2n−1, K′, θ)∩πi−2, a contradiction. Hence, 〈L, pip〉
is non-degenerate.

Let p′1 and p′2 be two points of L ∩ H(2n − 1, K′, θ). Since 〈L, pip〉 is non-degenerate,
〈L, pip〉∩H(2n−1, K′, θ) = 〈p′1, p

′
2, pi〉N (recall Lemma 3.1). Since πi−1∩H(2n−1, K′, θ) =

〈p1, p2, . . . , pi−1〉N (induction hypothesis), 〈p′1, p
′
2, pi〉N ⊆ 〈p1, p2, . . . , pi〉N . It follows that

p ∈ 〈p1, p2, . . . , pi〉N . This proves that every point of (πi ∩ H(2n − 1, K′, θ)) \ (pζ
i ∩ πi)

belongs to 〈p1, p2, . . . , pi〉N .

(II) Let p denote an arbitrary point of (pζ
i ∩ πi)∩H(2n− 1, K′, θ) and let L denote an

arbitrary line of πi through p not contained in (pζ ∩ πi) ∪ (pζ
i ∩ πi). Then L is a secant

line. Since (L ∩ H(2n − 1, K′, θ)) \ {p} ⊆ 〈p1, . . . , pi〉N , also p ∈ 〈p1, . . . , pi〉N .

By (I) and (II), every point of πi ∩ H(2n − 1, K′, θ) belongs to 〈p1, p2, . . . , pi〉N , i.e.
〈p1, p2, . . . , pi〉N = πi ∩ H(2n − 1, K′, θ). �

Remark. In the finite case, it is possible to give a much shorter proof of Lemma 3.3 due
to the nonexistence of exterior lines.

3.4 A sequence of numbers

For every n ∈ N \ {0, 1} and every j ∈ {0, . . . , n}, we now define a number f(n, j). For
n = 2, we define

f(2, 0) = f(2, 1) = f(2, 2) = 2.

Suppose that for some n ≥ 2, we have defined f(n, j) for all j ∈ {0, . . . , n}. Then we
define

λ(n) :=

n∑

j=0

f(n, j),

f(n + 1, 0) := λ(n),

f(n + 1, 1) := λ(n),

f(n + 1, 2) := λ(n),

f(n + 1, k) :=
n∑

j=k−1

f(n, j) for every k ∈ {3, . . . , n + 1}.
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The numbers f(n, j), λ(n) were defined by Cooperstein in [6]. He also proved the following.

Lemma 3.4 ([6, Lemma 4.2]) Let n ≥ 2. Then

f(n, 0) =

(
2n − 2

n − 1

)
,

f(n, 1) =

(
2n − 2

n − 1

)
,

f(n, j) = 2

(
2n − 1 − j

n − j

)
for every j ∈ {2, . . . , n},

λ(n) =

(
2n

n

)
.

3.5 A generating set of DH(2n − 1, K′, θ), |K| 6= 2

Let ∆ be the dual polar space associated with a nonsingular θ-Hermitian variety H(2n−
1, K′, θ) of Witt-index n ≥ 2 in PG(2n − 1, K′). Let ζ denote the Hermitian polarity of
PG(2n−1, K′) associated with H(2n−1, K′, θ). The maximal subspaces of H(2n−1, K′, θ)
through a given point x of H(2n − 1, K′, θ) determine a max M(x) of ∆. The discussion
in this subsection is based on Cooperstein [6].

The proof of the following lemma is completely similar to the proofs of Lemmas 2.4 and
2.5 and hence we omit it.

Lemma 3.5 (i) Suppose x, y are non-orthogonal points of H(2n− 1, K′, θ) and put L :=
xy ∩ H(2n − 1, K′, θ). Then 〈M(x), M(y)〉∆ =

⋃
z∈L M(z).

(ii) Suppose x and y are distinct orthogonal points of H(2n − 1, K′, θ). Then 〈M(x),
M(y)〉∆ = M(x) ∪ M(y).

Lemma 3.6 Suppose K is not isomorphic to F2. Let p1, . . . , p2n be points of H(2n −
1, K′, θ) satisfying the properties (1) – (3) of Lemma 3.2. Then 〈M(p1), M(p2), . . . ,
M(pn+1)〉∆ coincides with the whole point-set of ∆.

Proof. Put C = 〈p1, . . . , pn+1〉. Then dim(C) = n. By Lemmas 3.3 and 3.5,

〈M(p1), M(p2), . . . , M(pn+1)〉∆ =
⋃

z∈C

M(z).

If x is a point of ∆ (i.e., an (n − 1)-dimensional subspace contained in H(2n − 1, K′, θ)),
then dim(x ∩ C) ≥ 0 since dim(x) = n − 1 and dim(C) = n. Hence, x ∈

⋃
z∈C M(z) =

〈M(p1), M(p2), . . . , M(pn+1)〉∆. This proves the lemma. �

Lemma 3.7 Suppose K is not isomorphic to F2. Let p1, p2, . . . , p2n be 2n points satisfying

the conditions (1) – (3) of Lemma 3.2. Put B0 = ∅ and Bj = 〈M(p1), . . . , M(pj)〉∆ for

every j ∈ {1, . . . , n}. Then for every j ∈ {0, . . . , n}, there exists a set X of points in

M(pj+1) satisfying:
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(i) |X| = f(n, j);

(ii) 〈(Bj ∩ M(pj+1)) ∪ X〉∆ = M(pj+1).

Proof. We will prove the lemma by induction on n.
Suppose n = 2 and j ∈ {0, 1, 2}. Then there exists a set X of size f(2, j) = 2 such

that 〈X〉∆ = M(pj+1). Hence, also 〈(Bj ∩ M(pj+1)) ∪ X〉∆ = M(pj+1).
Suppose that n ≥ 3 and that the lemma holds for smaller values of n. By the induction

hypothesis and Lemma 3.6, every M(pi), i ∈ {1, . . . , 2n}, can be generated by λ(n− 1) =∑n−1
i=0 f(n − 1, i) points. As a consequence, the claim holds if j ∈ {0, 1, 2}. So, suppose

j ≥ 3. The singular subspaces through pj+1 define a polar space of type H(2n − 3, K′, θ)

which lives in the projective space pζ
j+1/pj+1. Let DH(2n−3, K′, θ) denote the dual polar

space associated with this polar space. There exists a natural bijective correspondence
between the points of DH(2n− 3, K′, θ) and the points of the max M(pj+1). Now, let ḡi,
i ∈ {1, . . . , 2n}, be a nonzero vector of V such that pi = 〈ḡi〉. Put

• p′i = pi = 〈ḡi〉 for every i ∈ {1, . . . , j − 1},

• p′j = 〈(ḡj+2, ḡj+1)ḡj − (ḡj, ḡj+1)ḡj+2〉,

• p′i = pi+2 = 〈ḡi+2〉 for every i ∈ {j + 1, . . . , 2n − 2}.

Notice that all these points belong to H(2n − 1, K′, θ) and to pζ
j+1. Put p′′i = p′ipj+1 for

every i ∈ {1, . . . , 2n − 2}. Then p′′
i , i ∈ {1, . . . , 2n − 2}, are points of H(2n − 3, K′, θ)

satisfying properties (1), (2) and (3) of Lemma 3.2. Let M ′(p′′i ), i ∈ {1, . . . , 2n−2}, denote
the max of M(pj+1) consisting of all maximal singular subspaces through p′

ipj+1. Then
M ′(p′′i ) = M(p′i) ∩ M(pj+1). The subspace Bj ∩ M(pj+1) of M(pj+1) contains the maxes
M(pi) ∩ M(pj+1) = M(p′i) ∩ M(pj+1) = M ′(p′′i ), i ∈ {1, . . . , j − 1}. By Lemma 3.6 and
the induction hypothesis applied to the maxes M ′(p′′i ), i ∈ {1, . . . , 2n − 2}, of M(pj+1),
we see that there exists a set X of size f(n − 1, j − 1) + · · · + f(n − 1, n − 1) = f(n, j)
such that 〈(Bj ∩ M(pj+1)) ∪ X〉∆ = M(pj+1). This proves the lemma. �

The following corollary is precisely Theorem 1.3.

Corollary 3.8 If K 6∼= F2, then the dual polar space DH(2n − 1, K′, θ) can be generated

by
∑n

j=0 f(n, j) = λ(n) =
(
2n

n

)
points.

Proof. By Lemmas 3.6 and 3.7. �
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