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Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of
G is adjacent to some vertex in S. The minimum cardinality of a total dominating
set of G is the total domination number of G. Let G be a connected graph of order n
with minimum degree at least two and with maximum degree at least three. We
define a vertex as large if it has degree more than 2 and we let £ be the set of all
large vertices of G. Let P be any component of G— L; it is a path. If |P| = 0 (mod 4)
and either the two ends of P are adjacent in G to the same large vertex or the two
ends of P are adjacent to different, but adjacent, large vertices in GG, we call P a
O-path. If |P| > 5 and |P| = 1 (mod 4) with the two ends of P adjacent in G to the
same large vertex, we call P a 1-path. If |P| = 3 (mod4), we call P a 3-path. For
i € {0,1,3}, we denote the number of i-paths in G by p;. We show that the total
domination number of G is at most (n + pg + p1 + p3)/2. This result generalizes a
result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004),
207-210) which states that if G is a graph of order n with minimum degree at least
three, then the total domination of G is at most n/2. It also generalizes a result by
Lam and Wei stating that if G is a graph of order n with minimum degree at least
two and with no degree-2 vertex adjacent to two other degree-2 vertices, then the
total domination of G is at most n/2.
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1 Introduction

In this paper, we continue the study of total domination in graphs which was introduced
by Cockayne, Dawes, and Hedetniemi [5]. A total dominating set, abbreviated TDS, of a
graph G is a set S of vertices of G such that every vertex is adjacent to a vertex in S.
Every graph without isolated vertices has a TDS, since S = V(G) is such a set. The total
domination number of G, denoted by 74(G), is the minimum cardinality of a TDS. A TDS
of G of cardinality 7:(G) is called a v;(G)-set. Total domination in graphs is now well
studied in graph theory. The literature on this subject has been surveyed and detailed in
the two books by Haynes, Hedetniemi, and Slater [7, 8].

For notation and graph theory terminology we in general follow [7]. Specifically, let
G = (V, E) be a graph with vertex set V of order n = |V| and edge set E of size m = |F|,
and let v be a vertex in V. The open neighborhood of v is the set N(v) = {u € V' |uv € E}.
For a set S C V, its open neighborhood is the set N(S) = UyesN(v). If Y C V', then the
set S is said to totally dominate the set Y if Y C N(S). For a set S C V, the subgraph
induced by S is denoted by G[S]. We denote the degree of v in G by dg(v), or simply by
d(v) if the graph G is clear from context. The minimum degree (resp., maximum degree)
among the vertices of G is denoted by §(G) (resp., A(G)). We denote a path on n vertices
by P, and a cycle on n vertices by C,.

2 Known bounds on the total domination number

The decision problem to determine the total domination number of a graph is known to be
NP-complete. Hence it is of interest to determine upper bounds on the total domination
number of a graph. In particular, for a connected graph G' with minimum degree ¢ > 1
and order n, the problem of finding upper bounds on +;(G) in terms of § and n has
been studied. The known upper bounds on ~,(G) in terms of § and n are summarized in
Table 1.

M(G@)>1 = (G < gn if n > 3 and G is connected
4
0(G)>2 = m(G) < = n it G ¢ {Cs,C5,Cq,C10} and G is connected
1
3(G) 23 = m(G) = gn
3
(@24 = W) < 2
14+ 1Ind
0(G) large = 1(G) < ( —1—511 )n

Table 1. Upper bounds on the total domination number of a graph G.
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The result in Table 1 when ¢ is large is found using probabilistic methods in graph
theory. It can easily be deduced from results of Alon [1] that this upper bound for large 6
is nearly optimal. But what happens when ¢ is small? The problem then becomes more
difficult.

The result in Table 1 when § > 1 is due to Cockayne et al. [5] and the graphs achieving
this upper bound are characterized by Brigham, Carrington, and Vitray [3].

The result in Table 1 when 6 > 2 can be found in [9]. A characterization of the
connected graphs of large order with total domination number exactly four-sevenths their
order is also given in [9].

Chvatal and McDiarmid [4] and Tuza [13] independently established that every hyper-
graph on n vertices and m edges where all edges have size at least three has a transversal T’
such that 4|T'| < m+n. As a consequence of this result about transversals in hypergraphs,
we have the result in Table 1 for the case when § > 3. We remark that Archdeacon et
al. [2] recently found an elegant one page graph theoretic proof of this upper bound of
n/2 when § > 3. Two infinite families of connected cubic graphs with total domination
number one-half their orders are constructed in [6]. Using transversals in hypergraphs, the
connected graphs with minimum degree at least three and with total domination number
exactly one-half their order are characterized in [10].

The result when 0 > 3 has recently been strengthened by Lam and Wei [11].

Theorem 1 (Lam, Wei [11]) If G is a graph of order n with 6(G) > 2 such that every
component of the subgraph of G induced by its set of degree-2 vertices has size at most
one, then v(G) < n/2.

The result in Table 1 when § > 4 is due to Thomasse and Yeo [12]. Their proof uses
transversals in hypergraphs. Yeo [14] showed that for connected graphs G' with minimum
degree at least four equality is only achieved in this bound if G is the relative complement
of the Heawood graph (or, equivalently, the incidence bipartite graph of the complement
of the Fano plane).

3 Main Result

Our aim in this paper is to present a new upper bound on the total domination number
of a graph with minimum degree two. For this purpose, we introduce some additional
notation.

We call a component of a graph a path-component if it is isomorphic to a path. A
path-component isomorphic to a path P; on ¢ vertices we call a P;-component.

We define a vertex as small if it has degree 2, and large if it has degree more than 2.
Let G be a connected graph with minimum degree at least two and maximum degree at
least three. Let S be the set of all small vertices of G and L the set of all large vertices
of G. Consider the graph G — £ = G[S] induced by the small vertices. Let P be any
component of G — £; it is a path. If |P| = 0 (mod4) and either the two ends of P are
adjacent in G to the same large vertex or the two ends of P are adjacent to different,
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but adjacent, large vertices in G, we call P a 0-path. If |P| > 5 and |P| = 1 (mod4)
with the two ends of P adjacent in GG to the same large vertex, we call P a 1-path. If
|P| = 3 (mod4), we call P a 3-path. For ¢ € {0, 1,3}, we denote the number of i-paths in
G by pi(G), or simply by p; if the graph G is clear from context. If G’ is a graph, then
for i € {0,1, 3} we denote p;(G") simply by p.. For notational convenience, for a graph G
of order n and a graph G’ of order n’ we let

1 I 1 /
Y(G) = §(n+p0 +p1+p3) and P(G') = 5(”/ + po + Pi + ph).

We shall prove:

Theorem 2 If G is a connected graph of order n with 6(G) > 2 and A(G) > 3, then
1(G) < U(G).

Note that Theorem 2 generalizes Theorem 1 (see [11]) and the result from Table 1 for
d(G) > 3 (see [4] and [13]).
3.1 Preliminary Results and Observations

Before presenting a proof of Theorem 2, we define three graphs which we call X, Y and
Z shown in Figures 1(a), (b) and (c), respectively. The vertices named z, y and z in
Figure 1 we call the link vertices of the graphs X, Y and Z, respectively.

Yy
A AHLHA. <>
(a) X (b)Y ¢) 7

Figure 1: The three graphs X, Y and Z.

Let H € {X,Y,Z}. By attaching a copy of H to a vertex v in a graph G we mean
adding a copy of H to the graph G and joining v with an edge to the link vertex of H.
We call v an attached vertex in the resulting graph. We will frequently use the following
observations in the proof of Theorem 2.

Observation 1 If G’ is obtained from a graph G with no isolated vertex by attaching a

copy of X with link vertex x to a vertex x’ of G, then there exists a v,(G")-set S such that
SNV (X)u{a'}) = {z,2'}.

Observation 2 If G' is obtained from a graph G with no isolated vertex by attaching a
copy of Y with link vertex y to a vertex y' of G, then there exists a v,(G')-set S that
contains exactly four vertices of Y, namely the two vertices of Y at distance 2 from y and
the two vertices of Y at distance 3 from y (and so, y' belongs to S to totally dominate y
while a neighbor of y' in G belongs to S to totally dominate y').
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Observation 3 If G’ is obtained from a graph G with no isolated vertex by attaching
a copy of Z with link vertex z to a vertex z' of G, then there exists a v,(G')-set S that
contains exactly two vertices of Z, namely z and a neighbor of z in Z (and so, z totally
dominates 2’ in G').

We define an elementary 4-subdivision of a nonempty graph G as a graph obtained
from G by subdividing some edge four times. We shall need the following lemma from [9].

Lemma 1 ([9]) Let G be a nontrivial graph and let G' be obtained from G by an elemen-
tary 4-subdivision. Then v(G") = 1(G) + 2.

We will refer to a graph G as a reduced graph if G has no induced path on six vertices,
the internal vertices of which have degree 2 in G. Hence if u, vy, v9, v3,v4, v is a path in a
reduced graph G, then dg(v;) > 3 for at least one 4, 1 < i <4, or uv € E(G).

3.2 Proof of Theorem 2

We proceed by induction on the lexicographic sequence (po+p;+ps, n), where po+p;+p3 >
0 and n > 4. For notational convenience, for a graph G of order n and a graph G’ of
order n’, we denote the sequence (py+p;+ps, n) by s(G) and the sequence (pj,+p}+ps, n')
by s(G"). Further, we denote the set of small vertices of G and G’ by S and &', respectively,
and the set of large vertices of G and G’ by £ and L', respectively.

By Lemma 1, we may assume that G is a reduced graph. Thus since G is a connected
graph with A(G) > 3, every component of G[S] is a path P; for some i where 1 <7 <5.

When po+p1+ps = 0, every component of G[S] is either P; or P, and the desired result
follows from Theorem 1. This establishes the base case. Assume, then, that po+p;+p3 > 1
and n > 4 and that for all connected graphs G’ of order n’ with 6(G’) > 2 and A(G') > 3
that have lexicographic sequence s(G’) smaller than s, 1(G') < ¢¥(G'). Let G = (V, E)
be a connected graph of order n with §(G) > 2 and A(G) > 3 and with lexicographic
sequence s(G) = s.

Observation 4 We may assume that pg = 0.

Proof. Suppose that py > 1. Let P:vy,vs,v3,v4 be a Py-component of G[S]. Let u be
the neighbor of v; not on P and let v be the neighbor of v4 not on P.

Suppose firstly that u # v. Since G is a reduced graph, uv € E(G). Let G' = G-V (P).
Then, G’ is a connected graph of order n’ with 6(G’) > 2. Suppose G’ is a cycle. Then,
G' € {C5,C4,C5,Cs}. If G' = C3, then 3(G) = 4 and ¥(G) = 4. If G = C4, then
7%(G) = 4 and Y(G) = 41, If G’ = C5, then 3(G) = 5 and ¢(G) = 55. If G’ = C,
then v(G) = 6 and (G) = 6. In all cases, 14(G) < ¥(G). Hence we may assume that
A(G") > 3. We remark that it is possible that the graph G’ has an induced path on six
vertices containing u and v with the internal vertices on this path having degree 2 in G,
in which case G’ is not a reduced graph, but then it is not a problem to reduce it. Since
Py + 1)+ 05 < po+ p1+ ps and 0’ = n — 4, the lexicographic sequence s(G’) is smaller
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than s(G). Applying the inductive hypothesis to G’, 1,(G’") < ¥(G’') < P(G) — 2. Every
7:(G")-set can be extended to a TDS of G by adding to it the vertices {vs,v3}, and so
W(G) < W(G) +2 < (G

Suppose secondly that v = v. Then, C:v, vy, v9,v3,v4,v is a cycle in G. Let G’ be
the graph obtained from G — V(C) by attaching the same copy of Z to each vertex in
Ng(v) \ {v1,v4}. Then, G’ is a connected (reduced) graph of order n’ = n — 1 with
d(G") > 2 and A(G’") > 3 (as v was a large vertex, z is attached to at least one vertex
and A(Z) = 3). The components of G'[S’], other than the Pj-component consisting
of the degree-2 vertex in the copy of Z, are precisely the components of G[S| minus
the path-component P. Hence, pj = po — 1, p{ = p; and p; = p3. The lexicographic
sequence s(G") is therefore smaller than s(G). Applying the inductive hypothesis to G,
(G < Y(G") = ¥(G) — 1. By Observation 3, there exists a v,(G’)-set S that contains
the link vertex and a neighbor of the link vertex (distinct from the attached vertex) from
the attached copy of Z. Deleting these two vertices in the attached copy of Z from the
set S and adding to the resulting set the three vertices v, vy, v, produces a TDS of G.
Hence, v(G) < |S|4+1=7%(G) +1<9y(G). O

Observation 5 We may assume that p; = 0.

Proof. Suppose that p; > 1. Let P:vy,vq,...,v5 be a Ps-component of G[S]. Since
G is a reduced graph, v; and vs have a common neighbor v in G. Let G’ be obtained
from G by deleting the vertices vs, vy and vs and adding the edge vvo; that is, G' =
(G—{v3,vq,v5})U{vva}. Then, G’ is a reduced connected graph of order n’ with 6(G’) > 2
and A(G') = A(G) > 3. Further, pj, = po, p} = p1 — 1, py = p3, and ' = n — 3. Hence
the lexicographic sequence s(G’) is smaller than s(G). Applying the inductive hypothesis
to G', %(G") <Y(G') = YP(G) — 2. Let S’ be a 7,(G’)-set that contains neither v; nor vy
(if there is a v,(G’)-set S’ that contains both v; and vy, simply replace these two vertices
in S’ by v and a neighbor of v in G — V/(P), while if there is a 7,(G’)-set S’ that contains
exactly one of v; and v, simply replace this vertex in S’ by a neighbor of v in G — V' (P)).
Then, S’ U {vs,v4} is a TDS of G, and so 1(G) < |9 +2 = %(G") +2 < ¢(G). O

By Observations 4 and 5, we have py = p; = 0 and p3 > 1. Thus, since G is a reduced
graph, every component of G[S] is a path P; for some ¢ where 1 < ¢ < 3. Let P: vy, vq, 03
be a Ps-component of G[S]. Let u be the neighbor of v; not on P and let v be the neighbor
of v3 not on P.

Observation 6 We may assume that u # v.

Proof. Suppose that u = v. Let G’ be the graph obtained from G — V(P) by attaching
both a copy of X and a copy of Z to the vertex v. Then, G’ is a connected (reduced)
graph of order n’ = n+4 with §(G’) > 2 and A(G’) = A(G) > 3. The degree of the large
vertex v is unchanged in G and G’. Since pj = po = 0, p} = p1 = 0 and p§ = p3 — 1, the
lexicographic sequence s(G’) is smaller than s(G). Applying the inductive hypothesis to
G, (G < Y(G') = ¥(G) + 3/2. By Observations 1 and 3, there exists a v,(G’)-set S
that contains the vertex v and three vertices from the attached copies of X and Z, namely
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the link vertex and a neighbor of the link vertex in the attached copy of Z and the link
vertex in the attached copy of X. Deleting these three vertices in the attached copies of
X and Z from the set S and adding to the resulting set the vertex v; produces a TDS of
G. Hence, 14(G) < |S| =2 =%(G") =2 <¢(G) —1/2. O

Observation 7 We may assume that no common neighbor of u and v has degree two.

Proof. Suppose that v and v have a common neighbor w with N(w) = {u,v}. Let
W be the set of all such degree-2 vertices that are adjacent to both u and v. Let R =
W UA{u,v,v1,v9,v3}. Let Ny, = (N(u) UN(v))\ R.

Suppose V = R. If |[IW| =1, thenuwv € E, n =6, p3 = 1, and v (G) =3 = (G)—1/2.
If |W|> 2 thenn >7, ps =1, and %(G) < 4 < ¢(G). Hence we may assume that
V' # R. Thus, | N, | > 1. At least one of u and v, say v, is therefore adjacent to a vertex
in V\ R.

If |[W| > 2, then let G’ = G — w. The graph G’ is a connected reduced graph of
order ' = n — 1 with 6(G’) > 2 and A(G') > dg(v) —1 > 3. If de(u) = 2, then
Po = po, Py = pr + 1 and ps = p3 — 1, while if de(u) > 3, then pj = po, Py = m
and p; = ps. In both cases, pj + p} + P = po + p1 + ps. Applying the inductive
hypothesis to G, v(G') < ¥(G'") = ¥(G) — 1/2. Every v(G')-set is a TDS of G, and
50 1(G) < 1 (G') < ¥(G). Hence we may assume that |W| = 1, and so W = {w} and
R = {u,v,vy,v9,v3,w}.

Let G’ be the connected graph obtained from G — R by attaching the same subgraph
X to every vertex in N,,. Let N = (N(u) N N(v))\ R and if N}, # () then also attach
the same subgraph Z to every vertex in N;,. Note that dg/(x) = dg(x) for every vertex
x € V(G)\ V(X UZ). Furthermore, A(G') > 3 as the link vertex in the copy of X has
degree at least three. The components of G'[S'], other than the P-component consisting
of the two degree-2 vertices in the copy of X and, if N}, # (), the P;-component consisting
of the degree-2 vertex in the copy of Z, are precisely the components of G[S] minus the
path-component P and the P;-component consisting of the vertex w. Hence, p, = py = 0,
py = p1 = 0 and p§ = p3 — 1. Thus, p{+p} +ps = po+p1+ps — 1. Applying the inductive
hypothesis to G, 1(G’) < (G"). By the construction of X, there exists a v,(G’)-set S,
such that SN Ny, # 0 and |SN X| = 1. We may assume without loss of generality that
v is adjacent in G to a vertex in SN Ny,.

On the one hand, suppose that N, # (). Then, n’ =n + 1 and ¥(G’) = ¥(G). Delete
from S the vertices in X and Z and add the vertices {u, v, v, }. The resulting set has size
at most that of S and is a TDS of G. Hence, v,(G) < v(G") < ¥(G") = ¥(G).

On the other hand, suppose that N = (). Then, n’ =n — 3 and ¥(G") = (G) — 2.
Now delete from S the vertex in X and add the vertices {u, v, v;}. The resulting set has
size |S| + 2 and is a TDS of G. Hence, 1(G) < %(G") +2 < (G') + 2 =¢(G). O

Let R = {u,v,v1,v9,v3} and let Ny, = (N(u) U N(v)) \ R. Then, |Ny,| > 1. By
Observation 7, every vertex in N, that is adjacent to both u and v has degree at least 3.
Hence every vertex in N, is adjacent to at least one vertex different from u and v.
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Observation 8 We may assume that |Ny,| = 1.

Proof. Suppose that |N,,| > 2. Let G’ be obtained from G —V(P) by adding all possible
edges between the set {u,v} and the set N,,, and by adding the edge uv if u and v are
not adjacent to G. Then, G’ is a connected (reduced) graph of order n’ = n — 3 with
d(G") > 2 and A(G’) > 3. By construction, both u and v are large vertices in G'. Note
that some vertices in N,, may be large in G’ even though they were not large in G.
However as every component in G[S] is a path containing at most three vertices, we note
that py + p| + py < po + p1 + p3 — 1. We can therefore apply the inductive hypothesis
to G'. Thus, %(G") < ¥(G') < Y(G) —2. Let S’ be a 1(G')-set. If {u,v} C 9, let
S = S5"U{vy,vs}. If [{u,v}NS’| <1, then the set S’ contains a vertex v’ € N, to totally
dominate u or v in G’. The vertex u is adjacent in G to at least one of v and v, say to u.
If {u,v} NS =1,let S=5"U{u,v,v3}. I {u,0}NS" =0, 1let S=5"U{vyv3}. Inall
three cases, S is a TDS of G and |S| = |S'|+2. Hence, 1(G) < |S| = %(G)+2 < ¢(G). O

By Observation 8, |N,,| = 1, implying that wv € E. Let N,, = {w}. Let G' =
G — V(P). Then, G’ is a connected (reduced) graph of order n’ = n — 3 with 6(G’) > 2
and A(G') = A(G) > 3. Since pj + p) +ps = po +p1 + p3 — 1, we can apply the inductive
hypothesis to G'. Thus, 1(G") < ¥(G') = (G)—2. Let S" be a 3(G"). Then, S"U{v, v2}
is a TDS of G, and so 14(G) < |5 +2 =%(G') +2=¢(G). O

3.3 Sharpness of Theorem 2

To illustrate that the bound in Theorem 2 is sharp, we introduce a family G of graphs.
For this purpose, we define three types of graphs which we call units.

(i) Type-0 (ii) Type-1 (iii) Type-3
Figure 2: The three types of units

We define a type-0 unit to be the graph obtained from a 10-cycle by adding a chord
joining two vertices at maximum distance 5 apart on the cycle and then adding a pendant
edge to a resulting vertex that has no degree-3 neighbor. We define a type-1 unit to be
the graph obtained from a 6-cycle by adding to this cycle a pendant edge. We define a
type-3 unit to be the graph obtained from a 6-cycle by adding to this cycle a new vertex
and joining it to two vertices at distance 2 on this cycle. The three types of units are
shown in Figure 2.
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Next we define a link vertex in each unit as follows. In a type-0 unit and type-1 unit,
we call the degree-1 vertex in the unit the link vertex of the unit, while in a type-3 unit
we select one of the two degree-2 vertices with both its neighbors of degree 3 and call it
the link vertex of the unit.

Let G denote the family of all graphs GG that are obtained from the disjoint union of
at least two units, each of which is of type-0, type-1 or type-3, in such a way that G is
connected and every added edge joins two link vertices. A graph G in the family G is
illustrated in Figure 3 (here the subgraph of GG induced by the link vertices is a cycle Cy).

The graph G in Figure 3 has order n =32, po = 1, py = 1, p3 = 2, and 3,(G) = 18 =
¥(G). In general, if G € G and i € {0, 1,3}, then each type-i unit in G contains an i-path
and contributes one to p;. Thus if G € G has a type-0 units, b type-1 units, and ¢ type-3
units, then n = 11la + 7(b+ ¢), po = a, p1 = b, ps = c and (G) = 6a + 4(b+ ¢) = Y(G).

SR

Figure 3: A graph G in the family G.
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