Edge-bandwidth of the triangular grid

Reza Akhtar
Dept. of Mathematics and Statistics Miami University, Oxford, OH 45056, USA
reza@calico.mth.muohio.edu
\section*{Tao Jiang}
Dept. of Mathematics and Statistics Miami University, Oxford, OH 45056, USA
jiangt@muohio.edu
\section*{Dan Pritikin}
Dept. of Mathematics and Statistics Miami University, Oxford, OH 45056, USA
pritikd@muohio.edu

Submitted: May 19, 2006; Accepted: Aug 16, 2007; Published: Oct 5, 2007
Mathematics Subject Classification: 05C78

Abstract

In 1995, Hochberg, McDiarmid, and Saks proved that the vertex-bandwidth of the triangular grid T_{n} is precisely $n+1$; more recently Balogh, Mubayi, and Pluhár posed the problem of determining the edge-bandwidth of T_{n}. We show that the edge-bandwidth of T_{n} is bounded above by $3 n-1$ and below by $3 n-o(n)$.

1 Introduction

A labeling of the vertices of a finite graph G is a bijective map $h: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$. The vertex-bandwidth of h is defined as

$$
B(G, h)=\max _{\{u, v\} \in E(G)}|h(u)-h(v)|
$$

and the vertex-bandwidth (or simply bandwidth) of G is defined as

$$
B(G)=\min _{h} B(G, h)
$$

in which the minimum is taken over all labelings of $V(G)$. The edge-bandwidth of G is defined as

$$
B^{\prime}(G)=B(L(G))
$$

where $L(G)$ is the line graph of G. Edge-bandwidth has been studied for several classes of graphs in various sources, among them [1], [2], [5], and [6].

In this article, we study the edge-bandwidth of the triangular grid T_{n}. For any integer $n \geq 0, T_{n}$ is the graph whose vertices are ordered triples of nonnegative integers summing to n, with an edge connecting two triples if they agree in one coordinate and differ by 1 in the other two; see Figure 1 for an illustration of T_{5}, the bottom row vertices (from left to right) being $(0,5,0),(1,4,0),(2,3,0),(3,2,0),(4,1,0)$ and $(5,0,0)$. The vertexbandwidth of T_{n} was studied by Hochberg, McDiarmid, and Saks; in [4], they proved that $B\left(T_{n}\right)=n+1$. The problem of determining $B^{\prime}\left(T_{n}\right)$ was posed by Balogh, Mubayi, and Pluhár in [1].

Our main result is:

Theorem 1.1.

$$
3 n-o(n) \leq B^{\prime}\left(T_{n}\right) \leq 3 n-1
$$

It is easy to obtain the stated upper bound on $B^{\prime}\left(T_{n}\right)$ by considering the "top to bottom, then left to right" labeling of $E\left(T_{n}\right)$ as shown in Figure 1 for the case $n=5$. This labeling may be defined by recursion, the base case T_{0} being trivial as there are no edges. Now suppose $n>0$; for each $i, 0 \leq i \leq n-1$, let e_{i} be the edge with endpoints $(i, n-i, 0)$ and $(i, n-i-1,1), f_{i}$ the edge with endpoints $(i+1, n-i-1,0)$ and $(i, n-i-1,1)$ and g_{i} the edge with endpoints $(i, n-i, 0)$ and $(i+1, n-i-1,0)$. Observe that the subgraph of T_{n} induced by vertices of the form (a, b, c) with $c>0$ is isomorphic to T_{n-1}. Label the edges of this subgraph inductively using the integers $1,2, \ldots, \frac{3}{2} n(n-1)$. Next, use the integers $\frac{3}{2} n(n-1)+1, \ldots \frac{3}{2} n(n+1)$ to label the remaining edges in the order: $e_{0}, f_{0}, e_{1}, f_{1}, \ldots, e_{n-1}, f_{n-1}, g_{0}, \ldots, g_{n-1}$. The bandwidth of this edge-labeling is readily seen to be $3 n-1$, so it follows that

$$
B^{\prime}\left(T_{n}\right) \leq 3 n-1
$$

The proof of the lower bound is more difficult, and constitutes the content of this article. In Section 2, we recall a general lower bound for bandwidth due to Harper and apply this in Section 4, together with several other ideas, to complete the proof of Theorem 1.1. In the proof, we also give a more precise description of the error term.

Throughout this article, we use the notation $[a, b]$ to mean $\{n \in \mathbb{Z}: a \leq n \leq b\}$ when referring to sets of indices; we define $(a, b),[a, b)$, etc. similarly. If G is a graph and

Figure 1: An edge-labeling of T_{n} with bandwidth $3 n-1$
$S \subseteq V(G)$, the subgraph induced by S is denoted $G[S]$. If $F \subseteq E(G)$ is a set of edges, we denote by $G[F]$ the subgraph of G whose vertex set is the the set of endpoints of edges in F and whose edge set is F.

2 Lower bounds on bandwidth

Definition 2.1. Let G be a graph and $S \subseteq V(G)$. The boundary of S is defined as:

$$
\partial(S)=\{v \in V(G)-S: v w \in E(G) \text { for some } w \in S\}
$$

Now suppose G is a graph and $h: V(G) \rightarrow[1,|V(G)|]$ a labeling. For $k \in[1,|V(G)|]$, let $S_{k}=\{v \in V(G): h(v) \leq k\}$. The next proposition, essentially due to Harper [3], gives an elementary lower bound on bandwidth:

Proposition 2.2. For any $k \in[1,|V(G)|], B(G, h) \geq \max \left\{\left|\partial\left(S_{k}\right)\right|,\left|\partial\left(V(G)-S_{k}\right)\right|\right\}$.
Proof.
Let $v \in \partial\left(S_{k}\right)$ be a vertex with maximum label; that is, $h(v) \geq h(w)$ for all $w \in \partial\left(S_{k}\right)$. Then $h(v) \geq k+\left|\partial\left(S_{k}\right)\right|$. However, v is adjacent to some vertex $u \in S_{k}$, so $h(u) \leq k$. Thus, $B(G, h) \geq\left|\partial\left(S_{k}\right)\right|$.

Likewise, let $v^{\prime} \in \partial\left(V(G)-S_{k}\right)$ be a vertex with minimum label. Then $h\left(v^{\prime}\right) \leq k+1-\left|\partial\left(V(G)-S_{k}\right)\right|$. However, v^{\prime} is by definition adjacent to some vertex $u^{\prime} \in V(G)-S_{k}$, so $h\left(u^{\prime}\right) \geq k+1$. Hence, $B(G, h) \geq\left|\partial\left(V(G)-S_{k}\right)\right|$.

For $i \geq 2$, we define (inductively) the i th iterated boundary of $S \subseteq V(G)$ by

$$
\partial^{i}(S)=\partial\left(\partial^{i-1}(S)\right)
$$

and the i th shadow by

$$
\sigma^{i}(S)=\cup_{j=1}^{i} \partial^{j}(S)
$$

A similar argument easily yields the following generalization of Proposition 2.2:
Proposition 2.3. For any $k \in[1,|V(G)|]$ and labeling h of $V(G)$,

$$
B(G, h) \geq \max \left\{\frac{\left|\sigma^{i}\left(S_{k}\right)\right|}{i}, \frac{\left|\sigma^{i}\left(V(G)-S_{k}\right)\right|}{i}\right\}
$$

Corollary 2.4. With notation as above,

$$
B(G, h) \geq \frac{1}{2 i}\left(\left|\sigma^{i}\left(S_{k}\right)\right|+\left|\sigma^{i}\left(V(G)-S_{k}\right)\right|\right)
$$

Hence, a natural strategy for establishing b as a lower bound for $B(G)$ might be described as follows: given any labeling h, choose $k=k(h)$ suitably, and then apply the estimate of Corollary 2.4.

3 The Triangular Grid: Definitions

Let (i, j, k) be a vertex of the triangular grid T_{n}; recall that $i+j+k=n$. We typically refer to the first coordinate of such a triple as the i-coordinate, the second as the j coordinate, and the third as the k-coordinate. We also use the notation $i(v)$ to refer to the i-coordinate of v, and so on.

We introduce some terminology to enhance the geometric intuition behind our reasoning. For each $c \in[0, n]$, let $I_{c}\left(J_{c}, K_{c}\right)$ be the subgraph induced by the set of vertices whose i-coordinate (resp. j-coordinate, k-coordinate) equals c. We refer to the subgraphs I_{i}, J_{j}, and K_{k} as lines. The lines I_{0}, J_{0}, K_{0} are called sides of T_{n}.

Definition 3.1. A connector of T_{n} is a connected subgraph $S \subseteq T_{n}$ which contains a vertex from each side of T_{n}. A tree connector is a connector which is a tree.

Observe that each connector of T_{n} has at least n vertices, and that every connector contains a tree connector.

The following principle will often be invoked without explicit mention; the proof follows immediately from the description of $E\left(T_{n}\right)$.

Proposition 3.2. (Intermediate Value Principle) Let P be a v, w path in T_{n}. Set $m_{i}=$ $\min \{i(v), i(w)\}$ and $M_{i}=\max \{i(v), i(w)\}$; we define m_{j}, M_{j}, m_{k} and M_{k} analogously. If $i \in\left[m_{i}, M_{i}\right], j \in\left[m_{j}, M_{j}\right]$, and $k \in\left[m_{k}, M_{k}\right]$, then P contains (possibly indistinct) vertices from each of I_{i}, J_{j}, and K_{k}.

4 Proof of Theorem 1.1

We now turn to the proof of the lower bound in Theorem 1.1.
Fix a choice of functions $f, g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ such that $f(n)=o(n), g(n)=o(f(n))$. For example, one might choose $f(n)=n^{\frac{2}{3}}$ and $g(n)=n^{\frac{1}{3}}$.

Suppose $n \gg 0$ and let T^{\prime} be the subgraph of T_{n} induced by $\left\{(a, b, c) \in V\left(T_{n}\right)\right.$: $a, b, c \geq g(n))\}$. Clearly $T^{\prime} \cong T_{n-\lfloor 3 g(n)\rfloor}$.

Let $h: E\left(T_{n}\right) \rightarrow\left[1,\left|E\left(T_{n}\right)\right|\right]$ be an edge-labeling of T_{n} that achieves $B^{\prime}\left(T_{n}\right)$; that is, $B^{\prime}(h)=B^{\prime}\left(T_{n}\right)$, where $B^{\prime}(h)$ denotes the maximum difference between the h-labels of two incident edges in T_{n}. Let $E_{k}=\left\{e \in E\left(T_{n}\right): h(e) \leq k\right\}$, and define

$$
r=\min \left\{k: T^{\prime}\left[E_{k+1} \cap E\left(T^{\prime}\right)\right] \text { is a connector of } T^{\prime}\right\} .
$$

We define a 2-coloring of $E\left(T_{n}\right)$ by declaring edges e with $h(e) \leq r$ to be red and the remaining edges blue. We call a vertex $v \in T_{n}$ red if all edges incident at v are red, blue if all edges incident at v are blue, or mixed otherwise. Let R (resp. B) denote the set of red (resp. blue) edges and \mathcal{R} (resp., \mathcal{B}, \mathcal{M}) the set of red (resp. blue, mixed) vertices.

We recall the following Lemma from [4]:
Lemma 4.1. ([4], Lemma 6) Suppose the vertices of the triangular grid are colored with two colors. Then exactly one of the color classes contains a connector.

Proposition 4.2. There exists a connector S of T^{\prime} such that $|V(S)-\mathcal{M}| \leq 1$.

Proof.

Let r be as above and $C=T^{\prime}\left[E_{r+1} \cap E\left(T^{\prime}\right)\right]$. Suppose $V(C)$ contains a blue vertex. Then v must be an endpoint of the edge labeled $r+1$ and must lie on one of the sides of T^{\prime}; in particular, there can be at most one such vertex. If such v exists, let $\mathcal{M}^{\prime}=\mathcal{M} \cup\{v\}$ and $\mathcal{B}^{\prime}=\mathcal{B}-\{v\}$; otherwise, let $\mathcal{M}^{\prime}=\mathcal{M}$ and $\mathcal{B}^{\prime}=\mathcal{B}$. In either case, $\mathcal{R} \cup \mathcal{M}^{\prime}$ induces a connector of T^{\prime}. On the other hand, \mathcal{R} does not induce a connector of T^{\prime}. Thus, by Lemma 4.1, \mathcal{B}^{\prime} does not induce a connector of T^{\prime}. Since no vertex of \mathcal{R} is adjacent to a vertex of \mathcal{B}^{\prime}, it follows that $\mathcal{R} \cup \mathcal{B}^{\prime}$ does not induce a connector of T^{\prime}. Applying Lemma 4.1 again, we conclude that \mathcal{M}^{\prime} induces a connector of T^{\prime}.

Lemma 4.3. Let T be any triangular grid and $V_{0} \subseteq V(T)$ a subset such that $S^{*}=T\left[V_{0}\right]$ is a connector of T. If V_{0} is minimal with respect to this property (that is, for every $v \in V_{0}$, $T\left[V_{0}-\{v\}\right]$ is not a connector of T), then either S^{*} is a tree connector or there is some edge $e \in E\left(S^{*}\right)$ such that $S^{*}-e$ is a tree connector.

Proof.

Let $F_{i}, s=1,2,3$ be the three sides of T. Since S^{*} is a connector of T, there is a vertex $v_{0} \in V\left(S^{*}\right)$ such that for each $i \in\{1,2,3\}$, there is a path in S^{*} from v_{0} to some vertex v_{i} lying on F_{i}. The v_{i} are not necessarily distinct; however, $\left|\left\{v_{1}, v_{2}, v_{3}\right\}\right| \geq 2$. If $\left|\left\{v_{1}, v_{2}, v_{3}\right\}\right|=2$, then by minimality of $\left|V\left(S^{*}\right)\right|, S^{*}$ itself must be a shortest path connecting the two distinct members of $\left\{v_{1}, v_{2}, v_{3}\right\}$. Hence, we may assume $\left|\left\{v_{1}, v_{2}, v_{3}\right\}\right|=3$.

For each $i=1,2,3$, let P_{i} denote a shortest v_{0}, v_{i}-path in S^{*}. By minimality, $V\left(S^{*}\right)=$ $V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V\left(P_{3}\right)$ and $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\left\{v_{0}\right\}$ for all $i, j \in\{1,2,3\}, i \neq j$. Let $e=\{x, y\} \in E\left(S^{*}\right)-\left(E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup E\left(P_{3}\right)\right)$. Since each P_{i} is a shortest v_{0}, v_{i}-path in S^{*}, it must be the case that $x \in V\left(P_{i}\right)$ and $y \in V\left(P_{j}\right)$, where $i \neq j$; clearly x and y are both distinct from v_{0}. If there is a vertex z on P_{i} that lies beween v_{0} and x, then $S^{*}-z$ is still a connector of T, contradicting the minimality of S^{*}. Hence x is a neighbor of v_{0}. By symmetric reasoning, y is also a neighbor of v_{0}.

We have argued that the endpoints of an edge in $E\left(S^{*}\right)-\left(E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup E\left(P_{3}\right)\right)$ are neighbors of v_{0}, and that these two endpoints lie on distinct paths P_{i} and P_{j}. If there exist two such edges, it is easily seen $S^{*}-v_{0}$ is a still a connector of T, again contradicting minimality. Hence, S^{*} has at most one edge outside $E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup E\left(P_{3}\right)$.

By Proposition 4.2 and Lemma 4.3 there exists a connector S^{*} of T^{\prime} with $V\left(S^{*}\right) \subseteq \mathcal{M}^{\prime}$ and $\left|E\left(S^{*}\right)\right| \leq\left|V\left(S^{*}\right)\right|$.
Proposition 4.4. If $\left|V\left(S^{*}\right)\right| \geq \frac{6}{5} n+1$, then $B^{\prime}\left(T_{n}\right)=B^{\prime}(h) \geq 3 n-1$.

Proof.

Since $V\left(S^{*}\right) \subseteq \mathcal{M}^{\prime},\left|V\left(S^{*}\right) \cap \mathcal{M}\right| \geq\left|V\left(S^{*}\right)\right|-1$, so every edge incident at a vertex in $V\left(S^{*}\right) \cap \mathcal{M}$ is in $\partial(R) \cup \partial(B)$. Since each such vertex has degree 6 in T_{n}, we see that
$|\partial(R) \cup \partial(B)| \geq \sum_{v \in V\left(S^{*}\right) \cap \mathcal{M}} \operatorname{deg} v-\left|E\left(S^{*}\right)\right| \geq 6\left(\left|V\left(S^{*}\right)\right|-1\right)-\left|V\left(S^{*}\right)\right|=5\left|V\left(S^{*}\right)\right|-6 \geq 6 n-1$
Applying Corollary 2.4 (with $i=1$) to $L\left(T_{n}\right)$, we obtain $B^{\prime}\left(T_{n}\right)=B^{\prime}(h) \geq 3 n-1$.
By discarding an edge if necessary, we assume henceforth that there exists a tree connector S_{0} of T^{\prime} such that $\left|V\left(S_{0}\right)\right| \leq \frac{6}{5} n$.

Definition 4.5. Let S be a tree connector of the triangular grid T_{m} and $a, b \geq 0$. An (a, b)-detour in S is a 4-tuple (u, v, P, Q), where $u, v \in V(S), P$ is the unique path in S from u to v of length at least a, and Q is a path in T_{m} from u to v of length at most b.

Definition 4.6. Let S be a tree connector of T_{m} and (u, v, P, Q) an (a, b)-detour in S. The shortening of S with respect to Q, denoted $\Sigma(S, Q)$ is defined as follows:

Figure 2: The shortening of S with respect to Q.

- If v_{0} does not lie along $P, \Sigma(S, Q)$ is the subgraph of T_{m} induced by $V(S) \cup V(Q)-(V(P)-\{u, v\})$.
- If v_{0} lies along P, let P_{1} be the portion of P between u and v_{0} and P_{2} the portion of P between v and v_{0}. If $\left|V\left(P_{1}\right)\right| \leq\left|V\left(P_{2}\right)\right|$, we define $\Sigma(S, Q)=T_{m}[V(S) \cup V(Q)-$ $\left.\left(V\left(P_{2}\right)-\left\{v_{0}\right\}\right)\right]$; otherwise, we define $\Sigma(S, Q)=T_{m}\left[V(S) \cup V(Q)-\left(V\left(P_{1}\right)-\left\{v_{0}\right\}\right)\right]$.

It follows immediately from the construction that $\Sigma(S, Q)$ is a connector of T_{m} and that $|V(\Sigma(S, Q)) \cap V(S)| \geq m-|V(Q)|$.

Next, we show that we can use the operation of shortening to deduce the existence of a connector of T^{\prime} with $n-o(n)$ vertices which does not contain a long detour.

Proposition 4.7. Let $f(n), g(n)$ be the functions chosen at the beginning of this section. Then there exists a tree connector S^{\prime} of T^{\prime} containing no $(2 f(n), 2 g(n))$-detour such that

$$
\left|V\left(S^{\prime}\right) \cap \mathcal{M}\right| \geq n-3 g(n)-1-\frac{6}{5} \frac{n g(n)}{f(n)-g(n)} .
$$

Proof.

We begin by considering our tree connector S_{0} and recall that $\mid V\left(S_{0} \mid \leq 6 n / 5\right.$. Because S_{0} is a connector of $T^{\prime},\left|V\left(S_{0}\right)\right| \geq n-3 g(n)$.

Now consider the following inductive procedure.

- Set $i=0$.
- If S_{i} contains no $(2 f(n), 2 g(n))$-detour, set $S^{\prime}=S_{i}$. Otherwise, let (u, v, P, Q) be a $(2 f(n), 2 g(n))$-detour in S_{i} and define S_{i+1} to be a tree connector of T^{\prime} contained in $\Sigma\left(S_{i}, Q\right)$.

At each iteration of this procedure, in moving from S_{i} to S_{i+1}, at least $f(n)$ vertices are discarded and at most $g(n)$ vertices from outside $V\left(S_{0}\right)$ are added. Thus, the procedure
terminates after at most $\frac{6 n / 5}{f(n)-g(n)}$ iterations, and S^{\prime} contains no $(2 f(n), 2 g(n))$-detour. The estimate on the number of mixed vertices in $V\left(S^{\prime}\right)$ now follows readily.

We may assume that S^{\prime} consists of a vertex v_{0}, a path P_{1} from v_{0} to some vertex t_{1} on the side F_{1} of T^{\prime}, a path P_{2} from v_{0} to some vertex t_{2} on the side F_{2} of T^{\prime}, and a path P_{3} from v_{0} to some vertex t_{3} on the third side F_{3}. We may also assume that P_{1}, P_{2}, and P_{3} intersect pairwise only at v_{0}. Note that F_{1} is a subgraph of the line $I_{g(n)}$ of T_{n}; similarly $F_{2}\left(F_{3}\right)$ is a subgraph of $J_{g(n)}$ (resp. $K_{g(n)}$).

Let w_{0} be a vertex of $V\left(P_{1}\right) \cup V\left(P_{2}\right)$ with minimal k-coordinate; that is, $k\left(w_{0}\right) \leq k(w)$ for all $w \in V\left(P_{1}\right) \cup V\left(P_{2}\right)$. Writing $w_{0}=(a, b, c)$, we have $a+b+c=n$. By the Intermediate Value Principle (Proposition 3.2), for each $i \in[g(n), a), P_{1}$ contains at least one vertex with that i-coordinate; similarly for each $j \in[g(n), b), P_{2}$ contains at least one vertex with that j-coordinate, and for each $k \in[g(n), c), P_{3}$ contains at least one vertex with that k-coordinate.

If $x=(i, j, k) \in V\left(T_{n}\right)$ is any vertex and t is a positive integer, we define

$$
N_{I}^{+}(x, t)=\left\{(i, j-s, k+s) \in V\left(T_{n}\right): 0 \leq s \leq t\right\}
$$

Intuitively, this is the set of vertices reachable by starting at x and walking t steps along I_{i} in the direction away from the side K_{0} of T_{n}. We also define:

$$
\begin{aligned}
& N_{I}^{-}(x, t)=\left\{(i, j+s, k-s) \in V\left(T_{n}\right): 0 \leq s \leq t\right\} \\
& N_{J}^{+}(x, t)=\left\{(i-s, j, k+s) \in V\left(T_{n}\right): 0 \leq s \leq t\right\} \\
& N_{J}^{-}(x, t)=\left\{(i+s, j, k-s) \in V\left(T_{n}\right): 0 \leq s \leq t\right\} \\
& N_{K}^{+}(x, t)=\left\{(i+s, j-s, k) \in V\left(T_{n}\right): 0 \leq s \leq t\right\} \\
& N_{K}^{-}(x, t)=\left\{(i-s, j+s, k) \in V\left(T_{n}\right): 0 \leq s \leq t\right\}
\end{aligned}
$$

each of which has an analogous geometric interpretation.

Now define

$$
\mathcal{I}=\left\{i \in[g(n), a): V\left(S^{\prime}\right) \cap V\left(I_{i}\right) \cap \mathcal{M} \neq \emptyset\right\}
$$

This is the set of "good" indices i for which I_{i} contains a mixed vertex of S^{\prime}. Similarly, we define

$$
\mathcal{J}=\left\{j \in[g(n), b): V\left(S^{\prime}\right) \cap V\left(J_{j}\right) \cap \mathcal{M} \neq \emptyset\right\}
$$

and

$$
\mathcal{K}=\left\{k \in[g(n), c-g(n)): V\left(S^{\prime}\right) \cap V\left(K_{k}\right) \cap \mathcal{M} \neq \emptyset\right\} .
$$

Figure 3: Illustration of $N_{I}^{+}(x, t)$ and $N_{I}^{-}(x . t)$.

Observe that by the equation $a+b+c=n$ and Proposition 4.7,

$$
\begin{equation*}
|\mathcal{I}|+|\mathcal{J}|+|\mathcal{K}| \geq n-4-4 g(n)-\frac{6}{5} \frac{n g(n)}{f(n)-g(n)} . \tag{1}
\end{equation*}
$$

For each $i \in \mathcal{I}$, let A_{i}^{+}be the vertex of $V\left(I_{i}\right) \cap V\left(P_{1}\right) \cap \mathcal{M}$ with maximum k-coordinate and A_{i}^{-}the vertex of $V\left(I_{i}\right) \cap V\left(P_{1}\right) \cap \mathcal{M}$ with minimum k-coordinate. For each $j \in \mathcal{J}$, let B_{j}^{+}be the vertex of $V\left(J_{j}\right) \cap V\left(P_{2}\right) \cap \mathcal{M}$ with maximum k-coordinate and B_{j}^{-}the vertex with minimum k-coordinate. Finally, for each $k \in \mathcal{K}$, let C_{k}^{+}be the vertex of $V\left(K_{k}\right) \cap V\left(P_{3}\right) \cap \mathcal{M}$ with maximum i-coordinate and C_{k}^{-}the vertex with minimum k coordinate.

For $i \in \mathcal{I}$, set $N_{I}(i)=N^{+}\left(A_{i}^{+}, g(n)\right) \cup N^{-}\left(A_{i}^{-}, g(n)\right) ;$ for $j \in \mathcal{J}$, set $N_{J}(j)=$ $N^{+}\left(B_{j}^{+}, g(n)\right) \cup N^{-}\left(B_{j}^{-}, g(n)\right)$; for $k \in \mathcal{K}$, set $N_{K}(k)=N^{+}\left(C_{k}^{+}, g(n)\right) \cup N^{-}\left(C_{k}^{-}, g(n)\right)$. Each of these newly defined sets has exactly $2 g(n)+1$ members. Note also the following two facts:

- If $i_{1}, i_{2} \in \mathcal{I}, i_{1} \neq i_{2}$, then $N_{I}\left(i_{1}\right) \cap N_{I}\left(i_{2}\right)=\emptyset$, and similarly for the other two coordinates.
- For any $i \in \mathcal{I}, j \in \mathcal{J}$ and $k \in \mathcal{K}, N_{I}(i) \cap N_{K}(k)=\emptyset=N_{J}(j) \cap N_{K}(k)$.

The first is an obvious consequence of the definitions; the second is a consequence of the choice of w_{0} and the definition of the set \mathcal{K}.

It may be the case, however, that there is some pair $(i, j) \in \mathcal{I} \times \mathcal{J}$ such that $N_{I}(i) \cap N_{J}(j) \neq \emptyset$; this implies that there is some vertex in $V\left(S^{\prime}\right) \cap I_{i}$ which is within
distance $2 g(n)$ of some vertex in $V\left(S^{\prime}\right) \cap J_{j}$. Fix such a pair $\left(i_{0}, j_{0}\right)$ and vertices $A_{i_{0}} \in$ $V\left(I_{i_{0}}\right) \cap V\left(S^{\prime}\right), B_{j_{0}} \in V\left(J_{j_{0}}\right) \cap V\left(S^{\prime}\right)$ such that $d_{T_{n}}\left(A_{i_{0}}, B_{j_{0}}\right) \leq 2 g(n)$ and i_{0} is as small as possible. Since S^{\prime} is a tree, there is a unique path in S^{\prime} from $w_{0}=(a, b, c)$ to the vertex t_{1}; by Proposition 3.2, we may assume without loss of generality that $A_{i_{0}}$ is on this path. Likewise, we may assume that $B_{j_{0}}$ lies on the unique path in S^{\prime} from w_{0} to t_{2}. Since S^{\prime} contains no $(2 f(n), 2 g(n))$-detour, it follows that $d_{S^{\prime}}\left(A_{i_{0}}, B_{j_{0}}\right) \leq 2 f(n)$. In particular, $d_{S^{\prime}}\left(A_{i_{0}}, B_{j, 0}\right)=d_{S^{\prime}}\left(A_{i_{0}}, w_{0}\right)+d_{S^{\prime}}\left(w_{0}, B_{j_{0}}\right) \leq\left(a-i_{0}\right)+\left(b-j_{0}\right) \leq 2 f(n)$, so

$$
\begin{equation*}
a+b-i_{0}-j_{0} \leq 2 f(n) \tag{2}
\end{equation*}
$$

Let $\mathcal{I}^{\prime}=\mathcal{I} \cap\left[1, i_{0}-1\right]$ and $\mathcal{J}^{\prime}=\mathcal{J} \cap\left[1, j_{0}-1\right]$.
By construction, for any $i^{\prime} \in \mathcal{I}^{\prime}$ and $j^{\prime} \in \mathcal{J}^{\prime}, N_{I}\left(i^{\prime}\right) \cap N_{J}\left(j^{\prime}\right)=\emptyset$. Using the inequalities (1) and (2) and recalling that $a+b+c=n$, we have:

$$
\begin{aligned}
&\left|\mathcal{I}^{\prime}\right|+\left|\mathcal{J}^{\prime}\right|+|\mathcal{K}|=|\mathcal{I}|-\left(a-i_{0}\right)+|\mathcal{J}|-\left(b-j_{0}\right)+\mathcal{K}=|\mathcal{I}|+|\mathcal{J}|+|\mathcal{K}|-\left(a+b-i_{0}-j_{0}\right) \\
& \geq n-4-2 f(n)-4 g(n)-\frac{6}{5} \frac{n g(n)}{f(n)-g(n)}
\end{aligned}
$$

This immediately yields:
Proposition 4.8. Let $V=\cup_{i \in \mathcal{I}^{\prime}} N_{I}(i) \cup \cup_{j \in \mathcal{J}^{\prime}} N_{J}(j) \cup \cup_{k \in \mathcal{K}} N_{K}(k)$. Then

$$
|V| \geq(2 g(n)+1)\left(n-4-4 g(n)-2 f(n)-\frac{6}{5} \frac{n g(n)}{f(n)-g(n)}\right)
$$

Finally, if $v \in V$, then there is some $w \in V\left(S^{\prime}\right) \cap \mathcal{M}$ such that $d_{T_{n}}(v, w) \leq g(n)$. In particular, since w is a mixed vertex, each edge incident to a vertex in V is contained in $\sigma^{g(n)+1}(R) \cup \sigma^{g(n)+1}(B)$. Since each vertex of U has degree 6 , we obtain the estimate

$$
\left|\sigma^{g(n)+1}(R) \cup \sigma^{g(n)+1}(B)\right| \geq 3(2 g(n)+1)\left(n-4-4 g(n)-2 f(n)-\frac{6}{5} \frac{n g(n)}{f(n)-g(n)}\right) .
$$

Applying Corollary 2.4 to $L\left(T_{n}\right)$, we obtain

Corollary 4.9.

$$
B^{\prime}\left(T_{n}\right)=B^{\prime}(h) \geq 3 \frac{2 g(n)+1}{2(g(n)+1)}\left(n-4-4 g(n)-2 f(n)-\frac{6}{5} \frac{n g(n)}{f(n)-g(n)}\right)
$$

In particular, by choosing $f(n)=n^{\frac{2}{3}}$ and $g(n)=n^{\frac{1}{3}}$, we obtain, for sufficiently large n,

$$
B^{\prime}\left(T_{n}\right) \geq 3\left(n-4 n^{\frac{2}{3}}\right)=3 n-12 n^{\frac{2}{3}}=3 n-o(n)
$$

Corollary 4.9 completes the proof of Theorem 1.1.
After the manuscript was submitted, the third author noticed that in general, the upper bound of $3 n-1$ is not optimal. Indeed, when $n \geq 18$, the given labeling can be modified to produce a more complicated labeling with bandwidth $3 n-5$. However, it is not immediately clear if the method would lead to an improvement of the upper bound by more than a constant term.

5 Acknowledgements

The authors would like to thank Zevi Miller for stimulating discussions, and József Balogh, Dhruv Mubayi, and Oleg Pikhurko for helpful conversations.

References

[1] J. Balogh, D. Mubayi and A. Pluhár. On the edge-bandwidth of graph products. Theoret. Comput. Sci. 359 (2006), 43-57.
[2] T. Calamoneri, A. Massini, and I. Vrto. New results on edge-bandwidth. Theoret. Comput. Sci. 307 (2003), no. 3, 503-513.
[3] L. Harper, Optimal numberings and isoperimetric problems on graphs. J. Combin. Theory (1966), 385-393.
[4] R. Hochberg, C. McDiarmid, and M. Saks. On the bandwidth of triangulated triangles. Discrete Mathematics 138 (1995), 261-265.
[5] T. Jiang, D. Mubayi, A. Shastri, D. West. Edge-bandwidth of graphs. SIAM J. Discrete Math. 12 (1999), no. 3, 307-316.
[6] O. Pikhurko and J. Wojciechowski, Theoret. Comput. Sci. 369 (2006), 35-43.

