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Abstract

A graph is self-complementary if it is isomorphic to its complement. In this
paper we prove that every forest of order 4p and size less than 3p is a subgraph of a
self-complementary graph of order 4p with a cyclic self-complementary permutation.
We also discuss some generalization of the main result.
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1 Introduction

We shall use standard graph theory notation. We consider only finite, undirected graphs
G = (V (G), E(G)) of order |V (G)| and size |E(G)|. All graphs will be assumed to have
neither loops nor multiple edges. For W ⊂ V (G) we will denote by G − W the graph
obtained from G by removing vertices of W . A graph G is self-complementary (briefly, s-c)
if it is isomorphic to its complement (cf. [4], [5], or [2]). It is clear that an s-c graph has
n ≡ 0, 1 (mod 4) vertices. A self-complementary permutation is a permutation which
transforms one copy of a self-complementary graph into another. Ringel ([4]) and Sachs
([5]), independently, proved that a self-complementary permutation consists of cycles of
lengths that are multiples of 4, except for one cycle of length one when n ≡ 1 (mod 4).
The following has been observed in [5].

Remark 1 If σ is a self-complementary permutation of G then every odd power of σ is
a self complementary permutation of G (while every even power of σ is an automorphism
of G).

∗The research of two first authors was partly supported by KBN grant 2 P03A 016 18 and the work
of the third author was supported by AGH local grant

†This work was carried out while APW was visiting University of Orleans

the electronic journal of combinatorics 14 (2007), #R62 1



A sufficient condition for a graph to be a subgraph of a self-complementary graph was
proved in [1].

Lemma 2 Let H = (V (H), E(H)) be a graph of order n ∈ {4p, 4p + 1} and let σ be
a permutation of its vertex set, such that every orbit of σ has a multiple of four ver-
tices except, possibly, of one fix vertex in odd case. If for every edge xy ∈ E we have
σ2k+1(x)σ2k+1(y) /∈ E for every k = 0, 1, ..., 2p − 1, then H is a subgraph of a self-
complementary graph with self-complementary permutation σ.

An embedding of G (in its complement G) is a permutation σ on V (G) such that if an
edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In others words, an
embedding is an (edge-disjoint) placement (or packing) of two copies of G (of order n) into
the complete graph Kn. It is evident that subgraphs of self-complementary graphs of the
same order are embeddable. The relationship between the property “to be embeddable”
and the property “to be a subgraph of a self-complementary graph of the same order”
was discussed in [1], [8], [9]. The structure of packing permutations was also studied in
[3], [7] and [10].

We consider the special structure of self-complementary permutations. By Theorem
6, the expectation that a graph is a subgraph of a self-complementary graph H of the
same order rises with the number of cycles of s-c permutation of H.

2 Main result

We think that the following conjecture may be true.

Conjecture 3 Every graph G of order at most n = 4p and size less then 3

4
n = 3p

is a subgraph of a self-complementary graph of order n with cyclic self-complementary
permutation.

We shall prove a result which gives some support to Conjecture 3.

Theorem 4 Let n = 4p and let F be a forest of order at most n = 4p and size less then
3

4
n = 3p. Then F is a subgraph of a self-complementary graph H of order n with a cyclic

self-complementary permutation.

By Lemma 2, we obtain that if the star K1,k is a subgraph of a self-complementary
graph of order 4p with a cyclic self-complementary permutation then k ≤ 3p − 1. Thus
the star K1,3p is not a subgraph of any self-complementary graph of order 4p with cyclic
permutation, and Theorem 4 is sharp, in a sense. Note also that an s-c graph may
have two different s-c permutations. For example, (112345678) and (1278)(3456) are s-c
permutations of the graph depicted in Fig. 1.

In fact, we shall prove that, for every n = 4p there is a universal s-c graph of order n
containing every forest of order at most 4p and size less then 3p.
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Figure 1: s-c graph with s-c permutations (12345678) and (1278)(3456)
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Figure 2: Graph F4p

We need some additional definitions. Let H4p be the graph defined in the following
way. The vertices of H4p are the numbers from 1 to 4p. The even vertices form a clique.
Additionally, each even vertex x is joined by an edge to p odd vertices x + 1 mod 4p, x +
3 mod 4p, . . . , x + 2p − 1 mod 4p.

It is easy to see that H4p is a self-complementary graph and that the corresponding
packing permutation is cyclic (namely: σ = (1234 . . . 4p)). Let F4p be the graph with the
vertex set A ∪ B where A = A(F4p) = {y1, y2, . . . , y2p}, B = B(F4p) = {x1, x2, . . . , x2p}
drawn as in Fig. 2. The left-hand side L of the graph F4p is the set of vertices L =
{x1, ..., xp, y1, ..., yp} and the right-hand side is R = {xp+1, ..., x2p, yp+1, ..., y2p}. The
edges are defined as follows. The set B = B(F4p) is a clique. Moreover, each vertex xi is
connected to the vertex yi as well as to the vertices yi+k for 1 ≤ k < p if i + k ≤ 2p. In
particular, the vertex y2p is the only neighbour of x2p in A = A(F4p).

It is immediate that F4p is a subgraph of H4p.

Theorem 5 Let n = 4p and let F be a forest of order at most n = 4p and size less then
3

4
n = 3p. Then F is a subgraph of F4p.

3 Proof

The proof is by induction on p. It is not difficult to check that the theorem is true for
p = 1 and p = 2. Assume that our theorem is true for a fixed p ≥ 2. We shall show
that it holds also for n = 4(p + 1). Let F be a forest having 4(p + 1) vertices and at
most 3(p + 1) − 1 = 3p + 2 edges. We shall consider several cases. In each case we shall
remove from F four vertices and at least three edges. Denote by F ′ the obtained forest.
By induction, we can consider it as a subgraph of the graph F4p. The graph F4p+4 will be
drawn as a graph F4p with four additional vertices f1, f2, f3, f4 (f1, f4 ∈ A(F4p+4), f2,
f3 ∈ B(F4p+4)) placed in the proper way. It is sufficient now to determine where the four
removed from F vertices may be put.
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Figure 4: Case 1:T = K1,3

Case 1. The forest F has a component T of order 4.
Set F ′ = F − V (T ). Observe that T is the path of order 4 or the star K1,3. Details of

putting vertices of T on vertices f1,...,f4 are given in Fig. 3 and 4.
Case 2. The forest F has a component T of order 3.

It is obvious that if F consists of the tree T and isolated vertices then F is a subgraph
of F4p+4. Hence we may assume that there is a vertex l ∈ V (F )−V (T ) such that d(l) = 1
and the vertex v ∈ V (F ) such that v is the only neighbour of l. Let F ′ = F −V (T )−{l}.

Let us first suppose that the vertex v is in the set A(F4p). If v is in the set L∩A(F4p)
then we can put it on the vertex f3 and we can put vertices of T on vertices f1, f2, f4

(Fig. 5). Let us suppose that v is in the set R ∩ A(F4p). Details of addition vertices
f1,...,f4 in this subcase are given in Fig. 6. Since p − 2 ≥ 1, we can form F4p+4 in this
way. Then we put the vertex l on f3 and vertices of T on f1, f2, f4.

If the vertex v is in the set B(F4p) then the vertex l can be put on the vertex f3 and
vertices of T can be put on vertices f1, f2, f4 (Fig. 7).
Case 3. The forest F has a component of order 2.

By Cases 1 and 2 we may assume that no tree of order 4 or 3 is a component of F .
It is obvious that if every tree of F is an isolated vertex or a tree of order 2 (an isolated
edge) then F is a subgraph of F4p+4. Thus we may assume that there is the tree T̃ of
order at least 5 as a component of F .
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Figure 5: Case 2: v ∈ L ∩ A(F4p)
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Figure 6: Case 2:v ∈ R ∩ A(F4p)
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Figure 7: Case 2:v ∈ B(F4p)

Subcase 3.1. There is a vertex of T̃ with at least two leaves as neighbours.
Set l1, l2, v ∈ V (T̃ ) such that d(l1) = d(l2) = 1 and v is the only neighbour of l1 and

l2. In this subcase set F ′ = F − V (T ) − {l1, l2}.
Let us first suppose that v is in the set A(F4p). Observe that every neighbour of v in

T̃ − {l1, l2} is in the set B(F4p). Thus we can change the place of v by putting it on f2.
Then we put l1, l2 on f1 and the place just left by v. We put vertices of T on f3 and f4

(Fig. 8).
Hence we may assume that v is in the set B(F4p). Then we form F4p+4 by adding

vertices f1,...,f4 as in Fig. 9. We put the leaves l1, l2 on f1, f2 and vertices of T on f3, f4.
Subcase 3.2. No two leaves of T̃ have a common neighbour.

Observe that there are vertices l, v ∈ V (T̃ ) such that d(l) = 1, d(v) = 2 and v
is the only neighbour of l. Let w be the second neighbour of v. In this subcase let
F ′ = F − V (T ) − {l, v}. We put the vertices of T on f3 and f4 and the vertices l and v
on f1 and f2, respectively. Details are given in Fig. 10 (the vertex w is in A(F4p)) and
Fig. 11 (the vertex w is in B(F4p)).
Case 4. Every tree of F is either an isolated vertex or has at least 5 vertices.

Observe that F has at least p + 1 components. Since F has 4p vertices, there is an
isolated vertex u ∈ V (F ). If F consists of isolated vertices then F is a subgraph of F4p+4.
Thus we may assume that there is a component T of order at least 5. Then there are five
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Figure 8: Subcase 3.1: v ∈ A(F4p)
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Figure 9: Subcase 3.1: v ∈ B(F4p)
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Figure 10: Subcase 3.2: w ∈ A(F4p)
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Figure 12: Five cases.
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Figure 13: Subcase 4.1:v ∈ A(F4p)

subcases given in Fig. 12.
Subcase 4.1. There is a vertex of T with at least three leaves as neighbours.

Set l1, l2, l3, v ∈ V (T ) such that d(l1) = d(l2) = d(l3) = 1 and v is the only neighbour
of l1, l2 and l3. In this subcase set F ′ = F − {l1, l2, l3, u}.

Let us suppose that v is in the set A(F4p). Then every neighbour of v in T −{l1, l2, l3}
is in the set B(F4p). Thus we can change the place of v by putting it on f2. Then we put
vertices l1, l2 and l3 on vertices f1, f3 and f4. The vertex u is put on the place just left
by v (Fig. 13).

Hence we can assume that v is in the set B(F4p). We put the vertices l1, l2 and l3 on
f1, f2 and f3. The vertex u is put on f4 (Fig. 14).
Subcase 4.2. There is a vertex of degree 3 in T with exactly two leaves as neighbours.

Set l1, l2, v ∈ V (T ) such that d(l1) = d(l2) = 1 and v is the only neighbour of
l1 and l2. Then d(v) = 3. Let w denote the third neigbour of v. In this subcase set
F ′ = F − {l1, l2, v, u}. If w is in the set A(F4p) then we can change the place of w by
putting it on f3 and then the vertex v is put on f2, vertices l1, l2 are put on f1, f4 and
the vertex u is put on the place just left by w (Fig. 15). When w is in the set B(F4p)
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Figure 14: Subcase 4.1: v ∈ B(F4p)
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Figure 15: Subcase 4.2:w ∈ A(F4p)
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details of putting vertices l1, l2, v, u are given in Fig. 16.
Subcase 4.3. There are vertices l1, l2, v, w ∈ V (T ) such that d(l1) = d(l2) = 1, d(v) = 2,
the vertex v is the only neighbour of l1, the vertex w is a common neighbour of l2 and v.

Set F ′ = F − {l1, l2, v, u}. Details of putting vertices l1, l2, v, u are given in Fig. 17
(when w is in A(F4p)) and in Fig. 18 (when w is in B(F4p)). Observe that when w is in
the set A(F4p) we can change the place of w by putting it on f3 and put the vertex u on
the place just left by w.
Subcase 4.4. There are vertices l1, l2, v1, v2, w ∈ V (T ) such that d(l1) = d(l2) = 1,
d(v1) = d(v2) = 2, vi is the only neighbour of li for i = 1, 2 and w is a common neighbour
of v1, v2.

Set F ′ = F − {l1, l2, v1, u}.
Let us suppose that w is in the set A(F4p). Then every neighbour of w in T −{l1, l2, v1}

is in the set B(F4p). In particular v ∈ B(F4p). We can change the place of w by putting
it on f3 and then we can put l2 on the place just left by w (Fig. 19).

Thus we may assume that w is in the set B(F4p). We can change the place of v2 by
putting it on f3 and then we can put u on the place just left by v2. We put vertices l1,
v1, l2 on vertices f1, f2 and f4, respectively (Fig. 20).
Subcase 4.5. There are vertices l, v, w, x ∈ V (T ) such that d(l) = 1, d(v) = d(w) = 2,
the vertex v is the only neighbour of l, the vertex w is a common neighbour of vertices v

r
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Figure 17: Subcase 4.3:w ∈ A(F4p)
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Figure 18: Subcase 4.3:w ∈ B(F4p)
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Figure 19: Subcase 4.4:w ∈ A(F4p)
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Figure 20: Subcase 4.4:w ∈ B(F4p)
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Figure 22: Subcase 4.5:x ∈ B(F4p)

and x.
Set F ′ = F − {l, v, w, u}. Details of putting vertices l, v, w, u are given in Fig. 21

(when x is in A(F4p)) and Fig. 22 (when x is in B(F4p)). Observe that when x is in
A(F4p) we can change the place of x by putting it on f3 and then put the vertex u on the
place just left by x.

4 Generalizations

Theorem 6 Let p and q be integers such that p ≥ 1, q ≥ 0 and let F be a forest of order
at most 4p + 4q and size less then 3p + 4q. Then F is a subgraph of a self-complementary
graph H of order n = 4(p+q), such that a self-complementary permutation of H has q+1
cycles, q of which having length four.

Proof. The proof is by induction on q. For q = 0 Theorem 6 is exactly Theorem 4.
Assuming that the theorem holds for an integer q ≥ 0 we shall prove it for q + 1.
Let F be a forest of order 4p + 4(q + 1) and size at most 3p + 4(q + 1) − 1. It is obvious
that we can assume that F does not consists of only isolated vertices.

Let us first suppose that at least one of cases holds:
I. F has a component T of order at least 2 which is neither a star nor a path on 4 vertices.
II. Two components T1, T2 of F are trees of order at least 2 such that T1 ∪ T2 is not the
union of an isolated edge and a path (including an isolated edge).

In both cases there are four vertices: either l1, v1, l2, v2 ∈ V (T ) or l1, v1 ∈ V (T1), l2,
v2 ∈ V (T2), respectively, such that d(l1) = d(l2) = 1, vi is the only neighbour of li, i = 1,
2 and vertices v1, v2 cover at least four edges. Set F ′ = F − {l1, l2, v1, v2}. By induction
hypothesis F ′ is contained in an s-c graph of order 4(p + q) with an s-c permutation σ ′
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having q+1 cycles, q of which of length four. By Lemma 2 and Remark 1 the permutation
σ = σ′ ◦ (v1l1v2l2) is an s-c permutation with required properties.

We may assume that none of cases I, II holds. Then we obtain five possibilities:
i) F is the union of a star (including an isolated edge) and isolated vertices,
ii) F is the union of the path of order 4 and isolated vertices,
iii) F is the union of at least two isolated edges and possibly isolated vertices,
iv) F is the union of K1,2, at least one isolated edge and possibly isolated vertices,
v) F is the union of the path of order 4, at least one isolated edge and possibly isolated
vertices.

It is easily seen, by Lemma 2 and Remark 1, that in possibility i) and ii) the forest F
is a subgraph of required s-c graph of order 4(p + q + 1).

Let us consider possibilities iii), iv) and v). Since |V (F )| = 4p + 4(q + 1), |E(F )| ≤
2p + 2q + 2 in iii), iv) and |E(F )| ≤ 2p + 2q + 3 in v). Let T1, T2 be two trees of F
such that T1, T2 are isolated edges in iii) and T1 = K1,2, T2 is an isolated edge in iv)
and T1 is the path of order 4, T2 is an isolated edge in v). There are four vertices l1,
v1 ∈ V (T1), l2, v2 ∈ V (T2) such that d(l1) = d(l2) = d(v2) = 1, v1 is the only neighbour
of l1. Set F ′ = F − {l1, v1, l2, v2}. Then |E(F ′)| ≤ 2p + 2q in iii), |E(F ′)| ≤ 2p + 2q − 1
in iv), v). Thus in every possibility iii), iv), v) F ′ verifies the assumptions of the theorem
for q. By induction hypothesis F ′ is contained by s-c graph of order 4(p+q) with an s-c
permutation σ′ having q + 1 cycles, q of which of length four. Then σ = σ ′ ◦ (v1l1v2l2) is
an s-c permutation with required properties.
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