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Abstract

In this paper we determine a closed formula for the number of convex permu-
tominoes of size n. We reach this goal by providing a recursive generation of all
convex permutominoes of size n+1 from the objects of size n, according to the ECO
method, and then translating this construction into a system of functional equations
satisfied by the generating function of convex permutominoes. As a consequence we
easily obtain also the enumeration of some classes of convex polyominoes, including
stack and directed convex permutominoes.

1 Basic definitions and contents of the paper

A polyomino is a finite union of elementary cells of the lattice Z×Z, whose interior is
connected (see Figure 1 (a)). Polyominoes are defined up to a translation. A polyomino is
said to be column convex (resp. row convex) if all its columns (resp. rows) are connected
(see Figure 1 (b)). A polyomino is said to be convex, if it is both row and column convex
(see Figure 1 (c)).

Delest and Viennot [13] determined the number cn of convex polyominoes with semi-
perimeter n + 2,

cn+2 = (2n + 11)4n − 4(2n + 1)

(
2n

n

)
, n ≥ 0; c0 = 1, c1 = 2, (1)

sequence A005436 in [18], the first few terms being:

1, 2, 7, 28, 120, 528, 2344, 10416, . . . .
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(a) (c)(b)

Figure 1: (a) a polyomino; (b) a column convex polyomino; (c) a convex polyomino.

In the last two decades convex polyominoes, and several combinatorial objects ob-
tained as a generalizations of this class, have been studied by various points of view. For
the main results concerning the enumeration and other combinatorial properties of convex
polyominoes we refer to [6, 7, 8, 10].

1.1 Permutominoes

Let P be a polyomino, having n rows and columns, n ≥ 1; we assume without loss of
generality that the south-west corner of its minimal bounding rectangle is placed in (1, 1).
Let A = {A1, . . . , A2(r+1)} be the set of its vertices ordered in a clockwise sense starting
from the leftmost vertex having minimal ordinate.

We say that P is a permutomino if the sets P1 = {A1, A3, . . . , A2r+1} and P2 =
{A2, A4, . . . , A2r+2} represent two permutation matrices of [n + 1] = {1, 2, . . . , n + 1}.
Obviously, if P is a permutomino, then r = n, and n is called the size of the permutomino.

1π  = ( 2, 5, 6, 1, 7, 3, 4 ) π  = ( 5, 6, 7, 2, 4, 1, 3 )2

Figure 2: A permutomino and the two associated permutations.

The two permutations associated with P1 and P2 are indicated by π1 and π2, re-
spectively (see Figure 2). While it is clear that any permutomino of size n uniquely
individuates two distinct permutations π1 and π2 of [n + 1], such that

i) π1(i) 6= π2(i), 1 ≤ i ≤ n + 1,
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ii) π1(1) < π2(1), and π1(n + 1) > π2(n + 1),

not all the pairs of permutations (π1, π2) of n+1 satisfying i) and ii) define a permutomino;
Figure 3 depicts the two problems which may occur.

From the definition we have that in any permutomino P , for each abscissa (ordinate)
there is exactly one vertical (horizontal) side in the boundary of P with that coordinate.
It is simple to observe that the previous property is also a sufficient condition for a
polyomino to be a permutomino.

(a)

2π  = ( 4, 1, 6, 7, 3, 2, 5 )

π  = ( 2, 5, 1, 6, 7, 3, 4 )1

π  = ( 3, 2, 1, 5, 7, 6, 4 )2

1π  = ( 2, 1, 3, 4, 5, 7, 6 )

(b)

Figure 3: The two main cases when a pair of permutations π1 and π2 of [n + 1] may not
define a permutomino: (a) two disconnected sets of cells; (b) the boundary crosses itself.

Permutominoes were introduced by F. Incitti in [17] while studying the problem of

determining the R̃-polynomials (related with the Kazhdan-Lusztig R-polynomials) asso-
ciated with a pair (π1, π2) of permutations. Concerning the class of polyominoes, our
definition (though different) turns out to be equivalent to Incitti’s one, which is more
general but uses some algebraic notions not necessary in this paper.

In [15], using bijective techniques, it was proved that the number of parallelogram
permutominoes of size n is equal to the nth Catalan number,

1

n + 1

(
2n

n

)
,

and moreover, that the number of directed-convex permutominoes of size n is equal to half
the nth central binomial coefficient,

1

2

(
2n

n

)
.

In this paper we deal with the enumeration of convex polyominoes which are also
permutominoes, the so called convex permutominoes. We reach this goal by determining
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a direct recursive construction for the convex permutominoes of a given size, based on the
application of the ECO method, which easily leads to the generating function, and finally
prove that the number of convex permutominoes of size n is:

fn = 2 (n + 3) 4n−2 − n

2

(
2n

n

)
n ≥ 1. (2)

We point out that the same enumerative result has been recently obtained, indepen-
dently, and with different techniques, by Boldi et al. [5].

1.2 ECO method

In this section we will recall some basics about the ECO method, where ECO stands
for Enumeration of Combinatorial Objects. Such a method, introduced by Pinzani and
his collaborators in [3], is a constructive method to produce all the objects of a given
class, according to the growth of a certain parameter (the size) of the objects. Basically,
the idea is to perform “local expansions” on each object of size n, thus constructing a set
of objects of the successive size (see [3] for more details).

The application of the ECO method often leads to an easy solution for problems that
are commonly believed “hard” to solve. For example, in [14] the authors give an ECO con-
struction for the classes of convex polyominoes and column-convex polyominoes according
to the semi-perimeter. A simple algebraic computation leads then to the determination
of generating functions for the two classes.

In [1] it is also shown that an ECO construction easily leads to an efficient algorithm
for the exhaustive generation of the examined class. Moreover, an ECO construction can
often produce interesting combinatorial information about the class of objects studied, as
shown in [3] using analytic methods, or in [4], using bijective techniques. In [2], Banderier
et al. reintroduced the kernel method in order to determine the generating function of
various types of ECO systems.

Going deeper into formalism, let p be a parameter p : O → N
+, such that |On| =

| {O ∈ O : p(O) = n} | is finite. An operator ϑ on the class O is a function from On to
2On+1, where 2On+1 is the power set of On+1.

Proposition 1 Let ϑ be an operator on O. If ϑ satisfies the following conditions:

1. for each O′ ∈ On+1, there exists O ∈ On such that O′ ∈ ϑ(O),

2. for each O, O′ ∈ On such that O 6= O′, then ϑ(O) ∩ ϑ(O′) = ∅,

then the family of sets {ϑ(O) : O ∈ On} is a partition of On+1.

This method was successfully applied to the enumeration of various classes of walks,
permutations, and polyominoes. We refer to [3], and [16] for further details and results.

The recursive construction determined by ϑ can be suitably described through a gen-
erating tree, i.e. a rooted tree whose vertices are objects of O. The objects having the
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same value of the parameter p lie at the same level, and the sons of an object are the
objects it produces through ϑ.

If the construction determined by the ECO operator ϑ is regular enough it is then
possible to describe it by means of a succession rule of the form:






(b)

(d) (c1)(c2) . . . (cq(d)),
(3)

where b, d, ci ∈ N, and q : N
+ → N

+. To each object O in the generating tree of ϑ is
associated a degree d(O) (briefly, d) which explains how many objects are produced by
O through ϑ. In practice, the succession rule (3) reads that the object at the root of the
generating tree has degree b, and every object O with degree d in the generating tree has
q(d) objects O′

1, . . . , O
′
q(d), where each Oi has degree ci, 1 ≤ i ≤ q(d). A succession rule

defines a sequence {fn}n≥1 of positive integers, where fn is the number of nodes at level
n of the generating tree, assuming that the root is at level 1.

2 Generation of convex permutominoes

Let Cn be the set of convex permutominoes of size n. In order to define the ECO
construction for convex permutominoes, we need to point out a simple property of their
boundary, related to reentrant and salient points. So let us briefly recall the definition of
these objects.

Let P be a polyomino; starting from the leftmost point having minimal ordinate, and
moving in a clockwise sense, the boundary of P can be encoded as a word in a four letter
alphabet, {N, E, S, W}, where N (resp. E, S, W ) represents a north (resp.east, south,
west) unit step. Any occurrence of a sequence NE, ES, SW , or WN in the word encoding
P defines a salient point of P , while any occurrence of a sequence EN , SE, WS, or NW

defines a reentrant point of P (see for instance, Figure 4).
Reentrant and salient points were considered in [12], and successively in [9], in a more

general context, and it was proved that in any polyomino the difference between the
number of salient and reentrant points is equal to 4.

Let us turn to consider the class of convex permutominoes. In a convex permutomino
of size n the length of the word coding the boundary is 4n, and we have n + 3 salient
points and n − 1 reentrant points; moreover we observe that a reentrant point cannot lie
on the minimal bounding rectangle. This leads to the following remarkable property:

Proposition 2 The set of reentrant points of a convex permutomino of size n defines a
permutation matrix of [n − 1], n ≥ 2.

For simplicity of notation, and to clarify the definition of the upcoming ECO con-
struction, we agree to group the reentrant points of a convex permutomino in four classes;
namely, we choose to represent a reentrant point determined by a sequence EN (resp.
SE, WS, NW ) with the symbol α (resp. β, γ, δ). Using this notation we can state that
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A

NNENESSENNNESSEESWSWSWSWNWNW

Figure 4: The coding of the boundary of a polyomino, starting from A and moving in a
clockwise sense; its salient (resp. reentrant) points have been evidenced by a black (resp.
white) square.

each convex permutomino of size n ≥ 2 can be uniquely represented by the permutation
matrix defined by its reentrant points, which has dimension n − 1, and uses the symbols
α, β, γ, δ.

0 0 0 0 γ
0 0 0 β 0

0 0 δ 0 0

α 0 0 0 0
0 α 0 0 0

δ

γ

β

α

Figure 5: The reentrant points of a convex permutomino uniquely define a permutation
matrix in the symbols α, β, γ and δ.

2.1 The ECO operator

Let P ∈ Cn; the number of cells in the rightmost column of P is called the degree of
P . For any n ≥ 1 we partition the class Cn into three distinct classes. In order to define
these classes, let us consider the following conditions on a convex permutomino:

U1 : the uppermost cell of the rightmost column of the polyomino has the maximal
ordinate among all the cells of the polyomino;

U2 : the lowest cell of the rightmost column of the polyomino has the minimal ordinate
among all the cells of the polyomino.

We say that a convex permutomino P belongs to class:
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(R)(B) (R) (G)

Figure 6: Convex permutominoes in classes B, R, and G.

- B, if it satisfies both conditions U1 and U2 (i.e. P has degree n, see Figure 6, (B));
we observe that the single cell permutomino belongs to class B.

- R, if it satisfies only one among conditions U1, U2 (see Figure 6, (R));

- G, if it satisfies none of conditions U1, U2 (see Figure 6, (G)).

For simplicity sake, each permutomino in class B (resp. R, G) and degree k is repre-
sented by the label (k)b (resp. (k)r, (k)g). For instance, the four permutominoes depicted
in Figure 6 have labels (4)b, (3)r, (2)r, (1)g, respectively. In particular the single cell
permutomino has the label (1)b.

Our aim is now to use the property stated in Proposition 2 to define an ECO operator
ϑ : Cn → 2Cn+1 which defines a recursive construction of all the convex permutominoes of
size n + 1 in a unique way from the objects of size n. The operator ϑ acts on a convex
permutomino performing some local expansions on the cells of its rightmost column. In
order to define these operations let us consider a generic permutomino P of size n, let us
indicate by c1, . . . , cn (resp. r1, . . . , rn) the columns (resp. rows) of P numbered from left
to right (resp. bottom to top), and by `(ci) (resp. `(ri)) the number of cells in the ith
column (resp. ith row), with 1 ≤ i ≤ n. The four operations of ϑ will be denoted by α,
β, γ, and δ, and below we give a detailed description of each of them:

(α)

(4)  b(5)b

Figure 7: Operation (α) performed on a permutomino of class B. The added column has
been highlighted.
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(α) if P satisfies condition U1, then (α) adds a new column made of cn + 1 cells on the
right of cn, according to Figure 7.

It is clear that the obtained polyomino is a convex permutomino of size n + 1, still
satisfying condition U1; the rightmost reentrant point in such new permutomino is
of type α (this is the reason why we have called the reentrant points with the same
name of the operations on permutominoes).

(β) it can be performed on each cell of cn; so let di be the ith cell of cn, from bottom to
top, with 1 ≤ i ≤ `(cn). Operation (β) adds a new row above the row containing
di (of the same length), and a new column on the right of cn, made of i cells, as
illustrated in Figure 8.

Observe that, since the new added row is long as the row below it, we ensure that
the obtained polyomino has a unique horizontal side at level i, while adding the
new column from bottom to level i we ensure that the obtained polyomino has a
unique vertical side at abscissa n− 1, hence the basic property of permutominoes is
preserved.

(β)

b (3) r(4)

Figure 8: Operation (β) performed on a cell di of the rightmost column of a polyomino in
class B. The cell di is filled in black, the added row and column have been highlighted.

Then it is clear that, for any i, the obtained polyomino is a convex permutomino of
size n + 1, and its rightmost reentrant point is of type β.

(γ) it can be performed on each cell of cn; so let di be the ith cell of cn, from bottom to
top, with 1 ≤ i ≤ `(ci). Operation (γ) adds a new row below the row containing di

(of the same length), and a new column on the right of cn, made of n − i + 1 cells,
as illustrated in Figure 9.

It is clear that, for any i, the obtained polyomino is a convex permutomino of size
n + 1, and its rightmost reentrant point is of type γ.

(δ) if P satisfies condition U2, then (δ) adds a new column made of cn + 1 cells on the
right of cn, according to Figure 10.

It is clear that the obtained polyomino is a convex permutomino of size n + 1, still
satisfying condition U2; the rightmost reentrant point in such new permutomino is
of type δ.
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(γ)

b (2) r(4)

Figure 9: Operation (γ) performed on a cell di of the rightmost column of a polyomino in
class B. The cell di is filled in black, the added row and column have been highlighted.

(δ)

(5)

b(4)
 b

Figure 10: Operation (δ) performed a polyomino in class B.

As we already mentioned, the operations performed by ϑ on a convex permutomino
P depend on the family to which P belongs. So let us consider the different cases:

1. P belongs to the class B. The operator ϑ performs on P operations (α), (δ) and
one application of (β) and (γ) for any cell in cn. So, let k be the degree of P , the
application of ϑ to P produces 2k + 2 different convex permutominoes of size n + 1
(see Figure 11).

More formally, applying ϑ to a convex permutomino of label (k)b, we have 2(k + 1)
different permutominoes, two for each of the labels (1)r, (2)r, . . . (k)r, and two with
label (k + 1)b. This can be formalized by the production:

(k)b  (1)r (1)r (2)r (2)r . . . (k)r (k)r (k + 1)b (k + 1)b.

2. P belongs to the class R. There are two possibilities:

i. P satisfies U1 (and not U2). The operator ϑ performs on P operation (α), and
one application of operations (β) and (γ) for any cell in cn.

ii. P satisfies U2 (and not U1). The operator ϑ performs on P operation (δ), and
one application of operations (β) and (γ) for any cell in cn (see Figure 12).

In both cases, being k be the degree of P , the application of ϑ to P produces 2k +1
different convex permutominoes of size n+1. More formally, applying ϑ to a convex

the electronic journal of combinatorics 14 (2007), #R57 9



βγ

r
(2)

γ

r
(1) (1)

r
(2)

r(2)
b

(3)
bb

(3)

δα

β

Figure 11: The operator ϑ applied to a permutomino of class B; the added rows and
columns are highlighted, and the applied operation is mentioned below.

permutomino of label (k)r, we have 2k + 1 different permutominoes, for each of the
labels (1)r, (2)r, . . . (k)r, (k + 1)r, and (1)g, (2)g, . . . (k)g. This can be formalized by
the production:

(k)r  (1)r (1)g (2)r (2)g . . . (k)r (k)g (k + 1)r.

3. P belongs to the class G. The operator ϑ performs on P an application of operations
(β) and (γ) for any cell in cn. So, let k be the degree of P , the application of ϑ to P

produces 2k different convex permutominoes of size n + 1. More formally, applying
ϑ to a convex permutomino of label (k)g, we have 2k different permutominoes, two
for each of the labels (1)g, (2)g, . . . (k)g. This can be formalized by the production:

(k)g  (1)g (1)g (2)g (2)g . . . (k)g (k)g.

Proposition 3 The operator ϑ satisfies conditions 1. and 2. of Proposition 1.

Proof. We have to prove that any convex permutomino of size n ≥ 2 is uniquely obtained
through the application of the operator ϑ to a convex permutomino of size n − 1. So
let P ∈ Cn, and consider the rightmost reentrant point of P , which is unique due to
Proposition 2. We have the following four possibilities:

1. the rightmost reentrant point of P is of type α, i.e. `(cn) = n; due to the per-
mutomino definition, it is clear that `(rn) = 1, then P has been produced through
the application of operation (α) to the permutomino P ′ ∈ Cn−1, obtained removing
column cn from P (see Figure 7);
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(3)
r

(1) (2)
g

(1)
g(2)

r
r

(2)

r

γβ

γ δβ

Figure 12: The operator ϑ applied to a permutomino of class R, satisfying U2 (and not
U1); the added rows and columns are highlighted, and the applied operation is mentioned
below.

2. the rightmost reentrant point of P is of type β, and then necessarily 1 ≤ `(cn) < n;
let P ′ be the permutomino of Cn−1 obtained by removing the column cn and the
row r`(cn)+1 from P . Is is then clear that P is produced through the application of
operation (β) to the `(cn)-th cell (from bottom to top) of P ′ (see Figure 8);

3. the rightmost reentrant point of P is of type γ, and then necessarily 1 ≤ `(cn) < n;
let P ′ be the permutomino of Cn−1 obtained by removing the column cn and the
row rn−`(cn) from P . It is then clear that P is produced through the application of
operation (γ) to the (n − `(cn))-th cell (from bottom to top) of P ′ (see Figure 9);

4. the rightmost reentrant point of P is of type δ, also with `(cn) = n; due to the
permutomino definition, it is clear that `(r1) = 1, then P has been produced through
the application of operation (δ) to the permutomino P ′ ∈ Cn−1, obtained removing
column cn from P (see Figure 10). �

The growth of convex permutominoes defined by the ECO operator ϑ can be suitably
represented in terms of the succession rule Ω:

Ω :





(1)b

(k)b  (1)r (1)r . . . (k)r (k)r (k + 1)b (k + 1)b

(k)r  (1)r (1)g . . . (k)r (k)g (k + 1)r

(k)g  (1)g (1)g . . . (k)g (k)g .

The root of the tree is (1)b, which is the label of the one-cell polyomino.
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(1)

rg(1)r(1)

r
(1)r

(1)

(1)r (1)g r(2)

(2)b

(2)(2) (3) (3)b brr rr(1) (1)

b(2)

(1)(1)r rr r bb (3)(3)(2) (2)

b

(2)

Figure 13: The first three levels of the generating tree of the rule Ω.

3 Enumeration of convex permutominoes

In this section we will determine the generating function of convex permutominoes
according to various parameters, using the simple remark that the number fn of convex
permutominoes of size n is given by the number of objects at level n of the generating
tree of Ω, n ≥ 1, assuming without loss of generality that the root of the tree is at level 1.

Let F denote the set of all convex permutominoes. Moreover, for any convex permutomino
P , let d(P ) (briefly, d) be the degree of P , and n(P ) (briefly, n) be the size of P . Our
aim is to determine the generating function:

F (s, t) =
∑

P∈F

sd(P )tn(P ) = st + (2s + 2s2)t2 + (8s + 6s2 + 4s3)t3 + . . . ,

being in particular F (1, t) the generating function of convex permutominoes according to
the size. To do this we need to consider the following auxiliary generating functions:

- B(s, t) =
∑

P∈B sd(P )tn(P ), i.e. the generating function of B,

- R(s, t) =
∑

P∈R sd(P )tn(P ), i.e. the generating function of R,

- G(s, t) =
∑

P∈G sd(P )tn(P ), i.e. the generating function of G.

Clearly, F (s, t) = B(s, t) + R(s, t) + G(s, t). From the productions of Ω we obtain the
following relations concerning B(s, t):

B(s, t) = st +
∑

P∈B

2 sd+1 tn+1,

hence we have that

B(s, t) =
st

1 − 2st
B(1, t) =

t

1 − 2t
. (4)
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Then we are able to write down the equation for R(s, t):

R(s, t) =
∑

P∈B

2
(
s tn+1 + . . . + sdtn+1

)
+

∑

P∈R

(
s tn+1 + . . . + sd+1tn+1

)

= 2st
∑

P∈B

1 − sd

1 − s
tn + st

∑

P∈R

1 − sd+1

1 − s
tn

=
2st

1 − s
(B(1, t) − B(s, t)) +

st

1 − s
(R(1, t) − s R(s, t)) .

Let B(s, t) = B(1, t) − B(s, t); the previous equation can be re-written as:

R(s, t)

(
1 +

s2t

1 − s

)
=

2st

1 − s
B(s, t) +

st

1 − s
R(1, t). (5)

Equation (5) has two unknowns: R(s, t), and R(1, t). Applying the kernel method (as
explained in detail in [2]) we look for the value of s for which the factor on the left
multiplying R(s, t) is equal to zero, i.e. the solution of the kernel

1 − s + ts2 = 0.

Of the two solutions we observe that only

s0 =
1 −

√
1 − 4t

2t

is a formal power series with positive coefficients. Substituting s = s0 in (5) we have:

2s0t

1 − s0
B(s0, t) +

s0t

1 − s0
R(1, t) = 0,

which leads to:

R(1, t) =
1√

1 − 4 t
− 1

1 − 2 t
.

Replacing the value of R(1, t) into (5) we obtain

R(s, t) =
st

1 − s + s2t

(
1√

1 − 4 t
− 1

1 − 2st

)
.

Finally, from the productions of Ω we derive the following equation for G(s, t):

G(s, t) =
∑

P∈R

(
s tn+1 + . . . + sdtn+1

)
+

∑

P∈N

2
(
s tn+1 + . . . + sdtn+1

)

= st
∑

P∈R

1 − sd

1 − s
tn + 2st

∑

P∈N

1 − sd

1 − s
tn

=
st

1 − s
(R(1, t) − R(s, t)) +

2st

1 − s
(G(1, t) − G(s, t)) .
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Again, we set R(s, t) = R(1, t) − R(s, t); the previous equation can be re-written as:

G(s, t)

(
1 +

2st

1 − s

)
=

st

1 − s
R(s, t) +

2st

1 − s
G(1, t). (6)

As for equation (5), also (6) can be solved using the kernel method. Here the kernel has
a unique solution:

s1 =
1

1 − 2t
;

replacing s with s1 in (6) we have:

s1t

1 − s1
R(s1, t) +

2s1t

1 − s1
G(1, t) = 0,

which leads to:

G(1, t) =
1

2(1 − 2t)
+

(1 − 2t)2

2(1 − 4t)2
− 1 − 3t

(1 − 4t)3/2
. (7)

Replacing the expression of G(1, t) in (6) we can obtain also G(s, t),

G(s, t) =
st

1 − s + s2t

[
(s + 2)t − 1

(1 − 4t)3/2
− 4s2t3 − 2(s2 + 4s + 2)t2 + (3s + 4)t − 1

(1 − 2st)(1 − 4t)2

]
.

Finally we have the generating function:

F (s, t) =
st

(
12s2t3 − 2(3s2 + 4s − 2)t2 + (s2 + 5s − 4)t + 1 − s

)

(1 − 2 ts) (1 − s + ts2) (1 − 4 t)2
+

st2 (s − 2)

(1 − 4 t)3/2 (ts2 − s + 1)
,

(8)

and the generating function of convex permutominoes according to the size:

F (1, t) =
2 t (1 − 3 t)

(1 − 4 t)2 − t

(1 − 4 t)3/2
. (9)

Starting from (9) and performing standard calculations we have the following closed form
for the number fn of convex permutominoes of size n:

fn = 2 (n + 3) 4n−2 − n

2

(
2n

n

)
n ≥ 1. (10)

The first terms of the sequence are

1, 4, 18, 84, 394, 1836, 8468, . . .

We remark that while both the left and the right summands of (10) were in [18] (sequence
A079028 and A002457, respectively), the sequence {fn}n≥0 was not present in the Sloane
database before this work (now it appears as sequence A126020). Using the Stirling
approximation formula we have that fn ∼ n4n.
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Finally we observe that also the number of stack and directed convex permutominoes
can be easily obtained from the previous computation.

In fact a stack permutomino can be uniquely represented by a permutomino in class
B having the same size. Hence the generating function of stack permutominoes is given
by B(1, t), and then the number of stack permutominoes of size n, as already stated in
[15], is equal to 2n.

Similarly, a directed convex permutomino can be uniquely represented by a permu-
tomino in class B or one in class R satisfying U1, having the same size. Hence the
generating function of directed convex permutominoes is given by

B(1, t) +
1

2
R(1, t) =

t

1 − 2t
+

1

2

1√
1 − 4 t

− 1

1 − 2 t
=

1 −
√

1 − 4t

2
√

1 − 4t
,

and then the number of directed convex permutominoes of size n, as already stated in
[15], is equal to

1

2

(
2n

n

)
. (11)

4 Further work

In this paper we solve the problem of determining a closed formula for the number
of convex permutominoes with a fixed size. We reach this goal by defining a recursive
construction of all the permutominoes of size n + 1 starting from those of size n, for any
n ≥ 1.

Several problems on the class of permutominoes however remain still open. Below
we propose a small list of the problems which we are interested in, and we would like to
tackle in some future work:

1. to give a combinatorial interpretation of the closed formula (10) for the number of con-
vex permutominoes. We remark that the expression of fn resembles the expression
(1) for the number cn of convex polyominoes of semi-perimeter equal to n + 2; in
particular it is easy to check that the numbers cn and fn are related by the following
simple relation:

cn+2 = fn +

(
2(n − 1)

n − 1

)
+ 4n−2 n ≥ 2, (12)

which requires a combinatorial proof.

2. we believe that the ECO construction of convex permutominoes can be extended to
the class of column-convex permutominoes. One of the problems with this class is
that here Proposition 2 does not hold as shown in Figure 14.

3. enumerate convex permutominoes according to the area, i.e. the number of cells of
the permutomino. The ECO construction we have determined easily leads to a
functional equation satisfied by the generating function of convex permutominoes
according to the area and the size of the permutomino; however, then we have not
been able to solve this equation.
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Figure 14: A column-convex permutomino: its reentrant points do not satisfy the state-
ment of Proposition 2.
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