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Abstract

The Lovász Local Lemma is known to have an extension for cases where inde-

pendence is missing but negative dependencies are under control. We show that

this is often the case for random injections, and we provide easy-to-check conditions

for the non-trivial task of verifying a negative dependency graph for random injec-

tions. As an application, we prove existence results for hypergraph packing and

Turán type extremal problems. A more surprising application is that tight asymp-

totic lower bounds can be obtained for asymptotic enumeration problems using the

Lovász Local Lemma.

1 Introduction

The Lovász Local Lemma is perhaps one of the most powerful probabilistic tools in com-
binatorics, which has numerous applications, in addition to combinatorics, in number
theory and computer science.

When dependencies of the events are rare, the Lovász Local Lemma provides a general
way of proving that with a positive (though tiny) probability, none of the events occur. In
some cases an efficient algorithm has been found for finding elements of this tiny event [4].
The main contribution of this paper is to use the Lovász Local Lemma in a space with
rich dependencies, in the set of random injections between two sets.

Let A1, A2, . . . , An be events in a probability space Ω. A graph G on vertices [n] is
called a dependency graph of the events Ai’s if Ai is mutually independent of all Aj with
ij 6∈ E(G).
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Lemma 1 Lovász Local Lemma (first version) [9] For each 1 ≤ i ≤ n, suppose the

event Ai satisfies Pr(Ai) ≤ p, and assume a dependency graph G is associated with these

events. Assume that d is an upper bound for the degrees in G. If e(d + 1)p < 1, then

Pr(∧n
i=1Ai) > 0. is positive.

Here is a more general second version, Lemma 2, which implies Lemma 1 by setting
xi = 1

d+1
:

Lemma 2 Lovász Local Lemma (second version) [2] p. 64. Let A1, . . . , An be events

with dependency graph G. If there exist numbers x1, . . . , xn ∈ [0, 1) such that

Pr(Ai) ≤ xi

∏

ij∈E(G)

(1 − xj).

for all i, then

Pr(∧n
i=1Ai) ≥

n
∏

i=1

(1 − xi) > 0.

Going to further generality, a negative dependency graph for A1, . . . , An is a simple
graph on [n] satisfying

Pr(Ai| ∧j∈S Aj) ≤ Pr(Ai), (1)

for any index i and any subset S ⊆ {j | ij 6∈ E(G)}, if the conditional probability
Pr(∧j∈SAj) is well-defined, i.e. > 0 (in [10], the terminology was lopsidependency graph).
We will make use of the fact that Equation (1) trivially holds when Pr(Ai) = 0, otherwise
the following equation is equivalent to Equation (1):

Pr(∧j∈SAj | Ai) ≤ Pr(∧j∈SAj). (2)

Note that if Ai is mutually independent of Aj for j ∈ S, then we have

Pr(Ai| ∧j∈S Aj) = Pr(Ai).

Thus, the dependency graphs always can be considered as negative dependency graphs.

Lemma 3 Lovász Local Lemma (third version) [10], or [2] p. 65. Let A1, . . . , An

be events with a negative dependency graph G. If there exist x1, · · · , xn ∈ [0, 1) with

Pr(Ai) ≤ xi

∏

ij∈E(G)

(1 − xj) (3)

for all i, then

Pr(∧n
i=1Ai) ≥

n
∏

i=1

(1 − xi) > 0. (4)
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Note that one easily obtains a version of Lemma 1 for the case of the negative depen-
dency graph from Lemma 3 by setting xi = 1

d+1
. For historical accuracy, [10] described

the proof of Lemma 3 in this special setting. The manuscript [14] available on the web
gives a detailed proof to Lemma 3. A variant of Lemma 3 has been proved in [1].

The main obstacle for using Lemma 3 is the difficulty to define a useful negative
dependency graph other than a dependency graph. In this paper, we will consider the
probability space over random injections. Let U and V be two finite sets with |U | ≤ |V |.
Consider the probability space Ω = I(U, V ) of all injections from U to V equipped with
a uniform distribution. We are going to provide a criterion for defining the negative
dependency graph. We give applications of this criterion in permutation enumeration,
hypergraph packing, and Turán type extremal problems.

We do not prove any new result on permutation enumeration, our point is that we are
not aware of any previous application of the Lovász Local Lemma in this direction. Our
proofs suggest that this possibility is there.

Both for hypergraph packing problems and Turán type extremal problems, the lit-
erature mostly focuses on best estimates for particular hypergraphs. Here we give very

general bounds that are close to optimal in their general setting, and at the same time,
are not very far from the best estimates for particular hypergraphs, when we apply the
general setting for them.

For example, for any fixed bipartite graph G on s vertices and any graph H on n
vertices, Alon and Yuster [3] proved that for sufficiently large n, H can be covered by
vertex-disjoint copies of G if the minimum degree of H is at least ( 1

2
+ ε)n and s divides n.

We obtain a general (but weaker) result (Theorem 3) on perfect packing problem for any
hypergraph G.

For Turán type extremal problems, likewise, the literature focuses on particular ex-
cluded sub-hypergraphs, like K

(r)
r+1. The few general results available are about the number

of edges [16], [12]. Our general results are about excluded sub-hypergraphs, in which ev-
ery edge meets few other edges, and as before, our estimate is near tight when applied to
the well-studied K

(r)
r+1.

The paper is organized as follows. In section 2, we prove our main theorem. We
extend the Lovász Local Lemma to the space of random injections by establishing a
simple criterion for defining the negative dependency graph. In section 3, we apply our
main theorem to asymptotic permutation enumeration. We study the packing problem
for any two hypergraphs in section 4 and the perfect packing problem in section 5. The
last application on Turán type extremal problems will be given in section 6.

In a follow-up paper under preparation, we will show that Lemma 3 applies to the
uniform probability space of perfect matchings of K2n with a proper definition of the
negative dependency graph; and we will also show how many of our asymptotically tight
lower bounds can be turned actually into an asymptotic formula.

the electronic journal of combinatorics 13 (2007), #R63 3



2 Main result

To state our result, we will use the following notations. Every injection from U to V can
be viewed as a saturated matching of complete bipartite graph with partite sets U and V .
In this sense, we define a matching to be a triple (S, T, f) satisfying

1. S is the subset of U and T is a subset of V .

2. The map f : S → T is a bijection.

We denote the set of all such matchings by M(U, V ). Note that the elements of M(U, V )
are partial functions from U to V that are injections, and I(U, V ) ⊆ M(U, V ).

For any permutation ρ of V we define the map πρ : M(U, V ) → M(U, V ) as follows:
For any g ∈ M(U, V ) for all u ∈ U

πρ(g)(u) = ρ(g(u))

Clearly for a matching g1 = (S1, T1, f1) if πρ(g1) = g2 = (S2, T2, f2) then S1 = S2.
Moreover, if T1 consists of fixpoints of ρ (i.e. ρ(v) = v for all v ∈ T1) then g2 = g1.

Two matchings (S1, T1, f1) and (S2, T2, f2) are said to conflict each other if either
“∃k ∈ S1 ∩ S2, f1(k) 6= f2(k)” or “∃k ∈ T1 ∩ T2, f

−1
1 (k) 6= f−1

2 (k)”. In other words,
two matchings do not conflict each other if and only if their union (as a graph) is still a
matching.

For a given matching (S, T, f), we define the event AS,T,f as

AS,T,f = {σ ∈ I(U, V )| σ(i) = f(i), ∀i ∈ S}.

An event A ∈ I(U, V ) is called to be canonical if A = AS,T,f for a matching (S, T, f).
Two canonical events conflict each other if their associated matchings conflict. Note that
if two events conflict each other, then they are disjoint.

Note that for any permutation ρ of V , and any matching (S, T, f), if πρ((S, T, f)) =
(S, T ′, f ′) then πρ(AS,T,f) = AS,T ′,f ′ .

We establish a sufficient condition for negative dependency graphs for the space of
random injections by showing the following theorem.

Theorem 1 Let A1, A2, . . . , An be canonical events in I(U, V ). Let G be the graph on [n]
defined as

E(G) = {ij | Ai and Aj conflict}.
Then G is a negative dependency graph for the events A1, . . . , Am.

Proof: We are supposed to show the inequality (1). If the condition ∧j∈SAj has
probability zero, then there is nothing to prove. So assume Pr(∧j∈SAj) > 0.

By (2), it suffices to show that for any index i and any set J ⊆ {j : Ai and Aj does
not conflict},

Pr(∧j∈JAj | Ai) ≤ Pr(∧j∈JAj). (5)
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For 1 ≤ k ≤ m, let (Sk, Tk, fk) be the corresponding matching of the event Ak. We
first prove the following claim.
Claim: For any matching (Si, T, f),

Pr(ASi,T,f) = Pr(ASi,Ti,fi
). (6)

Moreover, if J ⊆ {j : Ai and Aj does not conflict}, we have

Pr((∧j∈JAj)ASi,T,f) ≥ Pr((∧j∈JAj)ASi,Ti,fi
). (7)

Proof of Claim: Fix a matching (Si, T, f). Let J ′ be the set of indices j ∈ J so that Aj

does not conflict ASi,T,f . Clearly

(∧j∈JAj)ASi,T,f = (∧j∈J ′Aj)(∧j∈J\J ′Aj)ASi,T,f .

If j ∈ J \ J ′, then Aj conflicts to ASi,T,f , and so ASi,T,f ⊆ Aj. Therefore

AjASi,T,f = ASi,T,f .

Thus, whether J \ J ′ is empty or not, we have

(∧j∈J\J ′Aj)ASi,T,f = ASi,T,f ,

from which it follows that

(∧j∈JAj)ASi,T,f = (∧j∈J ′Aj)ASi,T,f . (8)

Let ρ : V → V be a bijection satisfying the following: ρ(v) = v for any v ∈ ∪j∈J ′Tj

and for w ∈ T , ρ(w) = fi(f
−1(w)). By the definition of J ′ we have that for each j ∈ J ′

if u ∈ Si ∩ Sj then f(u) = fi(u) = fj(u), therefore such a ρ clearly exists. Moreover, for
each j ∈ J ′, Tj consists of fixpoints of ρ, ρ(T ) = Ti, and for u ∈ Si, ρ(f(u)) = fi(u).

This implies that πρ((Si, T, f)) = (Si, Ti, fi), from which equation (6) follows. Also for
each j ∈ J ′ we have πρ((Sj, Tj, fj)) = (Sj, Tj, fj). Thus, for each j ∈ J ′

πρ(AjASi,T,f) = AjASi,Ti,fi
, (9)

from which
πρ((∧j∈J ′Aj)ASi,T,f) = (∧j∈J ′Aj)ASi,Ti,fi

(10)

Using equations (8) and (10) we obtain

Pr((∧j∈JAj)ASi,T,f) = Pr((∧j∈J ′Aj)ASi,T,f))

= Pr((∧j∈J ′Aj)ASi,Ti,fi
)

≥ Pr((∧j∈JAj)ASi,Ti,fi
).

The proof of the claim is finished.
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For the fixed set Si, the collection of events {ASi,T,f | (Si, T, f) is a matching} forms
a partition of the space Ω = I(U, V ).

From this partition and equations (6) and (7) we get

Pr(∧j∈JAj) =
∑

(Si,T,f)

Pr((∧j∈JAj)ASi,T,f)

≥
∑

(Si,T,f)

Pr((∧j∈JAj)ASi,Ti,fi
)

=
∑

(Si,T,f)

Pr(∧j∈JAj | ASi,Ti,fi
)Pr(ASi,Ti,fi

)

=
∑

(Si,T,f)

Pr(∧j∈JAj | ASi,Ti,fi
)Pr(ASi,T,f)

= Pr(∧j∈JAj | ASi,Ti,fi
).

�

3 Asymptotic Permutation Enumeration

There is a well-known asymptotic formula for the number of fixed-point-free permutations
of n elements (or derangements of n elements), n!/e. Surprisingly, the Lovász Local
Lemma gives this asymptotic formula as lower bound. Let us be given a set U of n
elements.

To apply Theorem 1, set V = U , for i ∈ U set Si = Ti = {i}, define fi : Si → Ti by
i 7→ i. Set Ai = ASi,Ti,fi

and observe that Ai consists of permutations that fix i. We will
use empty negative dependency graph, i.e. E(G) = ∅.

For the purposes of Lemma 3 select xi = 1/n. This choice is allowed, as Pr(Ai) = 1/n
and the product in (3) is empty. The conclusion is that Pr(∧iAi) ≥ (1 − 1

n
)n, and this

number converges to 1/e.
Going further, it is known that the probability of a random permutation not having

any k-cycle is asymptotically e−1/k [5]. With some effort, we can get this as a lower bound
for the probability from Lovász Local Lemma. Let us be given a set U of n elements.
To apply Theorem 1, set V = U , for I ⊂ U , |I| = k set SI = TI = I; and consider all
fα

I : I → I functions (α = 1, 2, ..., (k − 1)!) that correspond to a k-cycle on I.
Define the event AI,α = AI,I,fα

I
. The vertices of the negative dependency graph will

be the
(

n
k

)

(k − 1)! events, and we join AI,α with AJ,β if I ∩ J 6= ∅. Every degree in the

negative dependency graph is bounded by

[

(

n
k

)

−
(

n−k
k

)

]

(k − 1)! = (n)k

k
− (n−k)k

k
, where

(n)k is the falling factorial notation. For the purposes of Lemma 3 select xI,α = x =
1+

c
k

n

(n)k

,

Note that Pr(AI,α) = 1
(n)k

, and a little calculation shows that

1

(n)k
≤ x(1 − x)

(n)k
k

−
(n−k)k

k (11)
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by the definition of x, if ck is sufficiently large, due to the fact that (n)k

k
− (n−k)k

k
= O(nk−1).

(Just take the logarithm of both sides of (11) that we need to prove and expand the
logarithms into series.) Hence, (3), the condition of Lemma 3, holds. The conclusion of

Lemma 3 is that Pr(∧I,αAI,α) ≥
(

1 − 1+
ck

n

(n)k

)(n

k
)(k−1)!

, and this number on the right hand

side converges to e−1/k.
Let us turn now to the enumeration of Latin rectangles. An k×n Latin rectangle is a

sequence of k permutations of {1, 2, ..., n} written in a matrix form, such that no column
has any repeated entries. Let L(k, n) denote the number of k × n Latin rectangles. The
current best asymptotic formula [11] for L(k, n) works for k = o(n6/7). Without going
into details of the history of the problem, the previous best range was k = o(n1/2), with
the use of the Chen-Stein method [7], [19], showing

L(k, n) ∼ (n!)ke−(k

2)−
k
3

6n . (12)

Formula (12) has had an unexpected proof [17], where the inequality

(n!)k

k−1
∏

r=1

(

1 − r

n

)n

≤ L(k, n), (13)

which was proved from the van der Waerden inequality for the permanent, provided the
lower bound for the asymptotic formula.

Our goal now is to show (13) from Lemma 3 for k = o(n1/2). We need the following
very general lemma.

Lemma 4 Assume that G is a negative dependency graph for the events A1, A2, ..., An.

Assume further that V (G) has a partition into classes, such that any two events in the

same class have empty intersection. For any partition class J , let BJ = ∨j∈JAj. Now the

quotient graph of G is a negative dependency graph for the events BJ .

Proof. We have to show that if K is a subset of non-neighbors of J in the quotient
graph, then Pr(BJ | ∧K∈K BK) ≤ Pr(BJ). By the additivity of (conditional) probability
over mutually exclusive events, it is sufficent to show that

Pr(Aj| ∧K∈K BK) ≤ Pr(Aj) (14)

holds for every j ∈ J . However, ∧K∈KBK = ∧i∈∪KAi, and every i ∈ ∪K is a non-neighbor
of j in G, according to the definition of the quotient graph. Therefore, (14) holds as G is
a negative dependency graph. �

Let us select now k permutations π1, π2, ..., πk of the elements {1, 2, ..., n} randomly
and independently, and fill in the entries πi(j) into a k × n matrix. We want to give a
lower bound for the probability that the first t + 1 rows make a Latin rectangle under
the condition that first t rows make a Latin rectangle. Fix an arbitrary t × n Latin
rectangle now with rows π1, π2, ..., πt. Define the event Aij by πi(j) = πt+1(j). These are
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canonical events. Let G be the graph whose vertices are the (i, j) entries for j = 1, 2, ..., n,
i = 1, 2, ..., t, and every (i1, j) is joined with every (i2, j). The maximum degree in this
graph is t − 1 = o(n1/2). With the choice xij = 2/n these events satisfy (3) in the
graph G, and therefore the graph G according to Theorem 1 is a negative dependency
graph. Define the events Bj = ∨1≤i≤tAij. Clearly Pr(Bj) ≤ t/n. The quotient graph
is empty, and is a negative dependency graph for the Bj events. Lemma 3 applies and
Pr(∧n

j=1Bj) ≥ (1 − t/n)n. Iterating this estimate, formula (13) follows. �

Spencer made a joke in [18], that Lovász Local Lemma 1 can prove the existence of an
injection from an a-element set into a 6a-element set, while the naive approach requires
a Θ(a2) size codomain, as it is well-known from the ‘Birthday Paradox’. Now using
Lemma 3 in combination with Lemma 5 below, we can show that a random function from
an a-element set into an a-element set is an injection with probability at least ( 1

e
−o(1))a,

giving a combinatorial proof to a weakened Stirling formula! (Apart from Lemma 4, this
is the only result in the paper not using Theorem 1.)

We say that the events A1, A2, ..., An are symmetric, if the probability of any boolean
expression of these sets do not change, if we substitute Aπ(i) to the place of Ai simulta-
neously, for any permutation π of [n].

Lemma 5 Assume that the events A1, A2, ..., An are symmetric, and let pi denote Pr(A1∧
A2 ∧ · · · ∧ Ai) for i = 1, 2, ..., n and let p0 = 1. If the sequence is logconvex, i.e. p2

k ≤
pk−1pk+1 for k = 1, 2, ..., n− 1, then Lemma 3 applies with an empty negative dependency

graph, i.e. with xi = p1.

Proof. Mathematical induction on the number of terms in the condition yields that
Pr(A1|A2 ∧A3 ∧ ...∧Ak) = 1− pk/pk−1 ≥ 1− pk+1/pk = Pr(A1|A2 ∧A3 ∧ ...∧Ak ∧Ak+1).

�

Consider a set A with |A| = a and a set B with |B| = b, and assume a ≤ b. Consider a
random function f from A to B. For u ∈ A, define the event Au = the value f(u) occurs
with multiplicity 2 or higher. The events Au are symmetric. Clearly Pr(Au) = 1 − b(b −
1)a−1/ba. Direct calculation shows that pi = Pr(Au1 ∧ Au2 · · ·Aui

) = i!
(

b
i

)

(b − i)a−i/ba.
The logconvexity of the pi sequence is algebraically equivalent to (b − k)2a−2k−1 ≤ (b −
k + 1)a−k(b − k − 1)a−k−1 for k = 1, ..., a − 1. In the case a = b, set n = a − k, and the
last inequality is algebraically equivalent to the well-known fact (1 + 1

n−1
)n−1 ≤ (1 + 1

n
)n

for n ≥ 2, while the case n = 1 corresponds to p2
a−1 ≤ pa−2pa, which is easy to check.

Hence, using Lemma 3, we obtain that the probability that a random A → A function is
an injection, is at least (1 − p(A1))

a = (1 − 1/a)a(a−1) = (1
e
− o(1))a, pretty close to the

correct asymptotics a!/aa =
√

2πae−a(1 + o(1)).

4 Packing problem

A hypergraph H consists of a vertex set V (H) together with a family E(H) of subsets of
V (H), which are called edges of H. A r-uniform hypergraph, or r-graph, is a hypergraph
whose edges have the same cardinality r. The complete r-graph on n vertices is denoted
by K

(r)
n .
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Packing problem of hypergraphs: For two r-uniform hypergraphs H1, H2, and an
integer n ≥ max{|V (H1)|, |V (H2)|}, are there injections φi : V (Hi) → [n], for i = 1, 2
such that φ1(H1) and φ2(H2) are edge-disjoint?

Theorem 2 For i = 1, 2, assume that Hi is an r-uniform hypergraph with mi edges, such

that every edge in Hi intersects at most di other edges of Hi. If (d1 +1)m2 +(d2 +1)m1 <
1
e

(

n
r

)

, then there exist injections of V (H1) and V (H2) into K
(r)
n such that the natural

images of H1 and H2 are edge-disjoint.

Proof: Without loss of generality, we assume that H2 is given as a sub-hypergraph of
K

(r)
n . Consider a random injection of V (H1) into V (K

(r)
n ); this injection extends to E(H1)

in the natural way. Our probability space will be I(U, V ) with U = V (H1) and V = [n].
Consider two edges F1 (of H1) and F2 (of H2); and a bijection φ : F1 → F2. The events
AF1,F2,φ will be our bad events. We have

Pr(AF1,F2,φ) =
1

r!
(

n
r

) =
1

(n)r

.

Let G be the negative dependency graph of those AF1,F2,φ events. An event AF1,F2,φ

conflicts another event AF ′

1,F ′

2,φ′ if and only if

1. Edges F1 and F ′
1 have empty intersection while their images F2 and F ′

2 have non-
empty intersection.

2. Edges F1 and F ′
1 have non-empty intersection but φ and φ′ are defined differently

in some intersection point.

An event AF1,F2,φ can have at most r!(d2 + 1)m1 − 1 conflicts of the first type, and at
most r!(d1 + 1)m2 conflicts of the second type, thus the maximal degree d in the negative
dependency graph is at most

r![(d1 + 1)m2 + (d2 + 1)m1] − 1.

Apply Lemma 1 in the negative dependency graph setting. With positive probability,
all bad events Af1,f2,φ can be avoided simultaneously if

e(d + 1)Pr(Af1,f2,φ) < 1.

�

Remark: The constant coefficient 1
e

in Theorem 2 can not be replaced by 2 as shown by
the following example.

Let r = 2 and H1 be the graph on n = s(s − 1) vertices consisting of s − 1 vertex-
disjoint copies of the complete graph Ks; and let H2 be the graph on n = s(s−1) vertices
consisting of a single Ks and n− s isolated vertices. The complement graph H1 is Ks-free
by the pigeonhole principle. (In fact, H is the maximum Ks-free graph on n vertices by
Turán theorem [21].) Therefore, copies of H1 and H2 can not be packed into Kn with
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disjoint edge sets. In this example, we have d1 = d2 = 2(s − 2) and m1 = (s − 1)
(

s
2

)

,
m2 =

(

s
2

)

. It is easy to see that Therefore, we have

(d1 + 1)m2 + (d2 + 1)m1 = (2s − 3)(s − 1)

(

s

2

)

+ (2s − 3)

(

s

2

)

= (2s − 3)

(

s

2

)

< 2

(

s(s − 1)

2

)

= 2

(

n

2

)

.

Here the last inequality holds for all s ≥ 2 by an easy calculation.

5 Perfect Packing

For two r-uniform hypergraphs, H and G, we say that H has a perfect G-packing if there
exist sub-hypergraphs G1, . . . , Gk of H, each isomorphic to G, such that the vertex sets
V (G1), . . . , V (Gk) partition V (H).

A necessary condition for the existence of perfect G-packing is that |V (H)| is divisible
by |V (G)|. We will prove the following theorem.

Theorem 3 Suppose that two r-uniform hypergraphs G and H satisfy the following.

1. G has s vertices, H has n vertices, and n is divisible by s.

2. G has m edges, and each edge in G intersects at most d other edges of G.

3. For any vertex v of H, the degree of v in H is at least (1 − x)
(

n−1
r−1

)

.

If x < 1
e(d+1+r2 m

s
)
, then then H has a perfect G-packing.

A special case is that G is the r-graph with a single edge. We have m = 1, d = 0, and
s = r.

Corollary 1 Suppose the degree of each vertex in an r-graph H on n vertices is at least

(1 − 1
e(r+1)

)
(

n−1
r−1

)

. If n is divisible by r, then H has a perfect matching.

Proof of Theorem 3: Let H1 be the union of n
s

vertex-disjoint copies of G and H
be the complement graph of H. Observe that H has a perfect G-packing if and only if
H1 and H2 = H can be packed into K

(r)
n . Now we apply Theorem 2. Notice that d1 = d

and m1 = |E(H1)| = n
s
|E(G)| = nm

s
. The degree of any vertex in H is at most x

(

n−1
r−1

)

by
the third condition. We have

d2 ≤ rx

(

n − 1

r − 1

)

− r + 1 ≤ rx

(

n − 1

r − 1

)

− 1.

It suffices to have

(d1 + 1)m2 + (d2 + 1)m1 ≤ (d + 1)x

(

n

r

)

+

(

rx

(

n − 1

r − 1

)

)

nm

s
≤ 1

e

(

n

r

)

.
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The second inequality is equivalent to

x <
1

e(d + 1 + r2m
s

)
.

as desired. �

6 Turán type extremal problems

For a fixed r-graph G, let t(n, G) denote the smallest integer m such that every r-
uniform hypergraph on n vertices with m + 1 edges must contain a copy of G. The
limit limn→∞

t(n,G)

(n

r
)

always exists [13]. We denote it by π(G). We have

Theorem 4 Suppose each edge in an r-graph G intersects at most d other edges. Then

we have

π(G) ≤ 1 − 1

(d + 1)e
. (15)

Proof: Consider an r-graph H on n vertices and m = t(n, G) − 1 edges, which do not
contain a copy of G. Note that each edge of H can intersect at most r

(

n−1
r−1

)

− r + 1 other

edges. The conclusion of Theorem 2 does not apply to G and H. Therefore we must have

(d + 1)

(

(

n

r

)

− m

)

+

(

r

(

n − 1

r − 1

)

− r + 2

)

|E(G)| ≥ 1

e

(

n

r

)

,

and by rearranging terms

m
(

n
r

) ≤ 1 − 1

e(d + 1)
+

r2

n

|E(G)|
d + 1

= 1 − 1

e(d + 1)
+ O(

1

n
)

as desired as n → ∞ while d and r are fixed. �

The general upper bound for Turán density in term of the number of edges is first
obtained by Sidorenko [16]

π(G) ≤ 1 − 1

f − 1

for any r-graph G with f edges. It has slightly been improved by Keevash [12] to

π(G) < 1 − 1

f − 1
− (1 + O(1))(2r!2/rf 3−2/r)−1 (16)

for fixed r ≥ 3 and f → ∞.
If a hypergraph G is a clique, in which any pair of edges have non-empty intersection,

then we have d = f − 1. Inequality (16) is closer to the best known upper bound. For
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example, consider a special complete r-graph K
(r)
r+1 on r+1 vertices, de Caen [6], Sidorenko

([15]), Tazawa and Shirakura [20] proved

1 − (1 + o(1)) ln r

2r
≤ π(K

(r)
r+1) ≤ 1 − 1

r
.

The upper bound was improved [8] to

π(K
(r)
r+1) ≤ 1 − 5r + 12 −

√
9r2 + 24r

2r(r + 3)
= 1 − 1

r
− 1

r2
+ O(

1

r3
)

for odd r.
Theorem 4 only gives

π(K
(r)
r+1) ≤ 1 − 1

e(r + 1)
.

It is still quite comparable to those best known upper bounds for π(K
(r)
r+1) except for the

constant coefficient e.
However, for hypergraph G with less intersection, (say, d < f

e
) inequality (15) often

offers a much better upper bound on π(G) than inequality (16) does.

Acknowledgment: We thank Eva Czabarka for her suggestions at writing this
paper.
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