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Abstract

Each m by m symmetric matrix M over 0, 1, ∗, defines a partition problem, in
which an input graph G is to be partitioned into m parts with adjacencies governed
by M , in the sense that two distinct vertices in (possibly equal) parts i and j are
adjacent if M(i, j) = 1, and nonadjacent if M(i, j) = 0. (The entry ∗ implies no
restriction.)

We ask which matrix partition problems admit a characterization by a finite set
of forbidden induced subgraphs. We prove that matrices containing a certain two
by two diagonal submatrix S never have such characterizations. We then develop a
recursive technique that allows us (with some extra effort) to verify that matrices
without S of size five or less always have a finite forbidden induced subgraph char-
acterization. However, we exhibit a six by six matrix without S which cannot be
characterized by finitely many induced subgraphs. We also explore the connection
between finite forbidden subgraph characterizations and related questions on the
descriptive and computational complexity of matrix partition problems.

1 Introduction

Many graph partition problems (especially those arising from the study of perfect graphs
[6, 7, 16]) can be formulated in the following terms. Let M be a symmetric m by m matrix
over {0, 1, ∗}. An M -partition of a graph G is a partition of V (G) into parts V1, V2, . . . , Vm

such that for distinct vertices u ∈ Vi, v ∈ Vj, we have uv ∈ E(G) if M(i, j) = 1, and
uv 6∈ E(G) if M(i, j) = 0. Note that we admit i = j; in particular, if M(i, i) = 0, the
set Vi is independent in G, and if M(i, i) = 1, it is a clique. Also note that ∗ means
no restriction. For each fixed matrix M we obtain the M -partition problem - to decide
whether or not an input graph G admits an M -partition. For instance, for the identity
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matrix, the Im-partition problem asks whether or not G is a union of at most m disjoint
cliques with no edges joining them. If Cm is the matrix in which the diagonal entries are 0
and all other entries are ∗, then the Cm-partition problem asks whether or not the graph G

is m-colourable, in the usual sense. Many other examples are described in [16, 25, 27]; they
include problems such as H-colourability (also known as the homomorphism problem) [26],
the existence of a clique cutset or a skew cutset [7, 29], or being a split graph [23]. The
homomorphism language is particularly appropriate here, and the M -partition problem
can be cast as a homomorphism problem to a suitable structure H, called a trigraph
[19, 25, 27, 31].

We note in passing that there are many variants of the basic M -partition problem,
including partitioning digraphs (M is not necessarily symmetric) [19], equipping the ver-
tices of G with lists (of parts in which the vertex is allowed to be placed) [4, 16, 12, 13, 14,
22, 25, 27], requiring all parts to be nonempty [9, 30], generalizing to certain constraint
satisfaction problems [10, 25], or restricting the input graphs to have special structure
[11, 17, 20, 24, 25, 27].

The Im-partition problem is clearly solvable in polynomial time - it suffices to compute
the connected components of G and check whether each is a clique, and whether there
are at most m of them. On the other hand, for m > 2, the Cm-partition problem is well
known to be NP-complete. There are many other matrices M for which the M -partition
problem has been shown to be polynomial or NP-complete [4, 16, 18, 22, 26, 27], including
for instance all matrices of size m < 5. However, in general, we do not know how to tell,
for a given matrix M , what is the complexity of the M -partition problem. In fact, we
do not know whether each M -partition problem is polynomial or NP-complete [17]. If
this were the case, it would imply the validity of the so-called dichotomy conjecture of
Feder and Vardi [21, 17]. Moreover, we cannot decide the complexity of some concrete
M -partition problems with small matrices M ; for instance if we consider M -partitions
with lists, one such problem with m = 4 is described in [4]; see also [10, 25].

Each M -partition problem can be described in monadic second-order logic [8] (and
hence solved efficiently on graphs on bounded treewidth or cliquewidth). However, certain
M -partition problems can be described in first-order logic (and hence solved efficiently on
all graphs). For instance, it is easy to see that a graph G admits an Im-partition if and
only if if does not contain an induced path with three vertices, P3, or an induced union
of m + 1 isolated vertices, (m + 1)K1. Since m is fixed, having such an induced subgraph
can be described by a first-order sentence, and hence so can being Im-partitonable.

Thus there are three basic questions we may ask, for a given matrix M :

• Can M -partitionable graphs be recognized in polynomial time?

• Can M -partitionable graphs be described by a first-order sentence?

• Can M -partitionable graphs be characterized by a finite set of forbidden induced
subgraphs?

Note that the questions have been ordered so that a positive answer to a later question
implies a positive answer to an earlier question. As we have argued above, the first
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question seems hard to answer in full generality. If M has no 1’s, it is known that the
last two questions have the same answer (even in the more general context of constraint
satisfaction problems) [1, 28]. In this note we focus on the last question.

The complement M of a matrix M has the entries 0 and 1 interchanged, i.e., M(i, j) =
1 − M(i, j), where 1 − ∗ is defined to be ∗. Clearly a graph G admits an M -partition if
and only if its complement G admits an M -partition.

In the remainder of the note we shall assume that all M(i, i) 6= ∗. Indeed, if some
M(i, i) = ∗, then every graph G would be M -partitionable, and all three questions would
be trivial. By simultaneously permuting the rows and columns of M , we may assume
that M(1, 1) = · · · = M(k, k) = 0, M(k + 1, k + 1) = · · · = M(m, m) = 1. Let A denote
the submatrix of M with rows 1, . . . , k and columns 1, . . . , k; let B denote the submatrix
with rows k + 1, . . . , m and columns k + 1, . . . , m; and let C denote the submatrix with
rows 1, . . . , k and columns k + 1, . . . , m.

We define two vertices u, v in a graph G to be similar, if they have exactly the same
neighbours other than u and v. Note that similar vertices may be adjacent or non-adjacent;
in the former case they will be called c-similar, and in the latter case i-similar. (Other
terms used in the literature are joined duplicates, joined twins and true twins for c-similar
vertices, and unjoined duplicates, unjoined twins and false twins for i-similar vertices.)
Clearly, both i-similarity and c-similarity are equivalence relations on V (G). Moreover, it
is easy to check that similarity itself is also an equivalence relation. Each similarity class
is an independent set or a clique, while i-similarity classes are just independent sets, and
c-similarity classes are just cliques.

2 Friendly and Unfriendly Matrices

We say that a matrix M is friendly if it has no ∗ entries in A and in B. A matrix is
unfriendly if it is not friendly. Note that a matrix is unfriendly if and only if it contains
a diagonal two by two submatrix S with S(1, 1) = S(2, 2) 6= ∗ and S(1, 2) = S(2, 1) = ∗.

We shall prove that if M is an unfriendly matrix, then M -partitionable graphs can-
not be characterized by a finite set of forbidden induced subgraphs. We shall cast our
discussion in the following terms.

A minimal obstruction to M -partition is a graph G which is not M -partitionable, and
such that for each vertex v ∈ V (G) the graph G − v is M -partitionable. To prove the
above claim for an unfriendly matrix M , we shall exhibit infinitely many non-isomorphic
minimal obstructions to M -partition. For instance, the matrix C2 is unfriendly, and there
are infinitely many minimal obstructions to C2-partition, namely all odd cycles. (C2-
partitionability is the same as two-colourability.) It is clear that this means that it is not
possible to characterize the property by finitely many forbidden subgraphs. Note that
C2-partitionable graphs can nevertheless be recognized in polynomial time.

Theorem 2.1 If M is an unfriendly matrix, then there are infinitely many minimal
obstructions for M-partitionability.
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Proof. Let M be an unfriendly matrix of size m, with k defined as above to be the
number of 0’s on the main diagonal. By taking the complement if necessary, we may

assume without loss of generality that M contains the diagonal submatrix S

(

0 ∗
∗ 0

)

.

We first consider the case that m = k, i.e., M has only zeros on the main diagonal.
This means, in particular, that each M -partitionable graph is k-colourable. If k = 2,
i.e., if M = S, then a graph is M -partitionable if and only if it is bipartite; hence each
odd cycle is a minimal obstruction. In general, we shall appeal to the well-known fact
[27] that there exist graphs with arbitrarily high chromatic number and odd girth. We
let G0 be any graph with chromatic number greater than k; as noted above G0 is not
M -partitionable, and hence contains some minimal M -obstruction G′

0. Suppose G′

0 has
odd circumference c0. (The odd circumference of a graph is the maximum length of an
odd cycle; since G′

0 is not M -partitionable it must contain an odd cycle.) We proceed
recursively, assuming that we have already constructed a minimal M -obstruction G′

i with
odd circumference ci. Let Gi+1 be a graph with chromatic number greater than k and
odd girth greater than ci. It is again the case that Gi+1 is not M -partitionable, and
hence contains a minimal M -obstruction G′

i+1; of course G′

i+1 must again contain and
odd cycle, and hence an odd cycle of length greater than any G′

j with j < i. Therefore
we have infinitely many minimal M -obstructions G′

i, i = 0, 1, . . . ; moreover, our graphs
G′

i have the additional property that the odd girth of each G′

i is greater than the odd
circumference of any G′

j, j < i. By complementation, this proof covers also the case when
k = 0, i.e., when M has only ones on the main diagonal.

If m > k > 0, we proceed recursively, letting M ′ be obtained from M by deleting the
m-th row and column, and assuming we have already constructed infinitely many minimal
M ′-obstructions G′

i, i = 0, 1, . . . with the property that the odd girth of G′

i is greater than
the odd circumference of any G′

j, j < i. We note that the disjoint union of two copies of
any G′

i cannot be M -partitionable: at most one copy can use the m-th part (the set Vm

from the definition of M -partition), since M(m, m) = 1 implies that all vertices in this
part are adjacent to each other. Thus the disjoint union of two copies of G′

i contains a
minimal M -obstruction G′′

i . Now we observe that the odd girth of G′′

i is at least the odd
girth of G′

i, and the odd circumference of G′′

i is at most the odd circumference of G′

i; thus
the additional property is maintained, and the graphs G′′

i are not isomorphic. ut

We have several classes of friendly matrices M for which M -partitionable graphs are
known to have a characterization by finitely many forbidden subgraphs. The simplest
case occurs when M has no ∗ entries at all. In [15] we have shown the following fact.

Theorem 2.2 [15] If M has no ∗ entries, then a minimal M-obstruction has at most
(k +1)(m−k +1) vertices; moreover, there are at most two minimal M-obstructions with
precisely (k + 1)(m − k + 1) vertices.

The proof of the above theorem is quite involved [15]. However, it is not difficult to
prove directly that the number of minimal M -obstructions is finite [31]. (This fact also
follows from a more general result for constraint satisfaction problems [2].)
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Proposition 2.1 If M has no ∗ entries, then a minimal M-obstruction has at most
m(2k′ + 2) + 1 vertices, where k′ = max(k, m − k).

Proof. Suppose a minimal M -obstruction G has at least m(2k′+2)+2 vertices. Then for
any vertex v, the graph G−v admits an M -partition; since G−v has at least m(2k ′+2)+1
vertices, some set S of at least 2k′ + 3 vertices belongs to the same part - either a clique
or an independent set. In either case, all these vertices are similar to each other in G− v.

Suppose first S is an independent set: then any two vertices of S have exactly the
same neighbours in G − v, and hence there is a subset T of at least k′ + 2 independent
vertices that have exactly the same neighbours in G. Let t ∈ T : as before, G − t has an
M -partition. Note that exactly m − k ≤ k′ of the parts are cliques; thus of the k′ + 1
vertices of T −t, at least one must be placed into a part that is an independent set; clearly,
t can be placed into the same part, as it has the same neighbours.

If S is a clique, then the argument is analogous: any two vertices of S have the same
neighbours in G− v, hence a subset T of at least k′ +2 vertices have the same neighbours
in G. In any M -partition of G− t, t ∈ T , some vertex of T − t must be placed into a part
that is a clique, and t can be placed into the same part. ut

We can extend the validity of this result by applying the so-called sparse-dense tech-
nique from [11, 16]. We formulate it here specifically for the application at hand; its
derivation from the general sparse-dense technique is easy to see. (In the notation of [11],
we set S to be all A-partitionable graphs and D to be all B-partitionable graphs.)

We claim that for any fixed M there exists an integer r such that any graph G that is
both A-partitionable and B-partitionable has at most r vertices. Indeed, such a graph G

is, in particular, k-colourable and hence contains no clique of size k+1, and its complement
G is (m−k)-colourable and hence contains no clique of size m−k+1. Thus the existence
of such an integer r follows from Ramsey’s theorem. This integer r will be used in
all applications of the sparse-dense technique - both in Theorem 2.3 below, and also in
Theorem 5.2 later on.

A labeled graph G is a graph in which each vertex has a label, either A or B. Label
A means that the vertex has to be placed into parts V1, . . . , Vk, label B means the vertex
has to be placed into parts Vk+1, . . . , Vm. (Thus the labels are lists of a restricted kind.)
A labeled M-partition of G is an M -partition of G that satisfies these constraints. A
minimal labeled M-obstruction is a labeled graph G which has no labeled M -partition,
such that for each vertex v ∈ V (G) the graph G − v (with the inherited labels) has a
labeled M -partition.

Note that we have used A and B before, to denote the two diagonal submatrices of
M . Since the label A (respectively B) actually restricts the vertex to be placed into a
part from the submatrix A (respectively B), this ambiguity will not cause a problem.

For the number r derived above, Theorem 3.1 from [11] (proved using the sparse-dense
technique) allows us to make the following conclusion.

Theorem 2.3 [11] Suppose each minimal labeled M-obstruction has at most p vertices.
Then each minimal M-obstruction to M-partition has at most 2p2r+1 vertices. ut
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Now suppose M is a matrix in which C has only ∗ entries. In this case a labeled
graph G is M -partitionable if and only if its subgraph on the vertices labeled A is A-
partitionable and its subgraph on the vertices labeled B is B-partitionable. Since the
submatrices A and B of a friendly matrix have no ∗ entries, Proposition 2.1 (or Theorem
2.2) implies that for friendly matrices M , there are only finitely many minimal labeled
M -obstructions. Thus we conclude from Theorem 2.3 that there are only finitely many
minimal M -obstructions.

Corollary 2.4 If M is a friendly matrix in which the submatrix C has only ∗ entries, then
M-partitionable graphs can be characterized by a finite set of forbidden induced subgraphs.

ut

Note that the same conclusion applies when C has no ∗ entries, by Proposition 2.1.
We single out a few example consequences of Corollary 2.4.

The following classes of graphs can be characterized by a finite set of forbidden induced
subgraphs.

• Graphs partitionable into an independent set and a clique. These are known as split
graphs, and the (exactly three) forbidden induced subgraphs are known [23].

• Graphs partitionable into a complete k-partite graph and a graph which is the
complement of a complete `-partite graph (i.e., is a union of ` disjoint cliques with
no other edges). These are known as polar graphs [5]; we have parametrized them
by the number of independent sets and cliques. Recognizing polar graphs without
fixing these numbers is NP-complete [5].

• Graphs partitionable into one clique and one graph which is the disjoint union of
k complete bipartite graphs with no other edges. These are a variant of k-bisplit
graphs [3, 18].

Theorem 2.3 shows that if there are only finitely many minimal labeled M -obstructions,
then there are only finitely many minimal M -obstructions. This statement has an easy
converse.

Proposition 2.2 If there are only finitely many minimal M-obstructions, then there are
also only finitely many labeled minimal M-obstructions.

Proof. We shall prove, specifically, that if every minimal M -obstruction has at most p

vertices, then every minimal labeled M -obstruction has also at most p vertices. Otherwise,
some minimal labeled M -obstruction G has more than p vertices. Let G′ be obtained from
G by replacing each vertex labeled A by an independent set of m − k + 1 vertices, and
each vertex labeled B by a clique of k + 1 vertices. It is easy to see that the unlabeled
graph G′ does not admit an M -partition, as at least one vertex from the independent set
replacing a vertex of G labeled A must be placed into a part that is an independent set
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(there are only m − k parts that are cliques), and at least one vertex from each clique
replacing a vertex of G labeled B must be placed into a part that is a clique. (Hence if
G′ admited an M -partition, then so would the labeled graph G.) Therefore G′ contains a
minimal M -obstruction G′′ with at most p vertices. Let G∗ be the subgraph of G obtained
by taking all the (at most p) vertices of G which correspond to vertices in G′′. Clearly, if
the labeled graph G∗ admitted an M -partition, then so would the graph G′′; therefore G∗

is a proper subgraph of G which does not admit an M -partition, contradicting the fact
that G is a minimal M -obstruction. ut

3 A Recursive Technique

For a matrix M , we denote by M(i) the submatrix obtained from M by deleting the
i-th row and i-th column. Note that if M is a friendly matrix, then so is each matrix
M(i), i = 1, 2, . . . , m.

Our main technique is the following recursive method.

Theorem 3.1 Suppose M is a friendly matrix such that all rows of its submatrix A are
distinct, or such that all rows of its submatrix B are distinct.

If there are only finitely many minimal labeled M(i)-obstructions for each i = 1, . . . , m,
then there are also only finitely many minimal labeled M-obstructions.

Proof. Without loss of generality, we shall focus on the case when the rows of the
submatrix A are distinct. Some rows of the submatrix B may be the same - we partition
the m − k rows into n1 ≤ m − k different groups of equal rows. For symmetry, we also
imagine A partitioned into n0 = k groups of equal rows (in this case each group has just
one row).

Suppose all minimal labeled M(i)-obstructions (i = 1, 2, . . . , m) have at most p ver-
tices, and consider a minimal labeled M -obstruction G. Let GA be the subgraph of G

induced by the vertices labeled A, and let GB the subgraph induced by vertices labeled
B. Let nA denote the number of i-similarity classes in GA, and let nB denote the number
of c-similarity classes in GB.

We first prove that G cannot be too big if it has nA > n0. Indeed, in this case,
consider the labeled subgraph G′ of G induced by taking just one vertex each from n0 +1
i-similarity classes of GA (with the inherited labels A). We claim that the labeled graph
G′ is itself not M -partitionable, since it has n0+1 non-i-similar vertices labeled A: placing
such vertices would require n0 + 1 parts corresponding to distinct rows of the matrix A.
Since G is a minimal labeled M -obstruction, we must have G′ = G, i.e., G has at most
n0 + 1 vertices. A similar argument shows that G cannot be too big if it has nB > n1; in
that case G has at most n1 + 1 vertices.

Next we focus on the case when nA < n0. In this situation, GA cannot admit an
A-partition in which each of the n0 groups of parts contains a nonempty part. Otherwise,
two i-similar vertices v, v′ of GA would be placed into two parts corresponding to different
rows i, i′ of A: if the two rows differ in column j, then the vertex of GA placed into the
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j-th part (or a part corresponding to the same group) would have different adjacency to
the two supposedly i-similar vertices v, v′. This contradiction shows that G must contain
a minimal labeled M(i)-obstruction for every i = 1, 2, . . . , k. Moreover, if G′ is a labeled
subgraph of G containing a minimal labeled M(i)-obstruction for every i = 1, 2, . . . , k,
then G′ already cannot be M -partionable, by the same argument; since G is a minimal
labeled M -obstruction, we would again have to have G = G′. It now follows that G can
have at most kp vertices. A similar argument applies in the case when nB < n1; in this
case G can have at most (m − k)p vertices.

It remains to consider minimal labeled M -obstructions G that have nA = n0 and
nB = n1. According to the previous arguments, any M -partition of G must place all
vertices of an i-similarity class C of GA into one part P corresponding to a row of A,
and place all vertices of a c-similarity class D of GB to a set of parts corresponding to
a group Q of equal rows into B. Let W be the set of such assignments, in which the
placement of the vertices of GA is an A-partition and the placement of the vertices of GB

corresponds to a B-partition (by selecting, for each d ∈ D one of the parts in the group
to which it was assigned). Clearly, W must be nonempty: otherwise, the labeled graph
obtained from GA by selecting one vertex in each i-similarity class has no M -partition, or
the labeled graph obtained from GB by selecting one vertex from each c-similarity class
has no M -partition, implying that the minimal labeled M -obstruction G is actually equal
to one of these two labeled graphs, and hence has at most n0, or n1, vertices. On the
other hand, W has at most n0!n1! assignments. We now consider how many vertices of
G are necessary in order to ensure that none of the assignments w ∈ W arises from an
actual M -partition of G. Suppose that w ∈ W assigns each i-similarity class Cx of GA

to the part corresponding to a row ax in A, and each c-similarity class Dy of GB to a set
of parts corresponding to a group Qy of equal rows of B. Note that the assignment w

completely determines the placements of all vertices of GA. If w does not arise from an
actual M -partition, then it must be impossible to place the vertices of some c-similarity
class Dy. In other words, for some vertex d ∈ Dy, no row of Qy has the right entries in
M in the columns corresponding to A. Since Qy has at most m− k rows, and for each of
them we need only one vertex in GA placed by w into a part corresponding to a row in A

with the wrong entry, the assignment w is disqualified on the basis of the vertex d plus at
most m− k vertices of GA. Let the labeled graph G′ be the induced subgraph of G (with
the inherited labels) on the set of vertices used for disqualifying any assignment w ∈ W .
Then G′ has at most n0!n1!(1+m−k) vertices, and does not admit an M -partition. Since
G is a minimal labeled M -obstruction, we must have G = G′, and hence G has at most
n0!n1!(1 + m − k) vertices. Since in every case G has a number of vertices bounded by a
function of the fixed matrix M , the number of minimal labeled M -obstructions is finite.

ut

Proposition 2.2 allows us to state Theorem 3.1 in a simpler form.

Corollary 3.2 Suppose M is a friendly matrix such that all rows of its submatrix A are
distinct, or such that all rows of its submatrix B are distinct.
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If there are only finitely many minimal M(i)-obstructions for each i = 1, . . . , m, then
there are also only finitely many minimal M-obstructions. ut

4 Small Friendly Matrices

In this section, a matrix M is small if it has size m, m ≤ 5. We prove that all small
friendly matrices M have finitely many minimal M -obstructions, and hence admit a char-
acterization of M -partitionability by a finite set of forbidden induced subgraphs.

Theorem 4.1 If M is a small friendly matrix then the number of minimal M-obstructions
is finite.

Proof. We first consider the case that n0 = 1 and n1 = 1. This means that A is the
all-zero matrix and B is the all-one matrix. In this case, if the matrix M contains a ∗,
then a graph is M -partitionable if and only if it is a split graph, i.e., can be partitioned
into an independent set and a clique. Such graphs have a finite forbidden subgraph char-
acterization by [23] (see also Corollary 2.4 and its consequences). Otherwise, the matrix
M has no ∗, and then M -partitionability has a finite forbidden subgraph characterization
by Proposition 2.1 (or Theorem 2.2).

Next consider the case that k = 0 or k = m: then the fact that M is friendly implies
that M has no ∗, and hence only finitely many minimal M -obstructions by Proposition
2.1 (or Theorem 2.2).

Thus we may now assume that 1 ≤ k ≤ m − 1 and 3 ≤ n0 + n1 ≤ m. A matrix M

with m = 3 must have either k = 1 or m − k = 1, and Theorem 3.1 and Theorem 2.3
imply there are only finitely many minimal M -obstructions. The same argument applies
to a matrix M with m = 4, since in the case k = 2 we can use the fact that n0 + n1 ≥ 3.

In case m = 5, we can again make the same argument, unless we have (up to

complementation) k = 2 and n0 = 1, n1 = 2. This means that A =

(

0 0
0 0

)

and

B =





1 1 0
1 1 0
0 0 1



 .

In this case we make a separate argument, akin to the proof of Theorem 3.1. Note
that the matrix A has rows 1 and 2 equal, forming one group of rows, while matrix B has
two groups - the equal rows 3, 4, and the separate group containing just row 5. As in the
proof of Theorem 3.1, we may assume that the minimal labeled M -obstruction G has one
i-similarity class C in GA, and two c-similarity classes D, D′ in GB. There are just two
possible assignments of the classes of G to the groups of M since C must be assigned to
rows 1, 2, and either D to rows 3, 4 and D′ to row 5, or conversely. We shall estimate how
many vertices of G are necessary to prevent one of these assignments from being a labeled
M -partition. Without loss of generality, consider D being assigned to parts (rows) 3, 4
and D′ to part (row) 5.
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Suppose first that M(1, 5) = M(2, 5) = 0. If there is a vertex v ∈ C and a vertex
w ∈ D′ which are adjacent, then these two vertices already prevent the assignment, so
only two vertices of G are needed for it. Otherwise, all vertices of D′ can be placed into
part 5, and so the only vertices of G that can prevent the assignment are vertices ensuring
that G − D′ does not admit a labeled M5-partition. (Recall that M5 is obtained from
M by eliminating row and column 5.) This means that G − D′ is a minimal labeled
M5-obstruction, and hence has a bounded number of vertices; these are the only vertices
G needs to prevent the assignment. If M(1, 5) = M(2, 5) = 1, the argument is analogous.

If one of M(1, 5), M(2, 5) is 0 and the other 1, say if M(1, 5) = 0, M(2, 5) = 1, we
argue as follows. If some vertex x ∈ C is adjacent to some vertex of D′ and nonadjacent
to another, then these three vertices are all that G needs to prevent the assignment.
Otherwise, the vertices of C are partitioned into C1, the set of those x ∈ C that are
nonadjacent to all vertices of D′, and C2, the set of those x ∈ C that are adjacent to each
vertex of D′. We have now effectively assigned C1 to 1, C2 to 2, D to 3, 4, and D′ to 5, and
can proceed as in the proof of Theorem 3.1. Specifically, if each v ∈ D can be placed into
3 or in 4, we would have an M -partition of G; thus there must exist some vertex v ∈ D

which cannot be placed into 3 or in 4. The former is ensured by a vertex u in C having
the wrong kind of connection to v (there are four ways to have such a wrong connection,
for instance u ∈ C1 adjacent to v while M(1, 3) = 0), and the latter is similarly ensured
by another vertex w ∈ C having the wrong kind of connection to v. It is now clear that
G only needs u, v, w to prevent the assignment.

If M(1, 5) = M(2, 5) = ∗, then G − D′ must be a minimal labeled M5-obstruction
as above, and hence has a bounded number of vertices - and G only needs the vertices
of G − D′ to prevent the assignment. If only one of M(1, 5), M(2, 5) is ∗, we argue as
follows. Without loss of generality, assume M(1, 5) = ∗, M(2, 5) = 1. Note that C is
an independent set, and D, D′ are cliques with no edges joining them; the assumption
M(2, 5) = 1 implies that any vertex of C that is nonadjacent to a vertex of D ′ must be
placed into part 1. If such a vertex does not exist, then C has all possible edges to D ′, and
hence G only needs the vertices of the minimal labeled M5-obstruction G−D′ to prevent
the assignment, whence G has a bounded number of vertices. Otherwise, let C1 be the
set of all vertices of C that have a nonneighbour in D′. If M(1, 3) = ∗ or M(1, 4) = ∗,
then G would admit an M -partition - placing all vertices of C to part 1, all vertices of D

to part 3 (respectively 4), and all vertices of D′ to part 5.

It remains to consider the following cases.

1. M(1, 3) = M(1, 4) = 0

2. M(1, 3) = M(1, 4) = 1

3. M(1, 3) = 1, M(1, 4) = 0

4. M(1, 3) = 0, M(1, 4) = 1

Consider case 1. If some u ∈ C1 is adjacent to some v ∈ D, then u, v, and any
non-neighbour w ∈ D′ of u, already prevent the assignment. Otherwise, G − C1 must
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not admit a labeled M -partition according to this assignment; since C1 6= ∅ and G is a
minimal labeled M -obstruction, we have a contradiction. Case 2 is analogous.

In case 3, any labeled M -partition of G must partition the vertices of D into those
adjacent to all vertices of C1, forming a set D1 (and being placed into part 3), and those
not adjacent to any vertices of C1, forming a set D2 (and being placed into part 4). Thus
if there is a vertex v ∈ D adjacent to some v ∈ C1 and nonadjacent to some v′ ∈ C1,
then this assignment of vertices, together with w ∈ D′ nonadjacent to v, and w′ ∈ D′

nonadjacent to v′, is impossible. We have now placed all vertices of D′ (into part 5), all
vertices of D (those in D1 to part 3 and those in D2 to part 4), and all vertices of C1

(into part 1). The remaining vertices, in C − C1, should be placed into part 3 or part
4, but a placement is not possible. Thus some vertex u ∈ C − C1 cannot be placed into
part 1 because of its connection to some v ∈ D (this means u is adjacent to v and v ∈ D2

or u is nonadjacent to v and v ∈ D1), and cannot be placed into part 2 because of some
v′ ∈ D (the reasons for this depend on M(2, 3) and M(2, 4), but in any case they concern
just one vertex v′). Then u, v, v′, and any one vertex of C1 form a labeled M -obstruction.
Case 4 is again analogous.

Since a bounded number of vertices is needed to prevent this assignment, and there is
just one more analogous assignment, the minimal labeled M -obstruction G has a bounded
number of vertices. ut

5 Larger Friendly Matrices

It may seem that all friendly matrices admit characterizations by finite sets of forbidden
induced subgraphs. However, for m > 5 we have a counterexample.

Let M6 be the matrix

















0 1 0 ∗ 0 0
1 0 1 ∗ 0 0
0 1 0 0 ∗ ∗
∗ ∗ 0 1 0 1
0 0 ∗ 0 1 0
0 0 ∗ 1 0 1

















Theorem 5.1 We have the following facts.

• The matrix M6 is friendly.

• The M6-partition problem cannot be characterized by a finite set of forbidden induced
subgraphs.

Proof. The first statement is obvious. The second statement will be proved by exhibiting
infinitely many non-isomorphic minimal labeled M6-obstructions Gn, n = 3, 4, . . . . These
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are described in Figure 1: there is a path of 2n vertices v1, v2, . . . , v2n, alternately labeled
A, B. The vertex v1 is moreover adjacent to all vi with odd i > 1, and all vertices vj with
even j < 2n are adjacent to each other. Then Proposition 2.2 implies that there are also
infinitely many minimal M6-obstructions, and hence the M6-partition problem cannot be
characterized by a finite set of forbidden induced subgraphs. (With a bit more effort, it
can be shown that the graphs Gn in the figure are themselves minimal M6-obstructions
even without the labels [31].)

B
...v v v v v v vv1 2 3 4 5 2n−2 2n−1 2n

A B A AB B A

Figure 1: The minimal labeled obstruction Gn

An M6-partition of a graph G has six parts, corresponding to the six rows/columns of
M6. Since rows 1 and 3 coincide in A, the subgraph GA induced by A has two i-similarity
classes, the first one, A1, consisting of parts 1 and 3, and the second one, A2, consisting
of part 2. Since rows 4 and 6 coincide in B, we also have two c-similarity classes in the
subgraph GB induced by B, the first one, B1, consisting of parts 4 and 6 and the second
one, B2, consisting of part 5. Amongst the A-labeled vertices of the graph Gn, the vertex
v1 is adjacent to all the others, which are not adjacent to each other. This means that

• either v1 is placed into A1 and all the others into A2, or

• v1 is placed into A2 and all the others into A1.

Similarly, amongst two B-labeled vertices of Gn, the vertex v2n is non-adjacent to all
the others, and the others are all adjacent to each other. Thus

• either v2n is placed into B1 and all the others in B2, or

• v2n is placed into B2 and all the others in B1.

Note that M(2, 5) = 0: this means that of the four possibilities implicit in the above
choices, v1 must be placed into A2 (i.e., in part 2), and v2n must be placed into B2 (i.e.,
in part 5). (Otherwise some adjacent vertices vi, vj of Gn would be placed into parts
2, 5 respectively, which is impossible.) On the other hand, if v1 is in part 2, then vertex
v2 must be placed into part 4, vertex v3 into part 1, vertex v4 into part 4, and so on,
implying that v2n−1 is in part 1, contrary to the fact that its neighbour v2n is in part 5
(and M(1, 5) = 0). Thus the labeled graphs Gn do not admit a labeled M6-partition.
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Consider now the labeled graph Gn − vj, j = 1, 2, . . . , 2n. This graph does ad-
mit a labeled M6-partition as follows: vertices v1, v2, . . . , vj−1 can be placed into parts
2, 4, 1, 4, 1, . . . respectively, while vertices v2n, v2n−1, v2n−2, . . . , vj+1 can be placed into
parts 5, 3, 6, 3, 6 . . . respectively. Thus each graph Gn is a minimal labeled M6-obstruction.

ut

It turns out that the M6-partition problem can be solved in polynomial time. In fact,
we have the following observation.

Theorem 5.2 If M is a friendly matrix in which neither A nor B has three identical
rows, then the M-partition problem is polynomial time solvable.

Proof. First we choose which parts of A and B will actually have vertices of the input
graph G placed into them. There are only finitely many possible choices, and we shall
test each. Clearly, it suffices to explain how to test the case when all parts of A and all
parts of B are nonempty. We next apply the sparse-dense method from [16], using the
same integer r derived before Theorem 2.3. Theorem 3.1 from [16] implies that a graph
G on n vertices has at most n2r possible partitions into induced subgraphs GA, GB, such
that GA is A-partitionable and GB is B-partitionable. Moreover, these partitions can
be found in polynomial time, since A and B are matrices without ∗ (see [16]). We shall
test each such partition separately, viewing all vertices of GA as labeled by A, and all
vertices of GB as labeled by B. Thus we may assume that the graph G is labeled. We
now find the i-similarity classes of GA and the c-similarity classes of GB. Consider the
groups of identical rows in A and in B. Since we are assuming that no parts are empty, the
number of groups of rows in A must equal the number of i-similarity classes of GA, and the
number of groups of rows in B must equal the number of c-similarity classes of GB. We
shall consider separately each of the bijective assignments between the i-similarity classes
of GA and c-similarity classes of GB to the groups of identical rows of A and groups of
identical rows of B. For each such assignment, we shall decide whether a corresponding
M -partition of G is possible. Next we use the fact that A and B don’t have three identical
rows. If v is a vertex assigned to a group of rows (parts), the only decision left is to choose
one of those rows. Since there are at most two possibilities, we can associate to each vertex
v a boolean variable xv. It is clear that the resulting constraints (between the vertices of
GA and the vertices of GB) can be expressed by clauses with at most two literals each.
Thus this problem can be solved in polynomial time using a 2-satisfiability algorithm. ut

There are, however, friendly matrices (in which A or B have three identical rows),
such that the M -partition problem is NP-complete.
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Let M9 be the matrix





























0 0 0 0 0 0 ∗ 0 ∗
0 0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 1 1 ∗ 0 ∗
0 0 0 1 0 1 ∗ ∗ 0
0 0 0 1 1 0 0 ∗ ∗
∗ ∗ 0 ∗ ∗ 0 1 1 1
0 ∗ ∗ 0 ∗ ∗ 1 1 1
∗ 0 ∗ ∗ 0 ∗ 1 1 1





























Theorem 5.3 We have the following facts.

• The matrix M9 is friendly.

• The M9-partition problem is NP-complete.

Proof. The first statement is obvious. To prove the NP-completeness, we observe that
M(1, 7) = M(7, 2) = M(2, 8) = M(8, 3) = M(3, 9) = M(9, 1) = ∗ while all other
entries in rows 1, 2, 3 and columns 7, 8, 9 are 0; thus parts 1, 7, 2, 8, 3, 9 are connected in a
hexagonal fashion (and similarly for parts 4, 7, 5, 8, 6, 9).

The following problem has been proved NP-complete in [13]. Let H be the hexagon
a, b, c, d, e, f (with edges ab, bc, cd, de, ef, fa). Given a bipartite graph G containing H as
an induced subgraph, can the vertices of G be mapped to the vertices of H by an edge-
preserving mapping (a homomorphism) in which each vertex of H is mapped to itself (a
retraction)? We reduce this problem to the M9-partition problem. First of all, we rename
the vertices of the hexagon H to 1, 7, 2, 8, 3, 9, instead of a, b, c, d, e, f , in this order (to
better correspond to the parts of M9-partitions). We may assume that the bipartite graph
G is two-coloured so that vertices 1, 2, 3 are white, and vertices 7, 8, 9 are black. It is then
easy to see that the desired mapping must take white vertices of G to 1, 2, 3 and black
vertices of G to 7, 8, 9.

We first join all the black vertices to each other, to form a large clique. Additionally,
we also add the three edges joining the white vertices 1, 2, 3 to each other. Finally, we
replace each white vertex by four independent vertices, and each black vertex by four
vertices in a clique. (The replacing vertices have the same adjacencies as the original
vertices they replaced.) We call the resulting graph G′. It is easy to check that G admits
a retraction to H if and only if G′ has an M9-partition. Indeed, if f is an edge-preserving
mapping of V (G) to V (H) in which f(i) = i for i = 1, 2, 3, 7, 8, 9, then G′ admits an
M9-partition in which all vertices of G′ replacing a black vertex x of G or a white vertex
x not in H are placed in part f(x), while all vertices of G′, replacing a white vertex y of
H are placed in part f(y) + 3. Conversely, if G′ has an M9-partition, then at least one
of any four vertices replacing a white vertex x must be placed in parts 1, 2, 3, 4, 5, 6, and
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at least one of any four vertices replacing a black vertex y must be placed in parts 7, 8, 9.
Moreover, any vertex replacing a white vertex x of H must be placed in parts 1, 2, 3. It
is now easy to conclude that this implies that G admits a retraction to H. ut

Note that the matrix M9 has three identical rows in both A and B.

6 Conclusions

Unfriendly matrices lead to problems that cannot be characterized by finitely many for-
bidden induced subgraphs. While many friendly matrices allow such characterizations,
including all small matrices (up to size five), we have shown that there are friendly ma-
trices for which such characterizations are not possible, and friendly matrices for which
the partition problems are NP-complete.

All three of our basic questions remain open. The problem of whether the last two
questions are equivalent for all matrices M is also open (for matrices without 1’s equiva-
lence follows from [1, 28]).
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