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Abstract

A graph G with vertex set V is said to be n-existentially closed if, for every
S ⊂ V with |S| = n and every T ⊆ S, there exists a vertex x ∈ V − S such that
x is adjacent to each vertex of T but is adjacent to no vertex of S − T . Given
a combinatorial design D with block set B, its block-intersection graph GD is the
graph having vertex set B such that two vertices b1 and b2 are adjacent if and only
if b1 and b2 have non-empty intersection.

In this paper we study balanced incomplete block designs (BIBDs) and when
their block-intersection graphs are n-existentially closed. We characterise the BIBDs
with block size k > 3 and index λ = 1 that have 2-e.c. block-intersection graphs
and establish bounds on the parameters of BIBDs with index λ = 1 that are n-e.c.
where n > 3. For λ > 2 and n > 2, we prove that only simple λ-fold designs can
have n-e.c. block-intersection graphs. In the case of λ-fold triple systems we show
that n > 3 is impossible, and we determine which 2-fold triple systems (i.e., BIBDs
with k = 3 and λ = 2) have 2-e.c. block-intersection graphs.

Keywords: block designs; block-intersection graphs; existentially closed graphs

1 Introduction

Erdős and Rényi first introduced the concept of n-existentially closed graphs when con-
sidering random graphs [2]. Specifically, a graph G with vertex set V is n-existentially
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closed (or n-e.c.) if, for each proper subset S of V with cardinality |S| = n and each
subset T of S, there exists some vertex x not in S that is adjacent to each vertex of T

but to none of the vertices of S − T . Hence a graph G is 1-e.c. if and only if no vertex
of G has degree 0 or (|V | − 1). A survey paper on the topic of existentially closed graphs
appears in [1].

A balanced incomplete block design of order v, having block size k and index λ, or
BIBD(v, k, λ), is an ordered pair (V, B), where V is a set of v points and B is a collection
of k-subsets of V known as blocks such that every pair of points of V occurs in exactly
λ blocks of B. The block-intersection graph of such a design D is the graph GD having
vertex set B, and in which two vertices are adjacent if and only if their corresponding
blocks share at least one point of V . For further information on combinatorial designs,
the reader is referred to [7].

In [3], Forbes, Grannell and Griggs studied the block-interesection graphs of Steiner
triple systems; a Steiner triple system of order v, or STS(v), is just a BIBD with pa-
rameters (v, 3, 1). In particular, they considered when Steiner triple systems have n-
existentially closed block-intersection graphs. For n = 2 they concluded that a STS(v)
has a 2-e.c. block-intersection graph if and only if v > 13. For n = 3 they determined
that for a STS(v) to have a 3-e.c. block-intersection graph v must be either 19 or 21.
Two STS(19) with 3-e.c. block-intersection graphs were presented, while the existence of
a STS(21) with a 3-e.c. block-intersection graph remained unsettled.

In this present paper we expand on the work of Forbes et al. by considering the more
general setting of balanced incomplete block designs. We characterise those BIBD(v, k, 1)
with k > 3 that have 2-e.c. block-intersection graphs, and for n > 3 we obtain bounds
on the design parameters for those BIBD(v, k, 1) for which the block-intersection graph
is n-e.c. When λ > 2, we obtain similar parameter bounds, and we prove that λ-fold
designs with n-e.c. block-intersection graphs are necessarily simple. Further, we determine
all BIBD(v, 3, 2) which have 2-e.c. block-intersection graphs, noting that there are no
BIBD(v, 3, 2) with n-e.c. block-intersection graphs for any n > 3.

2 A Few Preliminaries

We begin by observing the following result, the proof of which is trivial.

Lemma 1 If a graph G is n-e.c. and n > 1, then G is also (n − 1)-e.c.

Another simple result pertaining to block-intersection graphs is:

Lemma 2 If D = (V, B) is a BIBD(v, k, λ) such that GD is n-e.c., then v > (n + 1)k.

Proof. Since GD is n-e.c., then for each n-set S ⊂ B by selecting T = ∅ we find that
there must exist a vertex x that is adjacent to no vertex of S. Inductively, and by
using Lemma 1, we conclude that GD must contain a set of (n + 1) independent vertices.
Equivalently, the design must contain a set of (n + 1) pairwise non-intersecting blocks,
each containing k points. Hence v > (n + 1)k. 2
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Throughout the remainder of this paper we adopt the convention that if D = (V, B)
is a BIBD(v, k, λ), then V = {1, 2, . . . , v}.

We now show that the existential closure of any BIBD is bounded by the block size of
the design:

Theorem 1 If the block-intersection graph of a BIBD(v, k, λ) is n-e.c., then n 6 k.

Proof. Suppose that D is a BIBD(v, k, λ) for which GD is n-e.c. Without loss of gener-
ality, we may assume that D contains the block b = {1, 2, . . . , k}.

First consider the case in which k < v. For each i = 1, 2, . . . , k, let bi be a block of D

that contains both point i as well as point v, and let B = {b1, b2, . . . , bk} (when λ > 2,
it may be that b1, b2, . . . , bk are not all distinct, in which case |B| < k). Observe that
there is no block x that intersects b but none of b1, b2, . . . , bk. Hence in GD there can be
no vertex x that is adjacent to each vertex of T = {b} but no vertex of S − T where
S = T ∪ B. Thus GD is not (|B| + 1)-e.c., and by Lemma 1 it follows that n 6> |B| + 1.
Hence n 6 |B| 6 k.

In the case where k = v, we find that the design D consists of λ copies of a single
block, so that GD is just Kλ. Hence the hypothesis that GD is n-e.c. fails to be satisfied,
regardless of the value of n. 2

3 Designs with Index λ = 1

In this section we consider designs having index λ = 1. We begin by considering the case
of n = 2, for which we obtain a characterisation for BIBDs with n-e.c. block-intersection
graphs:

Theorem 2 The block-intersection graph of a BIBD(v, k, 1) with k > 3 is 2-existentially

closed if and only if v > k2 + k − 1.

Proof. For any BIBD(v, k, 1) D = (V, B), the replication number r of any point of V is
r = v−1

k−1
. Hence r > k + 2 if and only if v > k2 + k − 1.

To prove the forward implication, let D be a BIBD(v, k, 1) such that k > 3 and GD is
2-e.c. Then the design must contain a pair of disjoint blocks, so without loss of generality
let b1 = {1, 2, . . . , k} and b2 = {k + 1, k + 2, . . . , 2k} be disjoint elements of B.

Now consider the 2-subset S = {b1, b2} of B and the subset T = {b1} of S. Since GD

is 2-e.c., then there must exist a third block, say b3, such that |b1 ∩ b3| = 1 but b2 ∩ b3 = ∅.
Without loss of generality, let b3 = {1, 2k + 1, 2k + 2, . . . , 3k − 1}.

For each i ∈ b2 consider the unique block, say bi, that contains the pair {1, i}. Note
that point 1 is now seen to occur in at least k + 2 blocks (viz. b1, b3, and the blocks
bk+1, . . . , b2k) and that point 1 is the only point shared by any pair of these blocks. Hence
r > k + 2.

We now prove the converse implication. Let D be a BIBD(v, k, 1) with k > 3 such
that v > k2 + k − 1. Let b1 and b2 be two distinct blocks of B and let S = {b1, b2}. For
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each subset T of S, we must show that there exists a vertex x of B − S that is adjacent
in GD to each vertex of T but to no vertex of S − T .
Case 1. |b1 ∩ b2| = 1
Without loss of generality, let b1 = {1, 2, . . . , k} and b2 = {k, k + 1, . . . , 2k − 1}.

If T = S, then let x be the unique block that contains the pair {1, k + 1}.
If |T | = 1, then without loss of generality assume that T = {b1}. For each i ∈

{k + 1, k + 2, . . . , 2k − 1}, let bi be the unique block that contains the pair {1, i}. The
k points of b2 are therefore paired with point 1 in the k blocks b1, bk+1, bk+2, . . . , b2k−1.
Recall that r > k + 2 and so there exists a block x not in S that contains point 1 but
none of the points of b2.

If T = ∅, then let ν(t, k − t) denote the number of blocks of B having exactly t

points from the set W = {1, 2, . . . , 2k − 1} and exactly k − t points from the set V − W .
Trivially we obtain ν(k, 0) = 2, ν(t, k − t) = 0 for each t ∈ {k − 1, k − 2, . . . , 3}, and
ν(2, k − 2) = (k − 1)2.

Of the (2k − 1)(v − (2k − 1)) pairs of points formed by selecting one point from W

and another from V − W , each of the (k − 1)2 blocks enumerated by ν(2, k − 2) contains

2(k − 2) of them. Thus ν(1, k − 1) = (2k−1)(v−(2k−1))−2(k−2)(k−1)2

k−1
.

Since |B| = v(v−1)
k(k−1)

in any BIBD(v, k, 1), it now follows that ν(0, k) = v(v−1)
k(k−1)

−ν(k, 0)−

ν(2, k − 2) − ν(1, k − 1) = v2−v+k2+k4−k3−2k2v+kv
k(k−1)

. We need to establish that ν(0, k) > 1,

but since ν(0, k) is an integer and k > 3, it is sufficient to prove that N = (v2 − v + k2 +
k4 −k3 − 2k2v +kv) is positive. Recalling that v > k2 +k− 1, let ε = v− (k2 +k− 1) > 0
so that we now have N = (2k2 − 4k + 3kε + ε2 − 3ε + 2). Clearly 2k2 > 4k and 3kε > 3ε
for all k > 3, and thus N > 0.
Case 2. |b1 ∩ b2| = 0
Without loss of generality, let b1 = {1, 2, . . . , k} and b2 = {k + 1, . . . , 2k}.

If T = S, then let x be the unique block that contains the pair {1, k + 1}.
If |T | = 1, then without loss of generality assume that T = {b1}. For each i ∈ b2, let bi

be the unique block that contains the pair {1, i}. The k points of b2 are therefore paired
with point 1 in the k blocks bk+1, bk+2, . . . , b2k. Recall that r > k + 2 and so there exists
a block x 6= b1 that contains point 1 but none of the points of b2.

If T = ∅, then let ν(t, k − t) denote the number of blocks of B having exactly t points
from the set W = {1, 2, . . . , 2k} and exactly k− t points from the set V −W . Trivially we
obtain ν(k, 0) = 2, ν(t, k− t) = 0 for each t ∈ {k−1, k−2, . . . , 3}, and ν(2, k−2) = k2. It

follows that ν(1, k− 1) = 2k(v−2k)−2(k−2)(k2)
k−1

and hence ν(0, k) = v(v−1)
k(k−1)

− ν(k, 0)− ν(2, k−

2) − ν(1, k − 1) = v2−v−2k2+2k+k4+k3−2k2v
k(k−1)

. Let N = (v2 − v − 2k2 + 2k + k4 + k3 − 2k2v)

and let ε = v − (k2 + k − 1) > 0. Then N = (k3 − 2k2 − k + 2kε + ε2 − 3ε + 2) is positive
since (k3 − 2k2 − k) > 0 and 2kε > 3ε whenever k > 3. 2

We now obtain Theorem 3.1 of [3] as a corollary:

Corollary 1 The block-intersection graph of a STS(v) is 2-e.c. if and only if v > 13.
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Proof. Theorem 2 asserts that the block-intersection graph of a STS(v) is 2-e.c. if and
only if v > 11. However, a Steiner triple system of order v exists if and only if v ≡ 1 or 3
(mod 6), thereby eliminating orders 11 and 12 from consideration. 2

We now begin to consider those BIBD(v, k, 1) having n-e.c. block-intersection graphs
where n exceeds 2. At this point it is helpful to recall that an independent set of points
in a design D = (V, B) is a subset I ⊂ V such that no block of B has all of its points
contained within I. By Ik(v) we denote the maximum cardinality of an independent set
in any BIBD(v, k, λ); i.e., the maximum over all BIBDs with parameters (v, k, λ). For
triple systems, the value of I3(v) was established by Sauer and Schönheim to be at most
v+1
2

[6]. We now present a modest generalisation of the result by Sauer and Schönheim:

Lemma 3 Ik(v) 6
(v − 1)(k − 2)

k − 1
+ 1.

Proof. Let D = (V, B) be a BIBD(v, k, λ), let I be an independent set of points in D,
and let p ∈ I. Note that there are |I| − 1 pairs of points of the form {p, q} where q is a
point of I other than p, and that each such pair occurs λ times. Each block of the design
can contain at most (k − 2) of these pairs without contradicting the status of I as an

independent set. Hence there must be at least λ(|I|−1)
k−2

blocks that contain pairs of points

of this form. Necessarily this quantity cannot exceed the replication number, r = λ(v−1)
k−1

,

of the design. Therefore λ(|I|−1)
k−2

6
λ(v−1)

k−1
and the result follows. 2

We now use Lemma 3 to establish upper bounds on the orders of designs having n-e.c.
block-intersection graphs.

Theorem 3 Let n > 3. If D = (V, B) is a BIBD(v, k, 1) for which the block-intersection

graph is n-e.c., then v 6 k4 − nk3 + (2n − 2)k2 − nk + k + 1.

Proof. Since GD is n-e.c., then there must exist a set of (n + 1) pairwise disjoint blocks
in the design, although we do not require that many. Let D be a set of (n − 1) pairwise
disjoint blocks in B, and let b1 and b2 be two distinct blocks of D.

Let B ⊂ B be the set of all k2 blocks that contain a point from b1 as well as a point
from b2. Since λ = 1, each block b ∈ B contains at most one point from each block of D,
and hence b contains at least

(

k − (n − 1)
)

points that do not occur as points in any of
the blocks of D (recall from Theorem 1 that n 6 k). So for each block b ∈ B, let Pb be an
arbitrary but fixed set of

(

k − (n− 1)
)

points of b, none of which occur as a point of any

block of D. Let P =

(

⋃

b∈D

b

)

∪

(

⋃

b∈B

Pb

)

and observe that |P | 6 k(n−1)+(k−n+1)k2.

Suppose now that v >
( (v−1)(k−2)

k−1
+1
)

+
(

k(n−1)+(k−n+1)k2
)

. Then by Lemma 3,
v − |P | > Ik(v), and so there must exist a block, say bn, that uses none of the points of
P . Let S = D ∪{bn} and T = S. Since GD is n-e.c., then there must exist a block x that
intersects all n blocks of T . Since x intersects each of b1 and b2, then necessarily x must
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be one of the blocks of B. Moreover, since x intersects each block of D, and each pair of
blocks of D has empty intersection, then x contains exactly one point from each of the
(n− 1) blocks of D and so x contains exactly

(

k − (n− 1)
)

points not found in any block
of D.

Note that x is also adjacent to bn, which shares no points with any block of D.
Hence x and bn must intersect in one of the

(

k − (n − 1)
)

points of x that are not
found in any block of D, meaning that x and bn must intersect in a point of Px. We
therefore have a contradiction, since bn contains none of the points of Px. Hence v 6
( (v−1)(k−2)

k−1
+ 1
)

+
(

k(n − 1) + (k − n + 1)k2
)

. 2

Theorem 3 has the effect of imposing an upper bound on the possible order v for
any BIBD(v, k, 1) having an n-e.c. block-intersection graph. For instance, when coupled
with Theorem 2 and Lemma 1, the only possible orders for a BIBD(v, 4, 1) with a 3-e.c.
block-intersection graph are seen to be those in the interval 19 6 v 6 121, which can
be refined to 25 6 v 6 121 by noting that the existence of a BIBD(v, 4, 1) requires that
v ≡ 1 or 4 (mod 12).

4 λ-fold Designs

We now consider BIBDs in which the index λ need not be 1. When λ > 2, it is possible
for designs to contain repeated blocks. A design with no repeated blocks is said to be
simple, and as is now shown, only for simple designs can the block-intersection graph be
n-e.c. when n > 2.

Lemma 4 If λ > 2, n > 2, and D = (V, B) is a BIBD(v, k, λ) such that GD is n-e.c.,

then D is simple.

Proof. By way of contradiction, suppose that B contains repeated blocks, say b1 and b′1
(so |b1 ∩ b′1| = k). By choosing S = {b1, b

′
1} and T = {b1} we find that there is no vertex

x of GD that is adjacent to b1 but not adjacent to b′1. Hence GD cannot be 2-e.c., and by
Lemma 1, GD cannot be n-e.c. for any n > 2. Thus we have the desired contradiction. 2

Paralleling the situation with 1-fold designs, upper bounds on the orders of designs
having n-e.c. block-intersection graphs can be obtained for λ-fold designs:

Theorem 4 Let n > 3. If D = (V, B) is a BIBD(v, k, λ) for which the block-intersection

graph is n-e.c., then v 6 λk4 − λnk3 + (λ + 1)(n − 1)k2 − nk + k + 1.

Proof. The proof is similar to that of Theorem 3, except that |B| 6 λk2, and for each
b ∈ B containing

(

k − (n − 1)
)

or more points not in D we define Pb to be a fixed set
of
(

k − (n − 1)
)

of these points, whereas for those b having fewer than
(

k − (n − 1)
)

such points we define Pb to be all of the points of b which do not appear in D. Hence
|P | 6 k(n − 1) + λk2(k − n + 1). 2
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Moreover, when λ > 2 we can improve on the bound established by Theorem 1:

Theorem 5 If λ > 2 and D = (V, B) is a BIBD(v, k, λ) such that GD is n-e.c., then

n 6 bk+1
2
c.

Proof. Suppose that D is a BIBD(v, k, λ) for which GD is n-e.c. Without loss of gener-
ality, we may assume that B contains the block b = {1, 2, . . . , k}. Let T = {b}.

If k is even, then for each i = 1, 2, . . . , k
2
, let bi be a block other than b that contains

the two points (2i − 1) and 2i. Let B = {b1, . . . , b k

2

} and let S = T ∪ B. Possibly bi = bj

for some 1 6 i < j 6
k
2
, in which case |B| < k

2
.

If k is odd, then for each i = 1, 2, . . . , k−1
2

, let bi be a block other than b that contains
the two points (2i − 1) and 2i. Let b k+1

2

be a block other than b that contains point k.

Let S = T ∪ {b1, b2, . . . , b k+1

2

}.

Observe now that in GD there is no vertex x that is adjacent to b but to no vertex of
S − T and hence GD is not |S|-e.c. It follows from Lemma 1 that n 6 |S| − 1 6 b k+1

2
c. 2

Theorem 5, as it applies to triple systems, states that there are no λ-fold triple sys-
tems with 3-e.c. block-intersection graphs. Accordingly, we now focus on the question of
determining which simple λ-fold triple systems have 2-e.c. block-intersection graphs. We
consider in detail the case of λ = 2, beginning by showing that every simple BIBD(v, 3, 2)
with v > 13 has a 2-e.c. block-intersection graph.

Lemma 5 If D = (V, B) is a simple BIBD(v, 3, 2) such that v > 13, then GD is 2-e.c.

Proof. For any BIBD(v, k, λ), the replication number r of any point of V is r = λ(v−1)
k−1

,
and so for the design D we have r = v − 1 > 12.

Let b1 and b2 be two distinct blocks of B and let S = {b1, b2}. For each subset T of S,
we must show that there exists a vertex x ∈ B− S that is adjacent in GD to each vertex
of T but to no vertex of S − T .
Case 1. |b1 ∩ b2| = 2
Without loss of generality, let b1 = {1, 2, 3} and b2 = {1, 2, 4}.

If T = S, then let x be one of the two blocks that contain the pair {3, 4}.
If |T | = 1, then without loss of generality assume that T = {b1}. Consider the blocks

that contain the pairs of points {1, 3}, {2, 3}, and {3, 4}. Since λ = 2 there can be at
most six such blocks; in fact there can be at most five, since b1 contains an instance of
the pair {1, 3} as well as an instance of the pair {2, 3} together in a single block. These
blocks all contain point 3, and they each intersect both of b1 and b2. However, there are
at least (r − 5) other blocks that also contain point 3 but none of the points of b2. Since
r > 12, then there exists a vertex x in GD that is adjacent to b1 but is not adjacent to b2.

If T = ∅, then consider the blocks that contain point 5. Since |b1 ∪ b2| = 4 and λ = 2,
at most eight blocks of the design will contain point 5 as well as some point from b1 ∪ b2.
Since r > 12, then there exist other blocks that contain point 5 but none of the points of
b1 ∪ b2; any such block is a suitable choice for x.
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Case 2. |b1 ∩ b2| = 1
Without loss of generality, let b1 = {1, 2, 3} and b2 = {1, 4, 5}.

If T = S, then let x be one of the two blocks that contain the pair {3, 4}.
If |T | = 1, then without loss of generality assume that T = {b1}. Consider the blocks

that contain the pairs of points {1, 3}, {3, 4}, and {3, 5}. Since λ = 2 there can be at
most six such blocks. These blocks all contain point 3, and they each intersect both of b1

and b2. However, there are at least r − 6 > 6 other blocks that also contain point 3 but
none of the points of b2; any such block is a suitable choice for x.

If T = ∅, then consider the blocks that contain point 6. Since |b1 ∪ b2| = 5 and λ = 2,
at most ten blocks of the design will contain point 6 as well as some point from b1 ∪ b2.
Since r > 12, then there exist other blocks that contain point 6 but none of the points of
b1 ∪ b2; any such block is a suitable choice for x.
Case 3. |b1 ∩ b2| = 0
Without loss of generality, let b1 = {1, 2, 3} and b2 = {4, 5, 6}.

If T = S, then let x be one of the two blocks that contain the pair {3, 4}.
If |T | = 1, then without loss of generality assume that T = {b1}. Consider the blocks

that contain the pairs of points {3, 4}, {3, 5}, and {3, 6}. Since λ = 2 there can be at
most six such blocks. These blocks all contain point 3, and they each intersect both of b1

and b2. However, there are at least r − 6 > 6 other blocks that also contain point 3 but
none of the points of b2; any such block is a suitable choice for x.

If T = ∅, then consider the blocks that contain point 7. Since |b1 ∪ b2| = 6 and λ = 2,
at most twelve blocks of the design will contain point 7 as well as some point from b1 ∪ b2.
If r > 12, then there exist other blocks that contain point 7 but none of the points of
b1 ∪ b2; any such block is a suitable choice for x.

However, if r = 12 then either GD is 2-e.c. or else each vertex of GD is a neighbour
of at least one of b1 and b2. We suppose that the latter of these two cases is at hand,
in which case each block of B must contain a point from b1 ∪ b2. In particular, each of
the r = 12 blocks in which point 7 occurs must also contain a point from b1 ∪ b2. Since
λ = 2, point 7 is paired with each point of b1 ∪ b2 exactly twice, yielding a total of 12
pairings throughout the design. Hence each of the r = 12 blocks in which point 7 occurs
must contain exactly one pair of points of the form {p, 7} where p ∈ b1 ∪ b2. Consider
now the subset W = {8, 9, 10, 11, 12, 13} of V . There are λ

(

6
2

)

= 30 pairs of points of the
form {p, q} where p, q ∈ W , each of which must be in a block with a point of b1 ∪ b2.
Hence there are exactly 30 blocks of the form {z, p, q} where z ∈ b1 ∪ b2 and p, q ∈ W . A
further 12 blocks are of the form {z, 7, p} where z ∈ b1 ∪ b2 and p ∈ W . None of these 42
blocks contain any of the λ

(

6
2

)

= 30 pairs of points of the form {p, q} where p, q ∈ b1 ∪ b2.
Thus the remaining |B|−42 = 10 blocks (i.e., b1, b2, and eight others) contain only points
from b1 ∪ b2 and so form a BIBD(6,3,2). As noted in [4], there is a unique BIBD(6,3,2).
It contains no pair of disjoint blocks such as our b1 and b2, and so we have the desired
contradiction. 2

Next we eliminate several small orders from possible consideration. From Lemma 2,
it follows that if D = (V, B) is a simple BIBD(v, 3, 2) such that GD is 2-e.c., then v > 9,
so we only need to consider the admissible orders beginning with v = 9:
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Lemma 6 No simple BIBD(9, 3, 2) has a 2-e.c. block-intersection graph.

Proof. Suppose that D = (V, B) is a simple BIBD(9,3,2) such that GD is 2-e.c. and
without loss of generality assume that b1 = {1, 2, 3} ∈ B. Note that r = 8 and so there
are precisely 18 blocks that intersect b1, namely the three other blocks containing the
pairs {1, 2}, {1, 3} and {2, 3} plus 3(r − 3) blocks that each intersect b1 in a single point.

Since |B| = 24, then there are exactly five blocks that are disjoint from b1. Let b2

be a block that is disjoint from b1. By selecting S = {b1, b2} and T = ∅ then it follows
from GD being 2-e.c. that there must be a third block that is disjoint from both b1 and
b2. Since v = 9, this third block must be V − (b1 ∪ b2). Thus for each block b2 that is
disjoint from b1, there is a corresponding block b′2 = V − (b1 ∪ b2) that is also disjoint from
b1. Hence the five blocks that are disjoint from b1 can be naturally partitioned into pairs,
which is a contradiction since 5 is an odd integer. 2

Lemma 7 No simple BIBD(10, 3, 2) has a 2-e.c. block-intersection graph.

Proof. Of the 960 non-isomorphic BIBD(10, 3, 2) designs, only 394 are simple. We tested
each of these by computer and found that none of them have a 2-e.c. block-intersection
graph. 2

Österg̊ard [5] reported that there are 88616310 non-isomorphic simple BIBD(12, 3, 2)
designs. We generated these designs (thereby independently confirming their enumera-
tion) and subsequently tested each of their block-intersection graphs to determine which
ones are 2-e.c. The vast majority are 2-e.c., whereas as only 286962 fail to be 2-e.c.

We now summarise the status of 2-fold triple systems with the following theorem:

Theorem 6 If D is a simple BIBD(v, 3, 2) and GD is 2-e.c., then v > 12. Conversely,

the block-intersection graph of any simple BIBD(v, 3, 2) with v > 13 has a 2-e.c. block-

intersection graph.

5 Discussion

Reflecting on Theorem 1, we pose the following question:

Question 1 For each k > 3, does there exist a BIBD(v, k, 1) that has a k-e.c. block-

intersection graph?

This question is answered in the affirmative for k = 3 as Forbes et al. found two
STS(19) designs with 3-e.c. block-intersection graphs [3].

For designs with index λ > 2, Theorem 5 suggests that the corresponding question
should be:

Question 2 For each λ > 2 and k > 3, does there exist a BIBD(v, k, λ) for which the

block-intersection graph is b k+1
2
c-e.c.?

In the case where λ = 2 and k = 3, Theorem 6 establishes an affirmative answer to
this question.
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