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Abstract

In 1995, Hochberg, McDiarmid, and Saks proved that the vertex-bandwidth of
the triangular grid Tn is precisely n+1; more recently Balogh, Mubayi, and Pluhár
posed the problem of determining the edge-bandwidth of Tn. We show that the
edge-bandwidth of Tn is bounded above by 3n − 1 and below by 3n − o(n).

1 Introduction

A labeling of the vertices of a finite graph G is a bijective map h : V (G) → {1, 2, . . . , |V (G)|}.

The vertex-bandwidth of h is defined as

B(G, h) = max
{u,v}∈E(G)

|h(u) − h(v)|

and the vertex-bandwidth (or simply bandwidth) of G is defined as

B(G) = min
h

B(G, h)
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in which the minimum is taken over all labelings of V (G). The edge-bandwidth of G is

defined as

B′(G) = B(L(G))

where L(G) is the line graph of G. Edge-bandwidth has been studied for several classes

of graphs in various sources, among them [1], [2], [5], and [6].

In this article, we study the edge-bandwidth of the triangular grid Tn. For any integer

n ≥ 0, Tn is the graph whose vertices are ordered triples of nonnegative integers summing

to n, with an edge connecting two triples if they agree in one coordinate and differ by

1 in the other two; see Figure 1 for an illustration of T5, the bottom row vertices (from

left to right) being (0, 5, 0), (1, 4, 0), (2, 3, 0), (3, 2, 0), (4, 1, 0) and (5, 0, 0). The vertex-

bandwidth of Tn was studied by Hochberg, McDiarmid, and Saks; in [4], they proved that

B(Tn) = n + 1. The problem of determining B ′(Tn) was posed by Balogh, Mubayi, and

Pluhár in [1].

Our main result is:

Theorem 1.1.

3n − o(n) ≤ B′(Tn) ≤ 3n − 1.

It is easy to obtain the stated upper bound on B ′(Tn) by considering the “top to

bottom, then left to right” labeling of E(Tn) as shown in Figure 1 for the case n = 5.

This labeling may be defined by recursion, the base case T0 being trivial as there are no

edges. Now suppose n > 0; for each i, 0 ≤ i ≤ n − 1, let ei be the edge with endpoints

(i, n − i, 0) and (i, n − i − 1, 1), fi the edge with endpoints (i + 1, n − i − 1, 0) and

(i, n− i−1, 1) and gi the edge with endpoints (i, n− i, 0) and (i+1, n− i−1, 0). Observe

that the subgraph of Tn induced by vertices of the form (a, b, c) with c > 0 is isomorphic to

Tn−1. Label the edges of this subgraph inductively using the integers 1, 2, . . . ,
3

2
n(n − 1).

Next, use the integers
3

2
n(n − 1) + 1, . . .

3

2
n(n + 1) to label the remaining edges in the

order: e0, f0, e1, f1, . . . , en−1, fn−1, g0, . . . , gn−1. The bandwidth of this edge-labeling is

readily seen to be 3n − 1, so it follows that

B′(Tn) ≤ 3n − 1.

The proof of the lower bound is more difficult, and constitutes the content of this

article. In Section 2, we recall a general lower bound for bandwidth due to Harper and

apply this in Section 4, together with several other ideas, to complete the proof of Theorem

1.1. In the proof, we also give a more precise description of the error term.

Throughout this article, we use the notation [a, b] to mean {n ∈ Z : a ≤ n ≤ b} when

referring to sets of indices; we define (a, b), [a, b), etc. similarly. If G is a graph and
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Figure 1: An edge-labeling of Tn with bandwidth 3n − 1

S ⊆ V (G), the subgraph induced by S is denoted G[S]. If F ⊆ E(G) is a set of edges, we

denote by G[F ] the subgraph of G whose vertex set is the the set of endpoints of edges

in F and whose edge set is F .

2 Lower bounds on bandwidth

Definition 2.1. Let G be a graph and S ⊆ V (G). The boundary of S is defined as:

∂(S) = {v ∈ V (G) − S : vw ∈ E(G) for some w ∈ S}

Now suppose G is a graph and h : V (G) → [1, |V (G)|] a labeling. For k ∈ [1, |V (G)|],

let Sk = {v ∈ V (G) : h(v) ≤ k}. The next proposition, essentially due to Harper [3],

gives an elementary lower bound on bandwidth:

Proposition 2.2. For any k ∈ [1, |V (G)|], B(G, h) ≥ max{|∂(Sk)|, |∂(V (G) − Sk)|}.

Proof.

Let v ∈ ∂(Sk) be a vertex with maximum label; that is, h(v) ≥ h(w) for all w ∈ ∂(Sk).

Then h(v) ≥ k + |∂(Sk)|. However, v is adjacent to some vertex u ∈ Sk, so h(u) ≤ k.

Thus, B(G, h) ≥ |∂(Sk)|.

Likewise, let v′ ∈ ∂(V (G) − Sk) be a vertex with minimum label. Then

h(v′) ≤ k + 1 − |∂(V (G) − Sk)|. However, v′ is by definition adjacent to some vertex

u′ ∈ V (G) − Sk, so h(u′) ≥ k + 1. Hence, B(G, h) ≥ |∂(V (G) − Sk)|. �

For i ≥ 2, we define (inductively) the ith iterated boundary of S ⊆ V (G) by

∂i(S) = ∂(∂i−1(S))

the electronic journal of combinatorics 14 (2007), #R67 3



and the ith shadow by

σi(S) = ∪i
j=1∂

j(S).

A similar argument easily yields the following generalization of Proposition 2.2:

Proposition 2.3. For any k ∈ [1, |V (G)|] and labeling h of V (G),

B(G, h) ≥ max
{ |σi(Sk)|

i
,
|σi(V (G) − Sk)|

i

}

Corollary 2.4. With notation as above,

B(G, h) ≥
1

2i

(

|σi(Sk)| + |σi(V (G) − Sk)|
)

.

Hence, a natural strategy for establishing b as a lower bound for B(G) might be

described as follows: given any labeling h, choose k = k(h) suitably, and then apply the

estimate of Corollary 2.4.

3 The Triangular Grid: Definitions

Let (i, j, k) be a vertex of the triangular grid Tn; recall that i + j + k = n. We typically

refer to the first coordinate of such a triple as the i-coordinate, the second as the j-

coordinate, and the third as the k-coordinate. We also use the notation i(v) to refer to

the i-coordinate of v, and so on.

We introduce some terminology to enhance the geometric intuition behind our rea-

soning. For each c ∈ [0, n], let Ic (Jc, Kc) be the subgraph induced by the set of vertices

whose i-coordinate (resp. j-coordinate, k-coordinate) equals c. We refer to the subgraphs

Ii, Jj, and Kk as lines. The lines I0, J0, K0 are called sides of Tn.

Definition 3.1. A connector of Tn is a connected subgraph S ⊆ Tn which contains a

vertex from each side of Tn. A tree connector is a connector which is a tree.

Observe that each connector of Tn has at least n vertices, and that every connector

contains a tree connector.

The following principle will often be invoked without explicit mention; the proof follows

immediately from the description of E(Tn).

Proposition 3.2. (Intermediate Value Principle) Let P be a v, w path in Tn. Set mi =

min{i(v), i(w)} and Mi = max{i(v), i(w)}; we define mj, Mj, mk and Mk analogously. If

i ∈ [mi, Mi], j ∈ [mj, Mj], and k ∈ [mk, Mk], then P contains (possibly indistinct) vertices

from each of Ii, Jj, and Kk.
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4 Proof of Theorem 1.1

We now turn to the proof of the lower bound in Theorem 1.1.

Fix a choice of functions f, g : N → R≥0 such that f(n) = o(n), g(n) = o(f(n)). For

example, one might choose f(n) = n
2

3 and g(n) = n
1

3 .

Suppose n � 0 and let T ′ be the subgraph of Tn induced by {(a, b, c) ∈ V (Tn) :

a, b, c ≥ g(n))}. Clearly T ′ ∼= Tn−b3g(n)c.

Let h : E(Tn) → [1, |E(Tn)|] be an edge-labeling of Tn that achieves B′(Tn); that is,

B′(h) = B′(Tn), where B′(h) denotes the maximum difference between the h-labels of two

incident edges in Tn. Let Ek = {e ∈ E(Tn) : h(e) ≤ k}, and define

r = min{k : T ′[Ek+1 ∩ E(T ′)] is a connector of T ′}.

We define a 2-coloring of E(Tn) by declaring edges e with h(e) ≤ r to be red and the

remaining edges blue. We call a vertex v ∈ Tn red if all edges incident at v are red, blue

if all edges incident at v are blue, or mixed otherwise. Let R (resp. B) denote the set of

red (resp. blue) edges and R (resp., B, M) the set of red (resp. blue, mixed) vertices.

We recall the following Lemma from [4]:

Lemma 4.1. ([4], Lemma 6) Suppose the vertices of the triangular grid are colored with

two colors. Then exactly one of the color classes contains a connector.

Proposition 4.2. There exists a connector S of T ′ such that |V (S) −M| ≤ 1.

Proof.

Let r be as above and C = T ′[Er+1 ∩ E(T ′)]. Suppose V (C) contains a blue vertex.

Then v must be an endpoint of the edge labeled r + 1 and must lie on one of the sides of

T ′; in particular, there can be at most one such vertex. If such v exists, let M′ = M∪{v}

and B′ = B − {v}; otherwise, let M′ = M and B′ = B. In either case, R ∪M′ induces

a connector of T ′. On the other hand, R does not induce a connector of T ′. Thus, by

Lemma 4.1, B′ does not induce a connector of T ′. Since no vertex of R is adjacent to a

vertex of B′, it follows that R ∪ B′ does not induce a connector of T ′. Applying Lemma

4.1 again, we conclude that M′ induces a connector of T ′. �

Lemma 4.3. Let T be any triangular grid and V0 ⊆ V (T ) a subset such that S∗ = T [V0] is

a connector of T . If V0 is minimal with respect to this property (that is, for every v ∈ V0,

T [V0 − {v}] is not a connector of T ), then either S∗ is a tree connector or there is some

edge e ∈ E(S∗) such that S∗ − e is a tree connector.
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Proof.

Let Fi, s = 1, 2, 3 be the three sides of T . Since S∗ is a connector of T , there is a

vertex v0 ∈ V (S∗) such that for each i ∈ {1, 2, 3}, there is a path in S∗ from v0 to some

vertex vi lying on Fi. The vi are not necessarily distinct; however,

|{v1, v2, v3}| ≥ 2. If |{v1, v2, v3}| = 2, then by minimality of |V (S∗)|, S∗ itself must be a

shortest path connecting the two distinct members of {v1, v2, v3}. Hence, we may assume

|{v1, v2, v3}| = 3.

For each i = 1, 2, 3, let Pi denote a shortest v0, vi-path in S∗. By minimality, V (S∗) =

V (P1) ∪ V (P2) ∪ V (P3) and V (Pi) ∩ V (Pj) = {v0} for all i, j ∈ {1, 2, 3}, i 6= j. Let

e = {x, y} ∈ E(S∗) − (E(P1) ∪ E(P2) ∪ E(P3)). Since each Pi is a shortest v0, vi-path in

S∗, it must be the case that x ∈ V (Pi) and y ∈ V (Pj), where i 6= j; clearly x and y are

both distinct from v0. If there is a vertex z on Pi that lies beween v0 and x, then S∗ − z

is still a connector of T , contradicting the minimality of S∗. Hence x is a neighbor of v0.

By symmetric reasoning, y is also a neighbor of v0.

We have argued that the endpoints of an edge in E(S∗) − (E(P1) ∪ E(P2) ∪ E(P3))

are neighbors of v0, and that these two endpoints lie on distinct paths Pi and Pj. If there

exist two such edges, it is easily seen S∗−v0 is a still a connector of T , again contradicting

minimality. Hence, S∗ has at most one edge outside E(P1) ∪ E(P2) ∪ E(P3). �

By Proposition 4.2 and Lemma 4.3 there exists a connector S∗ of T ′ with V (S∗) ⊆ M′

and |E(S∗)| ≤ |V (S∗)|.

Proposition 4.4. If |V (S∗)| ≥
6

5
n + 1, then B′(Tn) = B′(h) ≥ 3n − 1.

Proof.

Since V (S∗) ⊆ M′, |V (S∗) ∩M| ≥ |V (S∗)| − 1, so every edge incident at a vertex in

V (S∗) ∩M is in ∂(R) ∪ ∂(B). Since each such vertex has degree 6 in Tn, we see that

|∂(R)∪∂(B)| ≥
∑

v∈V (S∗)∩M

deg v−|E(S∗)| ≥ 6(|V (S∗)|−1)−|V (S∗)| = 5|V (S∗)|−6 ≥ 6n−1

Applying Corollary 2.4 (with i = 1) to L(Tn), we obtain B′(Tn) = B′(h) ≥ 3n − 1. �

By discarding an edge if necessary, we assume henceforth that there exists a tree

connector S0 of T ′ such that |V (S0)| ≤
6

5
n.

Definition 4.5. Let S be a tree connector of the triangular grid Tm and a, b ≥ 0. An

(a, b)-detour in S is a 4-tuple (u, v, P, Q), where u, v ∈ V (S), P is the unique path in S

from u to v of length at least a, and Q is a path in Tm from u to v of length at most b.

Definition 4.6. Let S be a tree connector of Tm and (u, v, P, Q) an (a, b)-detour in S.

The shortening of S with respect to Q, denoted Σ(S, Q) is defined as follows:
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Figure 2: The shortening of S with respect to Q.

• If v0 does not lie along P , Σ(S, Q) is the subgraph of Tm induced by

V (S) ∪ V (Q) − (V (P ) − {u, v}).

• If v0 lies along P , let P1 be the portion of P between u and v0 and P2 the portion of

P between v and v0. If |V (P1)| ≤ |V (P2)|, we define Σ(S, Q) = Tm[V (S) ∪ V (Q) −

(V (P2) − {v0})]; otherwise, we define

Σ(S, Q) = Tm[V (S) ∪ V (Q) − (V (P1) − {v0})].

It follows immediately from the construction that Σ(S, Q) is a connector of Tm and

that |V (Σ(S, Q)) ∩ V (S)| ≥ m − |V (Q)|.

Next, we show that we can use the operation of shortening to deduce the existence of

a connector of T ′ with n − o(n) vertices which does not contain a long detour.

Proposition 4.7. Let f(n), g(n) be the functions chosen at the beginning of this section.

Then there exists a tree connector S ′ of T ′ containing no (2f(n), 2g(n))-detour such that

|V (S ′) ∩M| ≥ n − 3g(n) − 1 −
6

5

ng(n)

f(n) − g(n)
.

Proof.

We begin by considering our tree connector S0 and recall that |V (S0| ≤ 6n/5. Because

S0 is a connector of T ′, |V (S0)| ≥ n − 3g(n).

Now consider the following inductive procedure.

• Set i = 0.

• If Si contains no (2f(n), 2g(n))-detour, set S ′ = Si. Otherwise, let (u, v, P, Q) be a

(2f(n), 2g(n))-detour in Si and define Si+1 to be a tree connector of T ′ contained in

Σ(Si, Q).

At each iteration of this procedure, in moving from Si to Si+1, at least f(n) vertices are

discarded and at most g(n) vertices from outside V (S0) are added. Thus, the procedure
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terminates after at most
6n/5

f(n) − g(n)
iterations, and S ′ contains no (2f(n), 2g(n))-detour.

The estimate on the number of mixed vertices in V (S ′) now follows readily. �

We may assume that S ′ consists of a vertex v0, a path P1 from v0 to some vertex t1 on

the side F1 of T ′, a path P2 from v0 to some vertex t2 on the side F2 of T ′, and a path P3

from v0 to some vertex t3 on the third side F3. We may also assume that P1, P2, and P3

intersect pairwise only at v0. Note that F1 is a subgraph of the line Ig(n) of Tn; similarly

F2 (F3) is a subgraph of Jg(n) (resp. Kg(n)).

Let w0 be a vertex of V (P1)∪V (P2) with minimal k-coordinate; that is, k(w0) ≤ k(w)

for all w ∈ V (P1) ∪ V (P2). Writing w0 = (a, b, c), we have a + b + c = n. By the

Intermediate Value Principle (Proposition 3.2), for each i ∈ [g(n), a), P1 contains at least

one vertex with that i-coordinate; similarly for each j ∈ [g(n), b), P2 contains at least one

vertex with that j-coordinate, and for each k ∈ [g(n), c), P3 contains at least one vertex

with that k-coordinate.

If x = (i, j, k) ∈ V (Tn) is any vertex and t is a positive integer, we define

N+
I (x, t) = {(i, j − s, k + s) ∈ V (Tn) : 0 ≤ s ≤ t}.

Intuitively, this is the set of vertices reachable by starting at x and walking t steps

along Ii in the direction away from the side K0 of Tn. We also define:

N−
I (x, t) = {(i, j + s, k − s) ∈ V (Tn) : 0 ≤ s ≤ t}

N+
J (x, t) = {(i − s, j, k + s) ∈ V (Tn) : 0 ≤ s ≤ t}

N−
J (x, t) = {(i + s, j, k − s) ∈ V (Tn) : 0 ≤ s ≤ t}

N+
K(x, t) = {(i + s, j − s, k) ∈ V (Tn) : 0 ≤ s ≤ t}

N−
K(x, t) = {(i − s, j + s, k) ∈ V (Tn) : 0 ≤ s ≤ t}

each of which has an analogous geometric interpretation.

Now define

I = {i ∈ [g(n), a) : V (S ′) ∩ V (Ii) ∩M 6= ∅}.

This is the set of “good” indices i for which Ii contains a mixed vertex of S ′. Similarly,

we define

J = {j ∈ [g(n), b) : V (S ′) ∩ V (Jj) ∩M 6= ∅}

and

K = {k ∈ [g(n), c − g(n)) : V (S ′) ∩ V (Kk) ∩M 6= ∅}.
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Figure 3: Illustration of N+
I (x, t) and N−

I (x.t).

Observe that by the equation a + b + c = n and Proposition 4.7,

|I| + |J | + |K| ≥ n − 4 − 4g(n) −
6

5

ng(n)

f(n) − g(n)
. (1)

For each i ∈ I, let A+
i be the vertex of V (Ii)∩V (P1)∩M with maximum k-coordinate

and A−
i the vertex of V (Ii) ∩ V (P1) ∩ M with minimum k-coordinate. For each j ∈ J ,

let B+
j be the vertex of V (Jj) ∩ V (P2) ∩ M with maximum k-coordinate and B−

j the

vertex with minimum k-coordinate. Finally, for each k ∈ K, let C+
k be the vertex of

V (Kk) ∩ V (P3) ∩ M with maximum i-coordinate and C−
k the vertex with minimum k-

coordinate.

For i ∈ I, set NI(i) = N+(A+
i , g(n)) ∪ N−(A−

i , g(n)); for j ∈ J , set NJ(j) =

N+(B+
j , g(n)) ∪ N−(B−

j , g(n)); for k ∈ K, set NK(k) = N+(C+
k , g(n)) ∪ N−(C−

k , g(n)).

Each of these newly defined sets has exactly 2g(n) + 1 members. Note also the following

two facts:

• If i1, i2 ∈ I, i1 6= i2, then NI(i1) ∩ NI(i2) = ∅, and similarly for the other two

coordinates.

• For any i ∈ I, j ∈ J and k ∈ K, NI(i) ∩ NK(k) = ∅ = NJ(j) ∩ NK(k).

The first is an obvious consequence of the definitions; the second is a consequence of

the choice of w0 and the definition of the set K.

It may be the case, however, that there is some pair (i, j) ∈ I × J such that

NI(i) ∩ NJ(j) 6= ∅; this implies that there is some vertex in V (S ′) ∩ Ii which is within

the electronic journal of combinatorics 14 (2007), #R67 9



distance 2g(n) of some vertex in V (S ′) ∩ Jj. Fix such a pair (i0, j0) and vertices Ai0 ∈

V (Ii0)∩ V (S ′), Bj0 ∈ V (Jj0)∩ V (S ′) such that dTn
(Ai0 , Bj0) ≤ 2g(n) and i0 is as small as

possible. Since S ′ is a tree, there is a unique path in S ′ from w0 = (a, b, c) to the vertex

t1; by Proposition 3.2, we may assume without loss of generality that Ai0 is on this path.

Likewise, we may assume that Bj0 lies on the unique path in S ′ from w0 to t2. Since

S ′ contains no (2f(n), 2g(n))-detour, it follows that dS′(Ai0 , Bj0) ≤ 2f(n). In particular,

dS′(Ai0 , Bj,0) = dS′(Ai0 , w0) + dS′(w0, Bj0) ≤ (a − i0) + (b − j0) ≤ 2f(n), so

a + b − i0 − j0 ≤ 2f(n). (2)

Let I ′ = I ∩ [1, i0 − 1] and J ′ = J ∩ [1, j0 − 1].

By construction, for any i′ ∈ I ′ and j ′ ∈ J ′, NI(i
′)∩NJ(j ′) = ∅. Using the inequalities

(1) and (2) and recalling that a + b + c = n, we have:

|I ′|+ |J ′|+ |K| = |I| − (a − i0) + |J | − (b− j0) +K = |I|+ |J |+ |K| − (a + b− i0 − j0)

≥ n − 4 − 2f(n) − 4g(n) −
6

5

ng(n)

f(n) − g(n)
.

This immediately yields:

Proposition 4.8. Let V = ∪i∈I′NI(i) ∪ ∪j∈J ′NJ(j) ∪ ∪k∈KNK(k). Then

|V | ≥ (2g(n) + 1)

(

n − 4 − 4g(n) − 2f(n) −
6

5

ng(n)

f(n) − g(n)

)

.

Finally, if v ∈ V , then there is some w ∈ V (S ′) ∩ M such that dTn
(v, w) ≤ g(n). In

particular, since w is a mixed vertex, each edge incident to a vertex in V is contained in

σg(n)+1(R) ∪ σg(n)+1(B). Since each vertex of U has degree 6, we obtain the estimate

|σg(n)+1(R) ∪ σg(n)+1(B)| ≥ 3 (2g(n) + 1)

(

n − 4 − 4g(n) − 2f(n) −
6

5

ng(n)

f(n) − g(n)

)

.

Applying Corollary 2.4 to L(Tn), we obtain

Corollary 4.9.

B′(Tn) = B′(h) ≥ 3
2g(n) + 1

2(g(n) + 1)

(

n − 4 − 4g(n) − 2f(n) −
6

5

ng(n)

f(n) − g(n)

)

.

In particular, by choosing f(n) = n
2

3 and g(n) = n
1

3 , we obtain, for sufficiently large n,

B′(Tn) ≥ 3(n − 4n
2

3 ) = 3n − 12n
2

3 = 3n − o(n).

the electronic journal of combinatorics 14 (2007), #R67 10



Corollary 4.9 completes the proof of Theorem 1.1.

After the manuscript was submitted, the third author noticed that in general, the

upper bound of 3n − 1 is not optimal. Indeed, when n ≥ 18, the given labeling can be

modified to produce a more complicated labeling with bandwidth 3n − 5. However, it is

not immediately clear if the method would lead to an improvement of the upper bound

by more than a constant term.
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