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Abstract

Let A be a partition, and denote by f* the number of standard tableaux of shape
X. The asymptotic shape of A maximizing f* was determined in the classical work of
Logan and Shepp and, independently, of Vershik and Kerov. The analogue problem,
where the number of parts of A is bounded by a fixed number, was done by Askey
and Regev — though some steps in this work were assumed without a proof. Here
these steps are proved rigorously. When \ is strict, we denote by ¢ the number
of standard tableau of shifted shape A\. We determine the partition A maximizing
¢" in the strip. In addition we give a conjecture related to the maximizing of ¢g*
without any length restrictions.

Introduction

corresponding irreducible character x* of the symmetric group S,,.

The partition A = (A1, Az, ...

*Partially supported by Minerva grant No. 8441
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.) be a partition of n. We shall write A F n. As usual, we draw the
Young diagram of a partition left and top justified. Let f* denote the number of standard
tableaux of shape A. Note that f* is the number of paths in the Young graph Y from its
origin (1) to A. Also, f* is the dimension of the Specht module, that is the degree of the

) s strict if Ay > Ay > -+ > A\, > 0 for some r. If the
partition A is strict and |A\| = n, we write A = n. The strict partitions form precisely the



subgraph SY in the Young graph Y. The number of paths in that subgraph from (1) to
A is denoted by ¢*. By a theorem of I. Schur, ¢* equals the degree of the corresponding
projective representation of S,,.

The problem of determining the asymptotic shape of the partition A which maximizes
f?, as || goes to infinity, is classical, and was solved in [11, 12]. This problem is closely
related to that of the expected value of the length of the longest increasing subsequences
in permutations, see also [3]. Let H(k,0;n) denote the set of partitions of n with at most
k parts, namely

Hk,0:m) = {0\, Aoy . ) | Men = 0} = {AF | £00) < k).

We say that these partitions lie in the k strip. The asymptotic problem of maximiz-
ing f* in the k-strip was essentially solved in [1]. The solution in [1] tacitly assumed
that there exist a,0 > 0 such that as n — oo, a maximizing A in the k-strip does
belong to the subsets H(k,0;n,a,d) C H(k,0;n,a) of H(k,0;n); see Equations (4), (5)
and (6) below for the definitions of these subsets. Later, one of these assumptions, namely
that A lies in H(k,0;n,a), was rigorously verified in [2] and in [6]. We call this the a-
condition. In Section 5 of this paper we verify the additional ”d-condition”, namely A lies
in H(k,0;n,a,d), thus completing the rigorous proof of the results in [1]. The a-condition
and the é-condition also play a role in the problem of maximizing ¢ in the strip: In
Section 4 we verify the ”a-condition”, and in Section 5 we verify the ”d-condition”, both
for A maximizing ¢* in the strip. In Section 6 we show that in the strip, the A maximizing
either g* or 2M=¥M(g*)2 have the same asymptotic shape which equals the shape maxi-
mizing f* given in [1].

A natural question arises which is to maximize g* over all strict partitions A (not just in
a k-strip). This problem is open, so far without even a conjecture of what the asymptotic
shape of such maximizing A might be. Based on some combinatorial identities, we suggest
here an approach to study the asymptotic shape of such A. Our strategy is as follows: It
seems that the strict partition A maximizing ¢* is almost the same as the strict partition
maximizing 2N =M. (¢*)2, and asymptotically they might be the same, see Conjecture 8.2.
In Section 8 we give a possible strategy for maximizing 2X=¢™ . (¢g*)2: We relate the latter
to the problem of maximizing f#* for a certain subset of almost symmetric partitions u
and argue why this in turn possibly is the same as maximizing f* for any partition \.

2 Degrees formulas

We recall the Young-Frobenius formula and the hook formula for f*.

The Young-Frobenius formula. Let A = (A, Ay, ..., A\x) be a partition of n then
n!

P I1 -0 (1)

1<i<j<k
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where (; = \; + k — 1.
The hook-formula. Again, let A\ be a partition of n, then
=

n!
[Ley halz)

where hy(z) is the hook number corresponding to the cell z in the Young diagram .

(2)

Both these formulas have analogues for ¢g* where X is a strict partition. Consider a strict
partition A = (Aq,..., ), that is Ay > ... > X\, > 0. The analogue of the Young-
Frobenius formula is due to I. Schur [9)].

The Schur formula. Let A - n be strict, then
g)‘ _ n! . H1§i<j§h()‘i B >‘j)
Al Al Thcicjen (N +A))
For the analogue hook formula for ¢g* we need some notations. Recall that for a strict

partition, one can also draw its shifted diagram. For example, the shifted diagram of
A=(6,3,1) is

(3)

Definition 2.1 Let A = (Aq,...,\.) E n be a strict partition with \, > 0. We define a
partition = u(X) of 2n (using the Frobenius notation for partitions) by
= puA) =proj(A) := (A, Ay oo N [ A =1 A —1, ... A — 1).

Conversely, given the partition = (A1, ..., A\ | A1 —1,..., A\, — 1) I 2n in the Frobenius
notation, then \y > X\g > ... > A\, > 0 and we denote

\/ﬁ = ()\1,)\2, .. ) ’: n,
see [7]. We say p & 2n is shift-symmetric if there exists A |=n such that p = p(A).

Note that if p F 2n is shift-symmetric then p; = p; + 1 for 1 < i < ¢(\). Note also that
when n is large, the diagram of a shift-symmetric partition is nearly symmetric.

Figure 1 shows the diagram of a partition p(\) of 2n. Area A; in this diagram is the shifted
diagram of the partition A and area A, is the (shifted) conjugate of A;. For example, when

A =(6,3,1), then pu(A) =proj(6,3,1) = (7,5,4,2,1,1) and /(7,5,4,2,1,1) = (6,3, 1):

zlxlz]
X

LR R
SRR

p(A) =

NN

ekl
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shifted partition A

wy) = | A2

conjugate shifted partition A

Figure 1

The projective analogue of the hook formula is due to I. G. Macdonald, and is as follows
(see [4], page 267 — with the slight correction that D(A\) = (A1, Ay, ... | Ai—1, A0 —1,...) in
the Frobenius notation). Fill g = p(X) with its (ordinary) hook numbers {h,(z) | = € u}.
Then:

Theorem 2.2 [}/ Let X be a strict partition with p = proj(X), then
S D
Hm€A1 N hﬂ (LU)

where A1 (\) is defined as in Figure 1.

3 Maximal degrees in the strip

Recall that H (k,0;n) denotes the partitions A of n with £(\) < k. Denote by SH(k,0;n)
the subset of strict partitions in H(k,0;n). Given a partition A = (Aq, Ag, ..., Ag) of n,
define for 1 < j < k the numbers ¢;(\) via the equation

n
Thus ¢;(A) parameterizes the deviation of A; from the average value 7. Fix a real number
a, and let

)\j:

H(k,0;n,a) = {Ae€ H(k,0;n)|all |[c;(N\)] <a}. (5)
With a fixed, n large and with A € {k,0;n,a}, all \; are approximately 7.
In addition, also fix some § > 0, then denote
H(k,0;n,a,0) = {Ae H(k,0;n)|all |c;(N)]| <a, ¢;(A) — ciz1(A) > 0} (6)
Note that if A € H(k,0;n,a,d) then X is a strict partition of length either k£ — 1 or k.
The problem. For a fixed k, and for each n, we look for partitions A4, = )\(fiax(k) and
Agmaz = Mmaaey Such that

gmaz(k

f)\fmaz — max{fy ‘ vV E H(/{;,O,n)},
g)\gmaac — maX{gV | Ve SH(I’C,O,”)}
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The asymptotics of Af,q, — that is the shape obtained when n goes to infinity — is given
in [1], and we briefly describe it here. Let Hy(x) denote the k-th Hermit polynomial. It
is defined via the equation

j—; (e—f) = (1% Hy(z)e™".

For example, Ho(z) =1, Hy(z) = 2z, Ha(x) = 42? — 2, Hi(z) = 42(22% — 3), Hu(x) =
16x% — 4822 + 12, etc. The degree of Hy(x) is k, and it is known that its roots are real
and distinct, denoted by

(k) (k)

Ty < Ty (k)

<<y
Also, $§k> + xgk) +-- 4 $l(€k) =0 . The following theorem is proved in [1]:

Theorem 3.1 [1] Asn — oo, the mazimum max{f*| X\ € H(k,0;n)} occurs when

n B N n k) [T
)\:)\fmax’\’(%—‘—xl(f) E,,%—‘—xg)\/%)

Recall that for two sequences a,, b,, then a,, ~ b, if lim,_, a,/b, = 1.

As was already mentioned, the proof of Theorem 3.1 in [1] tacitly assumed that there exist
a,6 > 0 such that for all large n, partition Ay, lies in H(k,0;n,a,d). This a-condition
was verified in [2] and was further simplified in [6]. In Section 5 we verify the §-condition
for Afmaz, thus completing the rigorous proof of Theorem 3.1. In Sections 4 and 5 we also
verify the corresponding a-condition and d-condition for Agmq,. Thus, Equation (7) of the
following lemma shows that A g4, and Agne, both have the same asymptotics.

Lemma 3.2 Let 0 < a,6 be fived and let X € H(k,0;n,a,d). Then, as n goes to infinity,

gt~ 27Rk=D2 L pd and also (7)
) 1\ (k=D(k+2)/4
@~ by [ H (¢; _cj)] e kD) | <_) k" (8)
1<i<j<k n

where

1\ k=172 1\l
) e
2 o

Proof. (1) In the following arguments we only use the condition |¢;| < a. Show first that
A} = k, namely in Equation (3) we have h = k: Assume not, then Ay = 0. By Equations
(4) and (6), all other parts \; < Z+ay/n,son=A+---+X 1 < (k—1)-(F+ay/n) <n
for n large, contradiction. So \] = k.

Calculate f*/g* by applying Equations (1) and (3) with h = k. Note that if x € {\;, \; +
1,...,4;} then x ~ n/k (using |¢;| < a), and hence ¢;!/\;! ~ (n/k)*=. Therefore

IZLERRY /N (n)k(k—l)ﬂ

M- \E
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Similarly ¢; +¢; ~ 2 - %, hence

H (b; + ;) ~ ok(k=1)/2 . (%

1<i<j<k

)k(k—l)/Z

(2) In the following argument we use the condition ¢; — ¢; > 6: Since 6 > 0, we have
Ai—Aj:(Ci—Cj)\/_N(Ci—Cj)\/ﬁ‘i‘j—’L':gi—gj,

hence H()\Z — )\]) ~ H(EZ — gj)
(3) The proof now follows from parts (1) and (2). Combined with Equation (F.1.1) in [5],
this implies the second approximation. [

4 The a-condition for A,

The a-condition for Afq, — namely that Afq, lies in H(k,0;n,a) — was verified in [2]
via a certain algorithm , and that algorithm was further simplified in [6]. As a result the
following Proposition was obtained, see Theorem 2.2 in [6].

Proposition 4.1 Asn goes to infinity, the partitions A € H (k,0;n) maximizing f* occur
in the subsets H(k,0;n,a) where a = (k — 1)v/2.

In this section we verify, by a similar algorithm, the analogue a-condition for the partitions
A maximizing g* (as well as 2"~“M(g*)?) in the strip. That is:

Proposition 4.2 As n goes to infinity, the partitions X € SH(k,0;n) mazimizing g* -
and 2" (gM? — occur in the subsets H(k,0;n,a) where a = (k — 1)/3. In particular,
when n is large, \j ~n/k for j=1,... k.

The rest of this section is devoted to the proof of Proposition 4.2. The proof is based on
the algorithm given in [6] — with the slight modification that v/3n replaces v/2n. We first
recall the algorithm, and then prove that when applying the algorithm, starting with an
arbitrary strict partition A € SH(k,0;n), the output is a strict partition u € SH(k,0;n)
satisfying ¢* < g* and p;— i1 < V3nfori=1,..., k—1. This, together with Lemma 4.5,
clearly proves Proposition 4.2.

The Algorithm. Let A = (A,...,\z) be a partition of n. Assume that for some (say,
minimal) t <k — 1, A\ — Aq1 > v3n. Then the algorithm changes A to A(Y)| where

i ifi£tt+1,
A= N1 ifi=t,
As1+1 ifi=t+1

Now take A to be A and repeat the above step. If at some point no such ¢t < k — 1
exists, the algorithm stops, and we denote the corresponding partition by .
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Lemma 4.3 Letn >3 and A € SH(k,0;n). Assume after one step of the above algorithm
we obtain a partition XV Then XY is strict.

Proof. Note that in one step of the algorithm, say from A to AV, the differences \; — \i41
increase except for ¢ = t. More precisely,

e IRV VRS P E ]

A AW = N A 2> VB —2>3-2

where the last inequality holds if n > 3. Hence if X is strict, then also A\(!) obtained after
one step of the algorithm is strict, provided n > 3. [

Lemma 4.4 Letn > 3 and A € SH(k,0;n). Assume after one step of the above algorithm
we obtain a partition \V. Then ¢* < g*"".

Proof. Let A = (A, ..., \y) with h = N, < k. By Equation (3), ¢*/¢*"" = A- B where
A:<)\t+1+1)_< At — A1 )
At At = Apy1 — 2

N =) =)+ =D N+ A+ 1)
N+ 2) N+ M) = A+ 1D (N — A — 1)

and
B =
it t4+1

We show first that B < 1 by showing that each factor x;/y; in B satisfies

i (A = A = A) Qi £ A = DA + A +1) -
O e I VI [ D VT DO VD VI D

Start by checking that x;, y; > 0. Indeed, if i < t then A\; > \; > A\y1 + V3n and all
the factors in both z; and in y; are > 0. If ¢ > ¢t + 1 then the four factors involving
Ai — A and A\; — \pyq are < 0, while the other four factors are obviously > 0, and again
x;, y; > 0. Thus, to show that B < 1 it suffices to show that each y; — x; > 0. This
follows since, by elementary manipulations, y; — z; = 2X\;(As + Aa1)(A¢ — A1 — 1). But
At — Air1 2\/%>1,soyi—x,->0andB<1.

Show next that A < 1. Write A = z/y where x = (A1 + 1)( A — Ap1) and y =
A(Ar — A1 — 2). We need to show that y — x > 0. This follows since y — x = (A, —
)\t+1)2 — 3)\t + )\t+1 2 ()\t - )\t+1)2 — 3)\t 2 0 since (>\t — )\t+1)2 Z 3n while >\t S n. |

Lemma 4.5 Let b > 0 and let p € H(k,0;n) satisfy p; — piv1 < by/m fori=1,... k—1.
Write pi; = 3 + cjy/n, then |c;| < (k—1)b for all 1 < j < k.

Proof. Since p is a partition of n and by the assumption we have

no= kpe+ (k= 1) (-1 — ) + (k= 2) (-2 — pe—1) + -+ - + (1 — p2)
Kk — 1)

<+ bV,
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Therefore
n  (k—=1)

< .
- 5 byv/n < puy,

Also py = (p1 — p2) + (2 — p3) + -+ (pe—1 — p) + pxe < 7+ (K — 1)by/n since py < 7.
Thus 7 — @b\/ﬁ <k Sy < pp < 7 A (B—=1)by/n for all 1 < j <k, which implies
the proof. n

The proof of Proposition 4.2. Let A € SH(k,0;n) and apply the above algorithm to
obtain a partition p. Then p; — pti1 < V3n fori =1,...,k—1, and hence by Lemma 4.3
and Lemma 4.4, the partition y is strict with ¢* < ¢*. By Lemma 4.5, such a partition p
lies in H(k,0;n, (k — 1)v/3). The second claim is true whenever we work with partitions
in a set H(k,0;n,a) with fixed a > 0. n

5 The j-condition for Ay, and A, in the strip

In this section we prove the d-condition for maximizing f* and ¢* in the strip. More
precisely, we show:

Proposition 5.1 For all large n, if X € H(k,0;n) and f* = max{ f“|v € H(k,0;n)},
then X € H(k,0;n,a,0) where a = (k —1)v/2 and § = 5.
Proposition 5.2 For all large n, if \ € SH(k,0;n) and ¢* = max{ g*|v € SH(k,0;n) },

then A € H(k,0;n,a,d) where a = (k—1)V/3 and § = 4k31\/§.

Proof of Proposition 5.1. Suppose that A € H(k,0;n,a) \ H(k,0;n,a,d). By Propo-
sition 4.1, it suffices to show that in this case, f* is not maximal. Let t = min{1 < i <
k | i — >\i+1 < 5\/%}, and let

t if t <k/2,
k —t otherwise.
Note that r < £. Let gt = (pu1, ..., ) € H(k,0;n) be such that

I ECNE S VU WS B VRSP U VN ) if t = k/2,
Sl Oa 1 A+ A s M Mgt — 1, o, A — 1) otherwise.

Clearly p is a partition of n into k& parts. By the Young-Frobenius formula (1),

IR 5 A,-+k:—z'+1H N—N+j—i
fr LL;
1<)

7 Ak—ip Hi— 1 A ti—it+ Ay
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where
0,

Aivj - 1,
2,

For all 7 < 7, then

Ai—Aj+j—1
Ai=Aj+j—i+Aq

ifi<j<rorj>i>k—r,
ife<r<j<k—rorj>k—r>i>r,
ifi<randj>k—r.

At—=App1+1

< dy/n+1
t—Atr1+1+A 1

5y/n+2°

<1, and since A1 > 1, also

Thus

f T hitk—i+1)dy/n+1 <>\1+k>rd\/ﬁ+1

- < . <

f” ey )\k—i—l—l‘l’z_ 1 5\/ﬁ+2 Ak 5\/54—2
- %+a\/ﬁ+k r 6\/5_‘_ 1 B a0n7‘+1/2 +an” _I_O(nr—l/Q)
“\ t-ayn Svn+2  Bontt2 4 Bt + O(nr=1/2)

where

1
ag = fo = (%)76 > 0, o =
f =

We have a; — 1 = ao(2rak — 3) < ap(vV2k® — 2k%) < 0, so a; < ;. Thus ;—: < 1 for all
sufficiently large n. [

Proof of Proposition 5.2. Suppose that A € SH(k,0;n) maximizes ¢*. By Propo-
sition 4.2, partition A lies in H(k,0;n,a). Suppose that A ¢ H(k,0;n,a,d). Let t =
min{1 <i<k| XN — N1 <dy/n}, and let

t if t < k/2,
’]” g
k —t otherwise.

Note that r < £. Let p = (1, ..., ) € SH(k,0;n) be such that

if t = k/2,

otherwise.

L L N — L A )
B L A 1 Aty oy Mo Mt — 1,y A — 1)

Clearly p is a partition of n into k parts. By formula (3),

@ A+l i — A A,-+Aj+rm->
g+ Ak_ng(Ai—AﬁAi,j' A+ A
where
0, fi<j<rorj>i>k—r,
Aj=1q1 ifi<r<j<k—rorj>k—r>i>r,
2, ifi<randj>k-—r
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and
=2, ifk—r<i<y,
1, ifr<i<k—r<j,

[ij=40, Hi<r<k—-r<jorr<i<j<k-r,
1, ifi<r<j<k-—r,
(2, ifi<j<r
For all i < j. then — 2N <1, and since A > 1, also A=At < Thus
J> Xi—N+A; tt+1 NNt A 5\[“

)\k—z—i-l

(MDY SV (2h 42 h(k=1)/2

B Ak 5\/54—1 2\

< 2tayn+1\" 6/n [(RF-ayn+1 hk=1)/2
T —ayn dvn+1 T —ayn

qonH/2HRE=1)/2 o yrk(e=1)/2 4 O(nr—1/2+k(k—1)/2)
:50nr+1/2+k(k—1)/2 + By TR1/2 4 O (r-1/2 k(1) /2)

HA+1 5y/n H)\i+>\j+Fm»
: 5\/ﬁ+1i<j Ai + A

where

= [y = (k)“k(k D25 > 0, v o= a ((r—kz( —1)/2)1/k)
B = o ((or = k- /25 + 7).

We have a; — 31 = ap(2rak — 1) < ao(2k*V3 — 4k3V/3) < 0, so a; < B1. Thus ;7—2 < 1if
n is sufficiently large, in contradiction to the maximality of g*. [

6 Maximal ¢* in the strip

Recall that Afe, is the partition maximizing f*, and Ay, the partition maximizing
¢*. Denote by A2gmaz the partition maximizing 2=t (¢*)%. Here in all three cases,
maximizing means with respect to the corresponding k-strip. The main theorem of this

section 1is:

Theorem 6.1 As n — oo, the mazimizing partitions in the k-strip Aogmaz, Agmaz, ond
A fmaz are asymptotically equal. Thus

n k n n k n
)\fmaxa )\gmaxa )\2gmax’\' (E_I'IIE) Eaa%+$g)\/;)a

where x&k) << x,(f) are the roots of the kth Hermit polynoial, see Theorem 3.1.
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Proof. (i) Define the sets

SH(k,0;n,a) = SH(k,0;n)N H(k,0;n,a),
SH(k,0;n,a,0) = SH(k,0;n)N H(k,0;n,a,d).

By Proposition 4.2, it follows that maximizing ¢* with A € SH(k,0;n) is the same as

maximizing ¢* with A € SH(k,0;n, a;) where a; = (k— 1)4/3. Let now n be large. Then

by the previous section, this is the same as maximizing ¢* with A\ € SH(k,0;n, a1, 6,) for
_ 1

0= 57

(i) The same phenomena occurs when maximizing f* for A € H(k,0;n) when n is large:

a maximizing partition X lies in H(k,0;n, as, d3) for ay; = (k — 1)v/2 and §y = ﬁ See

Proposition 4.1 for the a-condition and Proposition 5.1 for the d-condition.

(iii) Let a = max{a;,as} and 6 = min{d;,ds}. Then the partitions p and v maximizing

f* and g* respectively, lie in the same set H(k,0;n,a,d). Equation (7) implies that the

partitions maximizing f* and the partitions maximizing ¢* have the same asymptotics

when n goes to infinity. Hence Agpqe and Afp,q, are asymptotically the same.

(iv) We show next that Aogmes and Agne, are asymptotically the same. Clearly, the
problem of maximizing 2"~‘™(g*)? is the same as that of maximizing 27 (¢*)%2. By
part (1) of the proof of Lemma 3.2, a maximizing Aggmq, must satisty €(Aygmaes) = k for
large n, and therefore it also maximizes g*. ]

7 Some combinatorial identities

Recall the following two well-known identities for f* and ¢*.

(@ SR =mn and 1) Y2 (g = )

AFn AEn

For a bijective proof of identity (a) by the RSK, see [8], and for a bijective proof of identity
(b) by a modified RSK, see [7, 13].

Proposition 7.1 Let A =n and let = p(\) = proj(N), so ut 2n. Then

1-3-5---(2n—1 e
fu(/\) _ n!( ) Lgn—t\) (g>\)27 (10)

qu(A) _ Zf:nmj(k) =1-3-5---(2n—1). (11)

AEn AEn

The proof of this proposition follows from the following lemma.
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2)\]\ g

2Fk~1 A1

224 Ap

Al

Figure 2

Lemma 7.2 Let A |=n and let p = p(X\) = proj(\), with A1(\) and As(\) as in Figure
1. Then

2

[The(@) =2V [ T[] hulx) | - (12)

TEU z€A1(N)

Proof. Check that p with its hook numbers looks as in Figure 2: here the part A’ is the
conjugate of the part A and hence has the same hook numbers. The area A; (in Figure
1) contains A together with the North-East half of the corner rectangle (a k x (k 4 1)-
rectangle). Similarly for A,. Verify that the hook numbers in the corner rectangle are
those indicated in Figure 2. This implies the proof of the lemma. ]

The proof of Proposition 7.1 now follows from Lemma 7.2 and Theorem 2.2:

o (2n)! RECT R
o @) ey (erAl(A) hu(l")) i
Equation (11) follows from Equation (9b), summing Equation (10) over all A = n. "

8 A strategy for maximizing 2N~/ . (g})?

It is a natural question to ask which strict partitions A maximize ¢*, without restricting
to the k-strip. We conjecture that these partitions are very close to the strict partitions
A maximizing 2N . (gM)2. In this section, we give a strategy of how one possibly may
find the limit shape of those strict partitions A maximizing 2X=*® . (¢*)2. Denote

LP(2n) = {ut 2n | p is shift-symmetric}.

Proposition 7.1 shows that the strict partition A maximizes 2= . (¢*)? if and only if
the shift-symmetric partition p = p(\) maximizes {f* | u € LP(2n)}. Thus, we need to
find asymptotically which shift-symmetric p - 2n maximizes {f* | u € LP(2n)}. Note
the following, not necessarily rigorous, arguments:
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Figure 3 and Figure 4

1. For large n, a shift-symmetric diagram p is nearly symmetric.

2. By [3], [11, 12] the asymptotic shape of the general v maximizing f* (with no
restrictions) is symmetric.

3. Small changes in large diagrams v result in small changes in the hook numbers,
hence in the degrees f".

It is therefore reasonable to conjecture that such a shift-symmetric partition p = p(A) F 2n
maximizing f* is asymptotically very close to the v F 2n maximizing f” in the general
case, that is without any restrictions on the partitions v. Such v is given by the classical
work of Logan-Shepp [3] and Vershik and Kerov [11, 12], which we briefly describe: Given
v F n, we take the area of each box of the diagram v to be one. Re-scale the boxes by mul-
tiplying each of the x-axis and the y-axis by 1/4/n, and denote the re-scaled diagram by .
Thus the area of 7 equals one. For each n let y . denote a partition v F n with maximal
1 f”mx = maz{f" | v F n}. Although i might not be unique for some values n, when
n goes to infinity, 7. has a unique asymptotic shape v* given by Theorem 8.1 below.
Similarly, consider p()\) = proj(\)  2n, and denote by fi(\) = proj(A) the rescaling of
w(\) by 1/4/n; hence fi()) is of area two. If n — oo then X tends to the limit shape A\* (of
area one) if and only if fi(\) tends to the symmetric limit shape p** = p(\)*™ (of area two).

Theorem 8.1 ([3], [11, 12]) The limit shape v* of the re-scaled diagrams D eists,
and is given by the two azes and by the parametric curve

2 2
xz(—)(sin@—@cos@)—{—?cos@, yz—(;)(sin@—@cos@), 0<6<m (13)

™

The curve in Equation (13) is given in Figure 3; it is symmetric with respect to y = —x.
The last theorem, together with the discussion at the beginning of this section, leads to
the following conjecture.
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Conjecture 8.2 The limit shape \* of X = n mazimizing 27X . (¢M)? (and possibly
mazimizing g ) is given by the two azes and by the parametric curve (Figure 4)

x = 2V2 - cosb, y = <&> - (fcosf —sinb), OSQSg. (14)
m

Conjecture 8.2 follows from the assumption that to maximize f* over the shift-symmetric
partitions is asymptotically the same as maximizing f” over all partitions v. By Propo-
sition 7.1 the A maximizing 2N~V . (g*)? satisfies A = (/. So A* = /™ for the limit
shapes, where the limit shape p** is of area two. We therefore dilate the curve (13) by
multiplying both the z-values and the y-values by v/2. This yields the limit shape p** of
area two, given by the axes and by the curve

r=12 [(g) (sinf — 6O cosf) +2cosb|,

™

y=—V2 (g) (sinf —fcosf), 0<6<m.
s

To obtain \*, first obtain its shifted shape A} by cutting p** into two halves along the
line y = —x, see Figure 3: A} is bounded by the z-axis, by the line y = —x and by the
part of the (dilated) LSVK curve with 0 < 6 < 7. To obtain A\* from Aj, pull the line
y = —x to the left, until it equals the (negative) y-axis. Thus each point (z,y) in A7 is
transformed to (z —|y|,y) in A*. Under this transformation the z-axis stays invariant, the
line y = —x becomes the (negative) y-axis, and (half of) the dilated LSVK curve becomes
the curve (14) of Conjecture 8.2.
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