
Maximal projective degrees for strict partitions

D. Bernstein, A. Henke and A. Regev∗

Department of Mathematics
The Weizmann Institute of Sciences

Rehovot 76100, Israel
danber@weizmann.ac.il

amitai.regev@weizmann.ac.il

Mathematical Institute, Oxford
24-29 St Giles

Oxford OX1 3LB, United Kingdom
henke@maths.ox.ac.uk

Submitted: Mar 21, 2007; Accepted: Aug 15, 2007; Published: Aug 20, 2007

Mathematics Subject Classification: 60C05, 05A05

Abstract

Let λ be a partition, and denote by f λ the number of standard tableaux of shape
λ. The asymptotic shape of λ maximizing f λ was determined in the classical work of
Logan and Shepp and, independently, of Vershik and Kerov. The analogue problem,
where the number of parts of λ is bounded by a fixed number, was done by Askey
and Regev – though some steps in this work were assumed without a proof. Here
these steps are proved rigorously. When λ is strict, we denote by gλ the number
of standard tableau of shifted shape λ. We determine the partition λ maximizing
gλ in the strip. In addition we give a conjecture related to the maximizing of gλ

without any length restrictions.

1 Introduction

Let λ = (λ1, λ2, . . .) be a partition of n. We shall write λ ` n. As usual, we draw the
Young diagram of a partition left and top justified. Let f λ denote the number of standard
tableaux of shape λ. Note that fλ is the number of paths in the Young graph Y from its
origin (1) to λ. Also, fλ is the dimension of the Specht module, that is the degree of the
corresponding irreducible character χλ of the symmetric group Sn.

The partition λ = (λ1, λ2, . . . , λr) is strict if λ1 > λ2 > · · · > λr > 0 for some r. If the
partition λ is strict and |λ| = n, we write λ |= n. The strict partitions form precisely the
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subgraph SY in the Young graph Y . The number of paths in that subgraph from (1) to
λ is denoted by gλ. By a theorem of I. Schur, gλ equals the degree of the corresponding
projective representation of Sn.

The problem of determining the asymptotic shape of the partition λ which maximizes
fλ, as |λ| goes to infinity, is classical, and was solved in [11, 12]. This problem is closely
related to that of the expected value of the length of the longest increasing subsequences
in permutations, see also [3]. Let H(k, 0; n) denote the set of partitions of n with at most
k parts, namely

H(k, 0; n) = {(λ1, λ2, . . .) ` n | λk+1 = 0} = {λ ` n | `(λ) ≤ k}.

We say that these partitions lie in the k strip. The asymptotic problem of maximiz-
ing fλ in the k-strip was essentially solved in [1]. The solution in [1] tacitly assumed
that there exist a, δ > 0 such that as n → ∞, a maximizing λ in the k-strip does
belong to the subsets H(k, 0; n, a, δ) ⊆ H(k, 0; n, a) of H(k, 0; n); see Equations (4), (5)
and (6) below for the definitions of these subsets. Later, one of these assumptions, namely
that λ lies in H(k, 0; n, a), was rigorously verified in [2] and in [6]. We call this the a-
condition. In Section 5 of this paper we verify the additional ”δ-condition”, namely λ lies
in H(k, 0; n, a, δ), thus completing the rigorous proof of the results in [1]. The a-condition
and the δ-condition also play a role in the problem of maximizing gλ in the strip: In
Section 4 we verify the ”a-condition”, and in Section 5 we verify the ”δ-condition”, both
for λ maximizing gλ in the strip. In Section 6 we show that in the strip, the λ maximizing
either gλ or 2|λ|−`(λ)(gλ)2, have the same asymptotic shape which equals the shape maxi-
mizing fλ given in [1].

A natural question arises which is to maximize gλ over all strict partitions λ (not just in
a k-strip). This problem is open, so far without even a conjecture of what the asymptotic
shape of such maximizing λ might be. Based on some combinatorial identities, we suggest
here an approach to study the asymptotic shape of such λ. Our strategy is as follows: It
seems that the strict partition λ maximizing gλ is almost the same as the strict partition
maximizing 2|λ|−`(λ) ·(gλ)2, and asymptotically they might be the same, see Conjecture 8.2.
In Section 8 we give a possible strategy for maximizing 2|λ|−`(λ) ·(gλ)2: We relate the latter
to the problem of maximizing fµ for a certain subset of almost symmetric partitions µ
and argue why this in turn possibly is the same as maximizing f λ for any partition λ.

2 Degrees formulas

We recall the Young-Frobenius formula and the hook formula for f λ.

The Young-Frobenius formula. Let λ = (λ1, λ2, . . . , λk) be a partition of n then

fλ =
n!

`1! · · · `k!
·
∏

1≤i<j≤k

(`i − `j) (1)
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where `i = λi + k − i.

The hook-formula. Again, let λ be a partition of n, then

fλ =
n!

∏

x∈λ hλ(x)
(2)

where hλ(x) is the hook number corresponding to the cell x in the Young diagram λ.

Both these formulas have analogues for gλ where λ is a strict partition. Consider a strict
partition λ = (λ1, . . . , λh), that is λ1 > . . . > λh > 0. The analogue of the Young-
Frobenius formula is due to I. Schur [9].

The Schur formula. Let λ ` n be strict, then

gλ =
n!

λ1! · · ·λh!
·
∏

1≤i<j≤h(λi − λj)
∏

1≤i<j≤h(λi + λj)
. (3)

For the analogue hook formula for gλ we need some notations. Recall that for a strict
partition, one can also draw its shifted diagram. For example, the shifted diagram of
λ = (6, 3, 1) is

Definition 2.1 Let λ = (λ1, . . . , λr) |= n be a strict partition with λr > 0. We define a
partition µ = µ(λ) of 2n (using the Frobenius notation for partitions) by

µ = µ(λ) = proj(λ) := (λ1, λ2, . . . , λr | λ1 − 1, λ2 − 1, . . . , λr − 1).

Conversely, given the partition µ = (λ1, . . . , λr | λ1 − 1, . . . , λr − 1) ` 2n in the Frobenius
notation, then λ1 > λ2 > . . . > λr > 0 and we denote

√
µ := (λ1, λ2, . . .) |= n,

see [7]. We say µ ` 2n is shift-symmetric if there exists λ |= n such that µ = µ(λ).

Note that if µ ` 2n is shift-symmetric then µi = µ′
i + 1 for 1 ≤ i ≤ `(λ). Note also that

when n is large, the diagram of a shift-symmetric partition is nearly symmetric.

Figure 1 shows the diagram of a partition µ(λ) of 2n. Area A1 in this diagram is the shifted
diagram of the partition λ and area A2 is the (shifted) conjugate of A1. For example, when
λ = (6, 3, 1), then µ(λ) = proj(6, 3, 1) = (7, 5, 4, 2, 1, 1) and

√

(7, 5, 4, 2, 1, 1) = (6, 3, 1):

µ(λ) =

y x x x x x x
y y x x x
y y y x
y y
y
y
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A1(λ)

shifted partition λ

µ(λ) =
A2(λ)

conjugate shifted partition λ

Figure 1

The projective analogue of the hook formula is due to I. G. Macdonald, and is as follows
(see [4], page 267 – with the slight correction that D(λ) = (λ1, λ2, . . . | λ1−1, λ2−1, . . .) in
the Frobenius notation). Fill µ = µ(λ) with its (ordinary) hook numbers {hµ(x) | x ∈ µ}.
Then:

Theorem 2.2 [4] Let λ be a strict partition with µ = proj(λ), then

gλ =
|λ|!

∏

x∈A1(λ) hµ(x)

where A1(λ) is defined as in Figure 1.

3 Maximal degrees in the strip

Recall that H(k, 0; n) denotes the partitions λ of n with `(λ) ≤ k. Denote by SH(k, 0; n)
the subset of strict partitions in H(k, 0; n). Given a partition λ = (λ1, λ2, . . . , λk) of n,
define for 1 ≤ j ≤ k the numbers cj(λ) via the equation

λj =
n

k
+ cj(λ) ·

√
n. (4)

Thus cj(λ) parameterizes the deviation of λj from the average value n
k
. Fix a real number

a, and let

H(k, 0; n, a) = {λ ∈ H(k, 0; n) | all |cj(λ)| ≤ a }. (5)

With a fixed, n large and with λ ∈ {k, 0; n, a}, all λj are approximately n
k
.

In addition, also fix some δ > 0, then denote

H(k, 0; n, a, δ) = {λ ∈ H(k, 0; n) | all |cj(λ)| ≤ a, ci(λ) − ci+1(λ) ≥ δ}. (6)

Note that if λ ∈ H(k, 0; n, a, δ) then λ is a strict partition of length either k − 1 or k.

The problem. For a fixed k, and for each n, we look for partitions λfmax = λ
(n)
fmax(k) and

λgmax = λ
(n)
gmax(k) such that

fλfmax = max{f ν | ν ∈ H(k, 0; n)},
gλgmax = max{gν | ν ∈ SH(k, 0; n)}.
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The asymptotics of λfmax – that is the shape obtained when n goes to infinity – is given
in [1], and we briefly describe it here. Let Hk(x) denote the k-th Hermit polynomial. It
is defined via the equation

dk

dxk

(

e−x2
)

= (−1k)Hk(x)e−x2

.

For example, H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 4x(2x2 − 3), H4(x) =
16x4 − 48x2 + 12, etc. The degree of Hk(x) is k, and it is known that its roots are real
and distinct, denoted by

x
(k)
1 < x

(k)
2 < · · · < x

(k)
k .

Also, x
(k)
1 + x

(k)
2 + · · ·+ x

(k)
k = 0 . The following theorem is proved in [1]:

Theorem 3.1 [1] As n → ∞, the maximum max{f λ | λ ∈ H(k, 0; n)} occurs when

λ = λfmax ∼
(

n

k
+ x

(k)
k

√

n

k
, . . . ,

n

k
+ x

(k)
1

√

n

k

)

.

Recall that for two sequences an, bn, then an ∼ bn if limn→∞ an/bn = 1.

As was already mentioned, the proof of Theorem 3.1 in [1] tacitly assumed that there exist
a, δ > 0 such that for all large n, partition λfmax lies in H(k, 0; n, a, δ). This a-condition
was verified in [2] and was further simplified in [6]. In Section 5 we verify the δ-condition
for λfmax, thus completing the rigorous proof of Theorem 3.1. In Sections 4 and 5 we also
verify the corresponding a-condition and δ-condition for λgmax. Thus, Equation (7) of the
following lemma shows that λfmax and λgmax both have the same asymptotics.

Lemma 3.2 Let 0 < a, δ be fixed and let λ ∈ H(k, 0; n, a, δ). Then, as n goes to infinity,

gλ ∼ 2−k(k−1)/2 · fλ, and also (7)

gλ ∼ bλ ·
[

∏

1≤i<j≤k

(ci − cj)

]

· e−(k/2)(
P

c2i ) ·
(

1

n

)(k−1)(k+2)/4

· kn, (8)

where

bλ =

(

1

2

)k(k−1)/2

·
(

1√
2π

)k−1

· kk2/2.

Proof. (1) In the following arguments we only use the condition |ci| ≤ a. Show first that
λ′

1 = k, namely in Equation (3) we have h = k: Assume not, then λk = 0. By Equations
(4) and (6), all other parts λi ≤ n

k
+a

√
n, so n = λ1 + · · ·+λk−1 ≤ (k−1) · (n

k
+a

√
n) < n

for n large, contradiction. So λ′
1 = k.

Calculate fλ/gλ by applying Equations (1) and (3) with h = k. Note that if x ∈ {λj, λj +
1, . . . , `j} then x ∼ n/k (using |ci| ≤ a), and hence `j!/λj! ∼ (n/k)k−j. Therefore

`1! · · · `k!

λ1! · · ·λk!
∼
(n

k

)k(k−1)/2

.

the electronic journal of combinatorics 14 (2007), #R59 5



Similarly `i + `j ∼ 2 · n
k
, hence

∏

1≤i<j≤k

(`i + `j) ∼ 2k(k−1)/2 ·
(n

k

)k(k−1)/2

.

(2) In the following argument we use the condition ci − cj ≥ δ: Since δ > 0, we have

λi − λj = (ci − cj)
√

n ∼ (ci − cj)
√

n + j − i = `i − `j,

hence
∏

(λi − λj) ∼
∏

(`i − `j).

(3) The proof now follows from parts (1) and (2). Combined with Equation (F.1.1) in [5],
this implies the second approximation.

4 The a-condition for λgmax

The a-condition for λfmax – namely that λfmax lies in H(k, 0; n, a) – was verified in [2]
via a certain algorithm , and that algorithm was further simplified in [6]. As a result the
following Proposition was obtained, see Theorem 2.2 in [6].

Proposition 4.1 As n goes to infinity, the partitions λ ∈ H(k, 0; n) maximizing f λ occur
in the subsets H(k, 0; n, a) where a = (k − 1)

√
2.

In this section we verify, by a similar algorithm, the analogue a-condition for the partitions
λ maximizing gλ (as well as 2n−`(λ)(gλ)2) in the strip. That is:

Proposition 4.2 As n goes to infinity, the partitions λ ∈ SH(k, 0; n) maximizing gλ –
and 2n−`(λ)(gλ)2 – occur in the subsets H(k, 0; n, a) where a = (k − 1)

√
3. In particular,

when n is large, λj ∼ n/k for j = 1, . . . , k.

The rest of this section is devoted to the proof of Proposition 4.2. The proof is based on
the algorithm given in [6] – with the slight modification that

√
3n replaces

√
2n. We first

recall the algorithm, and then prove that when applying the algorithm, starting with an
arbitrary strict partition λ ∈ SH(k, 0; n), the output is a strict partition µ ∈ SH(k, 0; n)
satisfying gλ ≤ gµ and µi−µi+1 ≤

√
3n for i = 1, . . . , k−1. This, together with Lemma 4.5,

clearly proves Proposition 4.2.

The Algorithm. Let λ = (λ1, . . . , λk) be a partition of n. Assume that for some (say,
minimal) t ≤ k − 1, λt − λt+1 ≥

√
3n. Then the algorithm changes λ to λ(1), where

λ
(1)
i =







λi if i 6= t, t + 1,
λt − 1 if i = t,
λt+1 + 1 if i = t + 1.

Now take λ to be λ(1) and repeat the above step. If at some point no such t ≤ k − 1
exists, the algorithm stops, and we denote the corresponding partition by µ.
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Lemma 4.3 Let n > 3 and λ ∈ SH(k, 0; n). Assume after one step of the above algorithm
we obtain a partition λ(1). Then λ(1) is strict.

Proof. Note that in one step of the algorithm, say from λ to λ(1), the differences λi−λi+1

increase except for i = t. More precisely,

λ
(1)
i − λ

(1)
i+1 ≥ λi − λi+1 if i 6= t,

λ
(1)
t − λ

(1)
t+1 = λt − λt+1 − 2 ≥

√
3n − 2 ≥ 3 − 2

where the last inequality holds if n ≥ 3. Hence if λ is strict, then also λ(1) obtained after
one step of the algorithm is strict, provided n ≥ 3.

Lemma 4.4 Let n > 3 and λ ∈ SH(k, 0; n). Assume after one step of the above algorithm

we obtain a partition λ(1). Then gλ ≤ gλ(1)
.

Proof. Let λ = (λ1, . . . , λh) with h = λ′
1 ≤ k. By Equation (3), gλ/gλ(1)

= A · B where

A =

(

λt+1 + 1

λt

)

·
(

λt − λt+1

λt − λt+1 − 2

)

and

B =
∏

i6=t, t+1

(λi − λt)(λi − λt+1)(λi + λt − 1)(λi + λt+1 + 1)

(λi + λt)(λi + λt+1)(λi − λt + 1)(λi − λt+1 − 1)
.

We show first that B < 1 by showing that each factor xi/yi in B satisfies

xi

yi
=

(λi − λt)(λi − λt+1)(λi + λt − 1)(λi + λt+1 + 1)

(λi + λt)(λi + λt+1)(λi − λt + 1)(λi − λt+1 − 1)
< 1.

Start by checking that xi, yi > 0. Indeed, if i < t then λi > λt ≥ λt+1 +
√

3n and all
the factors in both xi and in yi are > 0. If i > t + 1 then the four factors involving
λi − λt and λi − λt+1 are < 0, while the other four factors are obviously > 0, and again
xi, yi > 0. Thus, to show that B < 1 it suffices to show that each yi − xi > 0. This
follows since, by elementary manipulations, yi − xi = 2λi(λt + λt+1)(λt − λt+1 − 1). But
λt − λt+1 ≥

√
3n > 1, so yi − xi > 0 and B < 1.

Show next that A ≤ 1. Write A = x/y where x = (λt+1 + 1)(λt − λt+1) and y =
λt(λt − λt+1 − 2). We need to show that y − x ≥ 0. This follows since y − x = (λt −
λt+1)

2 − 3λt + λt+1 ≥ (λt − λt+1)
2 − 3λt ≥ 0 since (λt − λt+1)

2 ≥ 3n while λt ≤ n.

Lemma 4.5 Let b > 0 and let µ ∈ H(k, 0; n) satisfy µi−µi+1 ≤ b
√

n for i = 1, . . . , k−1.
Write µj = n

k
+ cj

√
n, then |cj| ≤ (k − 1)b for all 1 ≤ j ≤ k.

Proof. Since µ is a partition of n and by the assumption we have

n = kµk + (k − 1)(µk−1 − µk) + (k − 2)(µk−2 − µk−1) + · · ·+ (µ1 − µ2)

≤ kµk +
k(k − 1)

2
b
√

n.
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Therefore
n

k
− (k − 1)

2
b
√

n ≤ µk.

Also µ1 = (µ1 − µ2) + (µ2 − µ3) + · · ·+ (µk−1 − µk) + µk ≤ n
k

+ (k − 1)b
√

n since µk ≤ n
k
.

Thus n
k
− (k−1)

2
b
√

n ≤ µk ≤ µj ≤ µ1 ≤ n
k

+ (k − 1)b
√

n for all 1 ≤ j ≤ k, which implies
the proof.

The proof of Proposition 4.2. Let λ ∈ SH(k, 0; n) and apply the above algorithm to
obtain a partition µ. Then µi −µi+1 ≤

√
3n for i = 1, . . . , k− 1, and hence by Lemma 4.3

and Lemma 4.4, the partition µ is strict with gλ ≤ gµ. By Lemma 4.5, such a partition µ
lies in H(k, 0; n, (k − 1)

√
3). The second claim is true whenever we work with partitions

in a set H(k, 0; n, a) with fixed a > 0.

5 The δ-condition for λfmax and λgmax in the strip

In this section we prove the δ-condition for maximizing f λ and gλ in the strip. More
precisely, we show:

Proposition 5.1 For all large n, if λ ∈ H(k, 0; n) and f λ = max{ f ν|ν ∈ H(k, 0; n) },
then λ ∈ H(k, 0; n, a, δ) where a = (k − 1)

√
2 and δ = 1

2k3 .

Proposition 5.2 For all large n, if λ ∈ SH(k, 0; n) and gλ = max{ gν|ν ∈ SH(k, 0; n) },
then λ ∈ H(k, 0; n, a, δ) where a = (k − 1)

√
3 and δ = 1

4k3
√

3
.

Proof of Proposition 5.1. Suppose that λ ∈ H(k, 0; n, a) \ H(k, 0; n, a, δ). By Propo-
sition 4.1, it suffices to show that in this case, f λ is not maximal. Let t = min{ 1 ≤ i <
k | λi − λi+1 < δ

√
n }, and let

r =

{

t if t ≤ k/2,

k − t otherwise.

Note that r ≤ k
2
. Let µ = (µ1, . . . , µk) ∈ H(k, 0; n) be such that

µ =

{

(λ1 + 1, . . . , λr + 1, λk−r+1 − 1, . . . , λk − 1) if t = k/2,

(λ1 + 1, . . . , λr + 1, λr+1, . . . , λk−r, λk−r+1 − 1, . . . , λk − 1) otherwise.

Clearly µ is a partition of n into k parts. By the Young-Frobenius formula (1),

fλ

fµ
=

r
∏

i=1

λi + k − i + 1

λk−i+1 + i − 1

∏

i<j

λi − λj + j − i

λi − λj + j − i + ∆i,j

the electronic journal of combinatorics 14 (2007), #R59 8



where

∆i,j =











0, if i < j ≤ r or j > i > k − r,

1, if i ≤ r < j ≤ k − r or j > k − r ≥ i > r,

2, if i ≤ r and j > k − r.

For all i < j, then
λi−λj+j−i

λi−λj+j−i+∆i,j
≤ 1, and since ∆t,t+1 ≥ 1, also λt−λt+1+1

λt−λt+1+1+∆t,t+1
< δ

√
n+1

δ
√

n+2
.

Thus

fλ

fµ
<

(

r
∏

i=1

λi + k − i + 1

λk−i+1 + i − 1

)

δ
√

n + 1

δ
√

n + 2
≤
(

λ1 + k

λk

)r
δ
√

n + 1

δ
√

n + 2

≤
( n

k
+ a

√
n + k

n
k
− a

√
n

)r
δ
√

n + 1

δ
√

n + 2
=

α0n
r+1/2 + α1n

r + O(nr−1/2)

β0nr+1/2 + β1nr + O(nr−1/2)
.

where

α0 = β0 = (
1

k
)rδ > 0, α1 = α0(r

a

1/k
+

1

δ
),

β1 = β0(−r
a

1/k
+

2

δ
).

We have α1 − β1 = α0(2rak − 1
δ
) ≤ α0(

√
2 k3 − 2k3) < 0, so α1 < β1. Thus fλ

fµ < 1 for all
sufficiently large n.

Proof of Proposition 5.2. Suppose that λ ∈ SH(k, 0; n) maximizes gλ. By Propo-
sition 4.2, partition λ lies in H(k, 0; n, a). Suppose that λ /∈ H(k, 0; n, a, δ). Let t =
min{ 1 ≤ i < k | λi − λi+1 < δ

√
n }, and let

r =

{

t if t ≤ k/2,

k − t otherwise.

Note that r ≤ k
2
. Let µ = (µ1, . . . , µk) ∈ SH(k, 0; n) be such that

µ =

{

(λ1 + 1, . . . , λr + 1, λk−r+1 − 1, . . . , λk − 1) if t = k/2,

(λ1 + 1, . . . , λr + 1, λr+1, . . . , λk−r, λk−r+1 − 1, . . . , λk − 1) otherwise.

Clearly µ is a partition of n into k parts. By formula (3),

gλ

gµ
=

r
∏

i=1

λi + 1

λk−i+1

∏

i<j

(

λi − λj

λi − λj + ∆i,j
· λi + λj + Γi,j

λi + λj

)

where

∆i,j =











0, if i < j ≤ r or j > i > k − r,

1, if i ≤ r < j ≤ k − r or j > k − r ≥ i > r,

2, if i ≤ r and j > k − r
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and

Γi,j =































−2, if k − r < i < j,

−1, if r < i ≤ k − r < j,

0, if i ≤ r ≤ k − r < j or r < i < j ≤ k − r,

1, if i ≤ r < j ≤ k − r,

2, if i < j ≤ r.

For all i < j, then
λi−λj

λi−λj+∆i,j
≤ 1, and since ∆t,t+1 ≥ 1, also λt−λt+1

λt−λt+1+∆t,t+1
< δ

√
n

δ
√

n+1
. Thus

gλ

gµ
<

(

r
∏

i=1

λi + 1

λk−i+1

)

δ
√

n

δ
√

n + 1

∏

i<j

λi + λj + Γi,j

λi + λj

≤
(

λ1 + 1

λk

)r
δ
√

n

δ
√

n + 1

(

2λk + 2

2λk

)k(k−1)/2

≤
( n

k
+ a

√
n + 1

n
k
− a

√
n

)r
δ
√

n

δ
√

n + 1

( n
k
− a

√
n + 1

n
k
− a

√
n

)k(k−1)/2

=
α0n

r+1/2+k(k−1)/2 + α1n
r+k(k−1)/2 + O(nr−1/2+k(k−1)/2)

β0nr+1/2+k(k−1)/2 + β1nr+k(k−1)/2 + O(nr−1/2+k(k−1)/2)

where

α0 = β0 = (
1

k
)r+k(k−1)/2δ > 0, α1 = α0

(

(r − k(k − 1)/2)
a

1/k

)

,

β1 = β0

(

(−r − k(k − 1)/2)
a

1/k
+

1

δ

)

.

We have α1 − β1 = α0(2rak − 1
δ
) ≤ α0(2k

3
√

3 − 4k3
√

3) < 0, so α1 < β1. Thus gλ

gµ < 1 if

n is sufficiently large, in contradiction to the maximality of gλ.

6 Maximal gλ in the strip

Recall that λfmax is the partition maximizing fλ, and λgmax the partition maximizing
gλ. Denote by λ2gmax the partition maximizing 2|λ|−`(λ)(gλ)2. Here in all three cases,
maximizing means with respect to the corresponding k-strip. The main theorem of this
section is:

Theorem 6.1 As n → ∞, the maximizing partitions in the k-strip λ2gmax, λgmax, and
λfmax are asymptotically equal. Thus

λfmax, λgmax, λ2gmax ∼
(

n

k
+ x

(k)
k

√

n

k
, . . . ,

n

k
+ x

(k)
1

√

n

k

)

,

where x
(k)
1 < · · · < x

(k)
k are the roots of the kth Hermit polynoial, see Theorem 3.1.
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Proof. (i) Define the sets

SH(k, 0; n, a) = SH(k, 0; n) ∩ H(k, 0; n, a),

SH(k, 0; n, a, δ) = SH(k, 0; n) ∩ H(k, 0; n, a, δ).

By Proposition 4.2, it follows that maximizing gλ with λ ∈ SH(k, 0; n) is the same as
maximizing gλ with λ ∈ SH(k, 0; n, a1) where a1 = (k − 1)

√
3. Let now n be large. Then

by the previous section, this is the same as maximizing gλ with λ ∈ SH(k, 0; n, a1, δ1) for
δ1 = 1

4k3
√

3
.

(ii) The same phenomena occurs when maximizing f λ for λ ∈ H(k, 0; n) when n is large:
a maximizing partition λ lies in H(k, 0; n, a2, δ2) for a2 = (k − 1)

√
2 and δ2 = 1

2k3 . See
Proposition 4.1 for the a-condition and Proposition 5.1 for the δ-condition.

(iii) Let a = max{a1, a2} and δ = min{δ1, δ2}. Then the partitions µ and ν maximizing
fλ and gλ respectively, lie in the same set H(k, 0; n, a, δ). Equation (7) implies that the
partitions maximizing fλ and the partitions maximizing gλ have the same asymptotics
when n goes to infinity. Hence λgmax and λfmax are asymptotically the same.

(iv) We show next that λ2gmax and λgmax are asymptotically the same. Clearly, the
problem of maximizing 2n−`(λ)(gλ)2 is the same as that of maximizing 2−`(λ)(gλ)2. By
part (1) of the proof of Lemma 3.2, a maximizing λ2gmax must satisfy `(λ2gmax) = k for
large n, and therefore it also maximizes gλ.

7 Some combinatorial identities

Recall the following two well-known identities for f λ and gλ.

(a)
∑

λ`n

(fλ)2 = n! and (b)
∑

λ|=n

2n−`(λ) · (gλ)2 = n! (9)

For a bijective proof of identity (a) by the RSK, see [8], and for a bijective proof of identity
(b) by a modified RSK, see [7, 13].

Proposition 7.1 Let λ |= n and let µ = µ(λ) = proj(λ), so µ ` 2n. Then

fµ(λ) =
1 · 3 · 5 · · · (2n − 1)

n!
· 2n−`(λ) · (gλ)2, (10)

∑

λ|=n

fµ(λ) =
∑

λ|=n

f proj(λ) = 1 · 3 · 5 · · · (2n − 1). (11)

The proof of this proposition follows from the following lemma.
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A

ji

i

j

λk−1

2λk λk

λi2λ1

λi + λj

λi + λj

A′

2λk−1

Figure 2

Lemma 7.2 Let λ |= n and let µ = µ(λ) = proj(λ), with A1(λ) and A2(λ) as in Figure
1. Then

∏

x∈µ

hµ(x) = 2`(λ) ·





∏

x∈A1(λ)

hµ(x)





2

. (12)

Proof. Check that µ with its hook numbers looks as in Figure 2: here the part A′ is the
conjugate of the part A and hence has the same hook numbers. The area A1 (in Figure
1) contains A together with the North-East half of the corner rectangle (a k × (k + 1)-
rectangle). Similarly for A2. Verify that the hook numbers in the corner rectangle are
those indicated in Figure 2. This implies the proof of the lemma.

The proof of Proposition 7.1 now follows from Lemma 7.2 and Theorem 2.2:

fµ =
(2n)!

∏

x∈µ hµ(x)
=

(2n)!

2`(λ) ·
(

∏

x∈A1(λ) hµ(x)
)2 =

(2n)!

n!n!
· 2−`(λ)(gλ)2.

Equation (11) follows from Equation (9b), summing Equation (10) over all λ |= n.

8 A strategy for maximizing 2|λ|−`(λ) · (gλ)2

It is a natural question to ask which strict partitions λ maximize gλ, without restricting
to the k-strip. We conjecture that these partitions are very close to the strict partitions
λ maximizing 2|λ|−`(λ) · (gλ)2. In this section, we give a strategy of how one possibly may
find the limit shape of those strict partitions λ maximizing 2|λ|−`(λ) · (gλ)2. Denote

LP (2n) = {µ ` 2n | µ is shift-symmetric}.

Proposition 7.1 shows that the strict partition λ maximizes 2|λ|−`(λ) · (gλ)2 if and only if
the shift-symmetric partition µ = µ(λ) maximizes {f µ | µ ∈ LP (2n)}. Thus, we need to
find asymptotically which shift-symmetric µ ` 2n maximizes {f µ | µ ∈ LP (2n)}. Note
the following, not necessarily rigorous, arguments:
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A∗

1

µ∗∗
=

     1

-1 1 2 3

-1

Figure 3 and Figure 4

1. For large n, a shift-symmetric diagram µ is nearly symmetric.

2. By [3], [11, 12] the asymptotic shape of the general ν maximizing f ν (with no
restrictions) is symmetric.

3. Small changes in large diagrams ν result in small changes in the hook numbers,
hence in the degrees f ν.

It is therefore reasonable to conjecture that such a shift-symmetric partition µ = µ(λ) ` 2n
maximizing fµ is asymptotically very close to the ν ` 2n maximizing f ν in the general
case, that is without any restrictions on the partitions ν. Such ν is given by the classical
work of Logan-Shepp [3] and Vershik and Kerov [11, 12], which we briefly describe: Given
ν ` n, we take the area of each box of the diagram ν to be one. Re-scale the boxes by mul-
tiplying each of the x-axis and the y-axis by 1/

√
n, and denote the re-scaled diagram by ν̄.

Thus the area of ν̄ equals one. For each n let ν
(n)
max denote a partition ν ` n with maximal

f ν: f ν
(n)
max = max{f ν | ν ` n}. Although ν

(n)
max might not be unique for some values n, when

n goes to infinity, ν̄
(n)
max has a unique asymptotic shape ν∗ given by Theorem 8.1 below.

Similarly, consider µ(λ) = proj(λ) ` 2n, and denote by µ̃(λ) = proj(λ̄) the rescaling of
µ(λ) by 1/

√
n; hence µ̃(λ) is of area two. If n → ∞ then λ̄ tends to the limit shape λ∗ (of

area one) if and only if µ̃(λ) tends to the symmetric limit shape µ∗∗ = µ(λ)∗∗ (of area two).

Theorem 8.1 ([3], [11, 12]) The limit shape ν∗ of the re-scaled diagrams ν̄
(n)
max exists,

and is given by the two axes and by the parametric curve

x =

(

2

π

)

(sin θ − θ cos θ) + 2 cos θ, y = −
(

2

π

)

(sin θ − θ cos θ), 0 ≤ θ ≤ π. (13)

The curve in Equation (13) is given in Figure 3; it is symmetric with respect to y = −x.
The last theorem, together with the discussion at the beginning of this section, leads to
the following conjecture.
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Conjecture 8.2 The limit shape λ∗ of λ |= n maximizing 2n−`(λ) · (gλ)2 (and possibly
maximizing gλ) is given by the two axes and by the parametric curve (Figure 4)

x = 2
√

2 · cos θ, y =

(

2
√

2

π

)

· (θ cos θ − sin θ), 0 ≤ θ ≤ π

2
. (14)

Conjecture 8.2 follows from the assumption that to maximize f µ over the shift-symmetric
partitions is asymptotically the same as maximizing f ν over all partitions ν. By Propo-
sition 7.1 the λ maximizing 2|λ|−`(λ) · (gλ)2 satisfies λ =

√
µ. So λ∗ =

√
µ∗∗ for the limit

shapes, where the limit shape µ∗∗ is of area two. We therefore dilate the curve (13) by
multiplying both the x-values and the y-values by

√
2. This yields the limit shape µ∗∗ of

area two, given by the axes and by the curve

x =
√

2

[(

2

π

)

(sin θ − θ cos θ) + 2 cos θ

]

,

y = −
√

2

(

2

π

)

(sin θ − θ cos θ), 0 ≤ θ ≤ π.

To obtain λ∗, first obtain its shifted shape A∗
1 by cutting µ∗∗ into two halves along the

line y = −x, see Figure 3: A∗
1 is bounded by the x-axis, by the line y = −x and by the

part of the (dilated) LSVK curve with 0 ≤ θ ≤ π
2
. To obtain λ∗ from A∗

1, pull the line
y = −x to the left, until it equals the (negative) y-axis. Thus each point (x, y) in A∗

1 is
transformed to (x−|y|, y) in λ∗. Under this transformation the x-axis stays invariant, the
line y = −x becomes the (negative) y-axis, and (half of) the dilated LSVK curve becomes
the curve (14) of Conjecture 8.2.
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