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Abstract

We refine previous results to provide examples, and in some cases precise clas-

sifications, of extremal subsets of {1, ..., n} containing no solutions to a wide class

of non-invariant, homogeneous linear equations in three variables, i.e.: equations of

the form ax + by = cz with a + b 6= c.

1 Introduction

A well-known problem in combinatorial number theory is that of locating extremal subsets
of {1, ..., n} which contain no non-trivial solutions to a given linear equation

L : a1x1 + · · ·+ akxk = b, (1)

where a1, ..., ak, b ∈ Z and their GCD is one. Most of the best-known work concerns just
three individual, homogeneous equations

L1 : x1 + x2 = 2x3,

L2 : x1 + x2 = x3 + x4,

L3 : x1 + x2 = x3,

where the corresponding subsets are referred to, respectively, as sets without arithmetic
progressions, Sidon sets and sum-free sets. The idea to consider arbitrary linear equations
L was first enunciated explicitly in a pair of articles by Ruzsa in the mid-1990s [10] [11].
The only earlier reference of note would appear to be a paper of Lucht [6] concerning
homogeneous equations in three variables, though Lucht’s article was only concerned
with subsets of N. Following Ruzsa, denote by rL(n) the maximum size of a subset of
{1, ..., n} which contains no non-trivial solutions to a given equation L. Let us pause here
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to recall explicitly what we mean by a ‘trivial’ solution to (1) (the definition is also given
in [10]). Such solutions can only arise when L is translation-invariant, i.e.:

∑

ai = b = 0.
Then a solution (x1, ..., xk) to (1) is said to be trivial if there is a partition of the index
set {1, ..., k} = T1 t · · · t Tl such that xi = xj whenever i and j are in the same part of
the partition, and for each r = 1, ..., l one has

∑

i∈Tr
ai = 0.

When considering the function rL(n) for arbitrary L, one begins by observing a basic
distinction between those L which are translation-invariant and those which are not,
namely : for the former it is always the case that rL(n) = o(n), a fact which follows easily
from Szemerédi’s famous theorem, whereas for the latter rL(n) = Ω(n) always.

This paper is concerned with non-invariant, homogeneous equations only. For simplic-
ity the words ‘(linear) equation’ will, for the remainder of the article, be assumed to refer
to those equations with these extra properties, though some of our initial observations
also apply in the inhomogeneous setting. We shall also employ the concise formulation
‘A avoids L’ to indicate that a set A of positive integers contains no solutions to the
equation L. Finally we will employ the interval notation [α, β] := {x ∈ Z : α ≤ x ≤ β},
and similarly for open intervals.

As Ruzsa observed, given an equation L :
∑

aixi = 0, there are two basic ways to
exhibit the fact that rL(n) = Ω(n) :

I. Let s :=
∑

ai so s 6= 0. Let q be any positive integer not dividing s and let
A := {x ∈ N : x ≡ 1 (mod q)}. Then A avoids L and |A ∩ [1, n]| ≥ bn/qc.

II. Set

s+ :=
∑

ai>0

ai, s− :=
∑

ai<0

|ai|

and assume without loss of generality that s+ > s−. For a fixed n > 0 let A :=
(

s−
s+

n, n
]

.

Then A avoids L and has size Ω(n).

As in [11], set λ0,L := lim supn→∞
rL(n)

n
. Ruzsa asked whether the above two constructions

were the prototypes for extremal L-avoiding sets in the sense that λ0 = max{ρ, s+−s−
s+

},
where the quantity ρ is defined as follows : for each m > 0 let ρm · m be the maximum
size of a subset of [1, m] which contains no solutions to L modulo m. Then ρ := supm ρm.

As illustrated by Schoen [12], the answer to Ruzsa’s question is no. But from what is
currently known, it seems that for many equations something not much more complicated
holds. One observes that the construction II above can be modified into something more
general :

II′. For a given L :
∑

aixi = 0, let notation be as above and let a denote the small-
est absolute value of a negative coefficient ai. Now for fixed k, n > 0 and ξ ∈ [1, n]
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set

An,k,ξ :=
k−1
⊔

j=1

(

s−
s+

nj, nj

]

t [ξ, nk],

where n1, ..., nk is any sequence of integers satisfying the recurrence

n1 = n,
s−
s+

nk < ξ ≤ nk, s+nj+1 ≤ a
s−
s+

nj + (s− − a)ξ, j = 1, ..., k − 1. (2)

Clearly for (2) to have any solution we will need to have k = O(log n). Assuming a
solution exists, the set An,k,ξ avoids L and

|An,k,ξ| = (1 + o(1)) ·

[

s+ − s−
s+

k−1
∑

j=1

nj + (nk − ξ + 1)

]

.

The important special case is when ξ = 1 +
⌊

s−
s+

nk

⌋

. Then Ruzsa’s question can be re-

placed by the following :

Question Is it always the case that

λ0 = max

{

ρ, sup
n,k,ξ

|An,k,ξ|

n

}

,

where the supremum ranges over all triples n, k, ξ for which (2) has a solution where

ξ = 1 +
⌊

s−
s+

nk

⌋

?

We will give examples in Section 3 which show that the answer to this question is still
no : we are not aware of any in the existing literature. However, existing results strongly
suggest that the answer is very often yes :
see [1] [2] [3] [8] [9] for example, plus further results in this paper. Also, in our counterex-
amples the extremal sets are a pretty obvious hybrid between the two alternatives which
the question offers. We think that our question is thus a good foundation for further
research in this area.

We now give a closer overwiew of the results in this paper. To identify extremal L-
avoiding sets and compute λ0,L for arbitrary L seems a very daunting task, so an obvious
strategy is to study equations in a fixed number of variables. One variable is utterly triv-
ial and two only slightly less so. I have not been able to locate the following statement
anywhere in the literature, however (though see for example [5], pp.30-34), so include it
for completeness :

Proposition Consider the equation L : ax = by where a > b and GCD(a, b) = 1.
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For every n > 0 an extremal L-avoiding subset of [1, n] is obtained by running through
the numbers from 1 to n and choosing greedily. This yields the extremal subset

A := {u · a2i : i ≥ 0 and a † u}

of N. In particular, λ0,L = a
a+1

. For each n > 0 a complete description of the extremal
L-avoiding subsets of [1, n] is given as follows :

Case I : b = 1.

For each u ∈ [1, n] such that u † a, let α be the largest integer such that u · aα ≤ n.
Then an extremal set contains exactly dα/2e of the numbers u · ai, for 0 ≤ i ≤ α, and no
two numbers u · ai and u · ai+1.

Case II : b > 1.

For each u ∈ [1, n] divisible by neither a nor b and each non-negative integer α such
that u · aα ≤ n, an extremal set contains exactly dα/2e of the numbers u · bi · aα−i, for
0 ≤ i ≤ α, and no two numbers u · bi · aα−i and u · bi+1 · aα−i−1.

Note that the proposition implies in particular that λ0 = ρ for any equation in two
variables. For three variables things get more interesting and a number of papers have
been entirely devoted to this situation, see [1] [2] [4] [6] [7] plus the multitude of papers on
sum-free sets, of which the most directly relevant is probably [3]. The combined results
of [1], [2] and [3] give, in principle, a complete classification of the extremal L-avoiding
subsets of [1, n], for every n > 0, and L : x + y = cz for any c 6= 2. Of particular interest
for us are the results of [1]. There it is shown that for every c ≥ 4 and n �c 0, a set An,3

of type II′ is extremal, namely

An,3 :=

3
⊔

j=1

(

2

c
nj, nj

]

,

where

n1 = n, nj+1 =

⌊

(1 +
⌊

2
c
nj

⌋

) + (1 +
⌊

2
c
n3

⌋

)

c

⌋

, j = 1, 2.

Moreover it is shown that, for all n >>c 0, there are only a bounded number of extremal
sets, all of whose symmetric differences with An,3 consist of a bounded number of elements
(both bounds are independent of both n and c).

These results were partly extended in [4]. Here the authors considered equations
L : ax + by = cz in two families :

Family I : a = 1 < b.
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Family II : a = b, GCD(b, c) = 1.

For Family I equations their main result is that, when c > 2(b+1)2−GCD(b+1, c) then
sets An,2 of type II′ consisting of exactly 2 intervals are extremal L-avoiding sets in [1, n]
up to an error of at most O(logn) for every n. In particular, these sets give the right
value of λ0. They do not attempt any classification of the extremal sets, however. They
also note that, whenever c > (b+1)3/2, the same sets are of maximum size among all type
II′ sets, and conjecture that they are still extremal, up to the same O(log n) error.
For Family II equations they simply note that when c > (2b)3/2, then among all type
II′ sets the largest consist of three intervals. They do not discuss whether such sets are
extremal or not.

Our results concern the same two families of equations. For Family I we employ the
methods of [1] to obtain a classification (Theorem 2.5) of the extremal L-avoiding sets
whenever

c >
(b + 1)b2

b − 1
. (3)

We show that, for every n �b,c 0 the sets An,2 are actually extremal and there are only
a bounded number of possibilities for the extremal subsets of [1, n], all of which have a
symmetric difference with An,2 of bounded size. Both bounds are independent of n, b and
c.

We show by means of an example that the lower bound (3) on c cannot be significantly
improved, which also disproves the conjecture of Dilcher and Lucht. Namely we show that
when c = b2 another type of L-avoiding subset of [1, n] is larger than An,2 by a factor of
Ω(n). In some cases we can prove that these other sets are in fact extremal and conjecture
that this is generally the case (conjecture 2.7).

For Family II equations we describe extremal sets in [1, n] for all n, and for every b, c
with b > 1 (Theorem 3.1). Their appearance takes three different forms, for values of c
in the following three ranges : (i) c > 2b, (ii) 2 ≤ c < 2b, (iii) c = 1. In contrast to when
b = 1, it is not the case for c � b that the extremal sets consist of three intervals. Rather
they are a hybrid between the two alternatives offered by our earlier Question.

2 Results for Family I equations

The methods of this section follow very closely those of [1], so we will not include full
proofs of all results. Nevertheless, several technical difficulties arise and considerable care
is needed to dispose of them. Thus we will give a fair amount of detail anyway, even if
the resulting computations become somewhat long-winded. Let L be a fixed equation of
the form x + by = cz such that b > 1 and (3) holds. We prove analogues of Lemmas 2,3,4
and Theorems 1,2 in [1]. First a definition corresponding to Definition 1 of that paper :

Definition 1 : Let n ∈ N and A ⊆ [1, n] be L-avoiding with smallest element s := sA.
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Define sequences (ri), (li), (Ai) by

A0 := A, r1 := n,

li :=

⌊

b + 1

c
ri

⌋

, ri+1 :=

⌊

li + bs

c

⌋

,

Ai := (Ai−1\(ri+1, li]) ∪ [li, ri] ∩ (s, n], for i ≥ 1.

Let t denote the least integer such that rt+1 < s. Observe that for all i ≥ t,

Ai = At = [α, rt] ∪
(

∪t−1
j=1(lj, rj]

)

, (4)

where α = αA := max{lt + 1, s}.

It is easy to see that, by construction, each set in the sequence (Ai) is L-avoiding provided
A0 is, and that At is then an L-avoiding set of type II′ in the introduction. The crucial
observation is the direct generalisation of Lemma 2(b) in [1] : because of its importance
and because an apparently awkward technicality arises in dealing with one of the cases
(Case I below), we will provide a complete proof.

Lemma 2.1 Let n > 0 and A := A0 ⊆ [1, n] be L-avoiding. Then |Ai| ≥ |Ai−1| for
every i > 0.

Proof : Following the same reasoning as in [1], it suffices to prove the claim for i = 1,
and thus to prove that, for every n > 0 and every L-avoiding subset of [1, n], we have

|A| ≤ |A ∩ [1, r2,A]| +

⌈(

1 −
b + 1

c

)

n

⌉

, (5)

where

r2,A :=

⌊
⌊

b+1
c

n
⌋

+ bsA

c

⌋

.

The proof is by induction on n, the case n = 1 being trivial. So suppose the result holds
for 1 ≤ m < n and let A be an L-avoiding subset of [1, n]. The result is again trivial if
sA >

(

b+1
c

)

n, so we may assume that sA ≤
(

b+1
c

)

n and thus that

r2,A ≤

(

b+1
c

)

n + bsA

a
≤

(

b + 1

c

)2

n <
n

c
,

because of (3).

First suppose that there exists z ∈ A ∩
(

n
c
, (b+1)n

c

]

. To simplify notation, denote Ac :=

[1, n]\A.
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Case I : z ≤ bn/c.

In this case we will show independently of the induction hypothesis that something
stronger than (5) holds, namely that

|A| ≤

⌈(

1 −
b + 1

c

)

n

⌉

. (6)

We have cz ∈ (n, bn]. Set t := cz. Now A contains no solutions to the equation

x + by = t. (7)

Hence for every y ∈ [ t−n
b

, t−1
b

] at most one of the numbers y and t − by lies in A. Now
t− by ≡ t (mod b) for every y. In this way we can locate in Ac at least as many numbers
as there are numbers in the interval [ t−n

b
, t−1

b
] not congruent to t (mod b). Define two

parameters u, v ∈ [1, b] as follows :
(i) u ≡ t (mod b),
(ii) the total number of integers in the interval

[

t−n
b

, t−1
b

]

is congruent to v (mod b).

Then one readily checks that the number of integers in
[

t−n
b

, t−1
b

]

not congruent to
t (mod b) is at least

b − 1

b

[

n − (u − 1)

b
−

b − v

b − 1

]

= n

(

b − 1

b2

)

−
(b − 1)(u − 1) + b(b − v)

b2
,

and is at least one more than this when v < b unless one of the first v numbers in the
interval

[

t−n
b

, t−1
b

]

is congruent to t (mod b). Set

f(n, b, c, u, v) :=
(b − 1)(u − 1) + b(b − v)

b2
− n

(

b − 1

b2
−

b + 1

c

)

.

Note that (3) implies that f(n, b, c, u, v) < 2 but, for (6) to be already satisfied we
would need f(n, b, c, u, v) < 1. This is where things get messy. Note that certainly
f(n, b, c, u, v) < 1 unless perhaps u ≥ 3, v ≤ u − 2 and one of the first v numbers in the
interval

[

t−n
b

, t−1
b

]

is congruent to u (mod b). The first assumption implies in particular
that b ≥ 3. All three together imply that the numbers 1 and 2 both lie to the left of the
interval

[

t−n
b

, t−1
b

]

, and neither is congruent to t (mod b). Thus neither can have been
already located in Ac via the pairing arising from (7). Since it suffices at this point to
locate just one extra element in Ac we may for the remainder of this argument assume
that b ≥ 3 and that 1, 2 ∈ A. The latter implies that there are no solutions in A to either
of the equations

x + by = c, (8)

x + by = 2c. (9)

To continue the argument we go back to (7). To locate elements in Ac we paired off
numbers in

[

t−n
b

, t−1
b

]

not congruent to t (mod b) with numbers in [1, n] congruent to

the electronic journal of combinatorics 14 (2007), #R74 7



t (mod b). It would thus suffice if we could also pair off at least one further number in
the former interval, whch we call I. It is easy to see that this can definitely be done if I
contains a total of at least b2 numbers. Hence we may further assume now that

|I| ≤ b2, (10)

and hence that n ≤ b3, though we will make no explicit use of this latter fact.
From (10) we want to conclude that either n < c or, for an appropriate choice of the

original z, that c ≡ t ≡ 0 (mod b). So suppose n ≥ c. First set

x1 := 1, x2 := b + 1, y1 := c − b, y2 := c − b(b + 1).

Since A contains no solutions to (8), at most one of xi and yi is in A for each i = 1, 2.
Thus y1 ∈ Ac since n ≥ c and we already know that x1 ∈ A. From (3) it follows that
x2 < y2 and also from (10) that y1 − y2 > |I|, so that at least one of y1 and y2 must
lie outside I. Furthermore, since u ≥ 3, neither of the xi is congruent to t (mod b). If
b+1 6∈ I it is thus already clear that, unless c ≡ t (mod b), we can find amongst x2, y1, y2

at least one element of Ac not previously located via (7). But similarly, if b + 1 ∈ I then
one easily checks that (3) implies that y1 6∈ I and so we have the same conclusion.

Thus we are done if n ≥ c unless c ≡ t (mod b). To get that c ≡ 0 (mod b) it would
then suffice to also show that 2c ≡ t (mod b). If n ≥ 2c − b then this is immediately
achieved by a similar argument to the one just given, but this time using (9) instead of
(8). If n < 2c− b then we just have to note that we could have from the beginning chosen
z := 2, in which case 2c = t, by definition.

Thus (6) holds unless either n < c or c ≡ 0 (mod b). By (3) the latter would imply
that c ≥ b2 + kb where we can take k = 3 when b > 3 and k = 4 when b = 3. Then

f(n, b, c, u, v) =
(b − 1)(u − 1) + b(b − v)

b2
− n

(

b − 1

b2
−

b + 1

c

)

≤
(b − 1)(2b − 1)

b2
− n

(

b − 1

b2
−

b + 1

b2 + kb

)

.

We’ll be done unless f(n, b, c, u, v) ≥ 1. One checks that this already forces n < c when
b = 3, and that for b > 3 it yields (taking k = 3) that

n ≤ b2 + 3b + 1 +
6

b − 3
≤ c + 1 +

6

b − 3
.

This in turn yields that
⌊(

b + 1

c

)

n

⌋

≤ b + 1 (11)

except when b = 4, c = 28 and n ∈ {34, 35}. One easily checks that (6) holds in these
exceptional cases, so we’re left with (11). First suppose n ≥ c so that

⌊(

b+1
c

)

n
⌋

= b + 1,
and consider (8). For 1 ≤ i ≤ b + 1 set yi := i and xi := c − ib. Then at least one of
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xi and yi is in Ac for each i. But (3) implies that xb+1 < yb+1, hence |Ac| ≥ b + 1 which
proves (6).

We are thus indeed left with the case when n < c. Now we could have chosen z := 1
initially and thus paired off numbers in I1 :=

[

c−n
b

, c−1
b

]

not congruent to c (mod b) with
numbers in [1, n] congruent to c (mod b). As usual, it suffices to locate at least one further
element in Ac. First suppose

2c − 1

b
≤ n. (12)

Then similarly, by (9), we can pair off numbers in I2 :=
[

2c−n
b

, 2c−1
b

]

not congruent to
2c (mod b) with numbers in [1, n] congruent to 2c (mod b). The crucial point is that, since
n < c, the intervals I1 and I2 are disjoint. Each interval certainly contains at least three
elements by (12). It is then easy to see that the I2-pairing will certainly locate at least
one more element in Ac unless, at the very least, 2c ≡ c ≡ 0 (mod b). But in that case
the map φ : y 7→ y + c

b
is a bijection from I1 to I2 so that if the I1-pairing pairs y with

x, say, then the I2-pairing pairs φ(y) with x. If we now choose y as the smallest multiple
of b in I1, then we see that one of the two pairings must locate the desired extra element
in Ac, unless perhaps c

b
≡ 0 (mod b) also. But then c ≡ 0 (mod b2) and thus c ≥ 2b2 if

b > 3 and c ≥ 3b2 if b = 3. But then, calculating as before, we’ll have f(n, b, c, u, v) < 1
unless perhaps

{

n ≤ 2(b2−3b+1)
b−3

, when b > 3,

n ≤ 3(b2−3b+1)
2(b−2)

, when b = 3.

But these inequalities contradict (12). Now we are only left with the possibility that
n < 2c−1

b
, hence that

⌊(

b+1
c

)

n
⌋

∈ {1, 2}. But in each case one may check that one can
locate one or two elements of Ac as approppriate, by considering solutions of (8) with x
and y close to c

b+1
. This finally completes the analysis of Case I.

Case II : z > bn/c.

Then cz ∈ (bn, (b + 1)n]. Put cz := t again. Let t = (b + 1)n − s where 0 ≤ s < n. If
x + by = t for some integers x, y ∈ [1, n], then y ≥ n− s/b and x ≥ n− s. Since A avoids
L we thus find, for every integer y ∈ A∩ [n− s

b
, n] not congruent to t (mod b), an integer

x ∈ Ac ∩ [n − s, n], congruent to t (mod b). Noting in addition that at least one of n and
n − s is not in A, one readily verifies that hence

|A ∩ [n − s, n]| ≤

(

1 −
b − 1

b2

)

(s + 1). (13)

We now apply the induction hypothesis. Let B := A ∩ [1, n − s − 1]. If B is empty then
(13) and (3) immediately imply (5). Otherwise clearly sB = sA and r2,B ≤ r2,A, so the
induction hyothesis gives that

|A| ≤ |A ∩ [1, r2,A]| +

⌈(

1 −
b + 1

c

)

(n − s − 1)

⌉

+

(

1 −
b − 1

b2

)

(s + 1),
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from which (5) follows by another application of (3).

We have thus completed the induction step under the assumption that A∩
(

n
c
, (b+1)n

c

]

6= φ,

so we can now assume the intersection is empty. Suppose z ∈ A ∩ (r2,A, n/c]. Then
⌊

b+1
c

n
⌋

+ bsA < cz ≤ n and cz − bsA ∈ Ac. In other words, we can pair off elements in
A∩ (r2,A, n

c
] with elements in

(

b+1
c

n, n
]

∩Ac. This immediately implies (5) and completes
the proof of Lemma 2.1.

Lemma 2.2 Let A be an L-avoiding subset of [1, n] of maximum size. Let s = sA and
t := max{i ∈ N : ri ≥ s}. If n �b,c 0 then t = 2.

Proof : Just follow the reasoning in the proof of Lemma 3 in [1]. By Lemma 2.1,
it suffices to know that there exists an absolute positive constant κ0

b,c such that, if t 6= 2
then

|A|

n
≤ D(b, c) − κ0

b,c,

where

D(b, c) :=
(c − b − 1)(c2 − b2 + 1)

c[c2 − b(b + 1)]
(14)

is such that, in the notation of eq.(4), |A2| = D(b, c) ·n + O(1) when s = l2 + 1. The core
of a proof that such a constant exists is contained in the proof of Lemma 1 in [4], though
one has to be a little careful since there only sets At in which s = lt + 1 are considered.
However one can tediously check that allowing for arbitrary s ∈ (lt, rt] will not change
matters (I note that the authors of [4] needed this fact in Section 3 of their paper, though
they do not seem to explicitly mention it anywhere).

Lemma 2.3 Let n �b,c 0. If A is an L-avoiding subset of [1, n] of maximum size then
there exists an absolute positive constant κ1

b,c such that S − κ1
b,c ≤ sA ≤ S + 2 where

S =
⌊

(b+1)2n
c[c2−b(b+1)]

⌋

.

Proof : The proof follows that of Lemma 4 in [1]. We set

s′ := min{s ∈ [1, n] : l2(s) < s}.

A computation similar to that in the Appendix of [1] yields that

l2(s) < s ⇔ s >
(b + 1)2

c[c2 − b(b + 1)]
n − (ε1c + ε2)

(

b + 1

c2 − b(b + 1)

)

,

where ε1, ε2 ∈ [0, 1). By (3) it follows that

s′ ∈ [S, S + 1]. (15)
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Now we have

|A2(s)| =

{

⌈(

1 − b+1
c

)

n
⌉

+ r2(s) − s + 1, if s ≥ s′,
⌈(

1 − b+1
c

)

n
⌉

+ r2(s) − l2(s), if s < s′.

First suppose s ≥ s′. We will certainly have |A2(s
′ + 2)| < |A2(s)| because of (3) and

since r2(s) can only increase at most once in
⌊

c
b

⌋

times. This proves that sA ≤ S + 2 for
a maximum L-avoiding A. Secondly, if s < s′ then |A2(s)| will decrease once r2(s)− l2(s)
decreases, and clearly this will happen after Ω( c

b
) steps. This proves that S − κ1

b,c ≤ sA

for a maximum A and some κ1
b,c = Ω( c

b
).

Theorem 2.4 rL(n) = D(b, c) · n + O(1), where D(b, c) is given by (14). In particu-
lar, λ0,L = D(b, c).

Proof : See Lemma 1 in [4] and Theorem 1 in [1]. Note that the second statement
is the same as in Theorem 1 of [4], just with a better lower bound for c, namely (3).

We can now present the main classification result, analogous to Theorem 2 in [1]. In
fact the result here is in some sense even cleaner, as the maximum L-avoiding sets consist
essentially of two rather than three intervals and there is thus even less possibility for
variation.

Theorem 2.5 Let b, c ∈ N with b > 1 and c satisfying (3). Let L be the equation
x + by = cz. Let n > 0. Define S and s′ as in Lemma 2.3. Let A be an L-avoiding subset
of [1, n] of maximum size and with smallest element s = sA. If n �b,c 0 then the following
holds : s ∈ [S, S + 2] and A = I2 ∪ I1 where

I2 ∈

{

{[s, r2], [s, r2 + 1]}, if s ≥ s′,
{[s, r2), [s, r2]\{r2 − ξ1}}, if s < s′,

(16)

for some ξ1 ∈ [1, b], and

I1 ∈















(l1, n] , if r2 + 1 6∈ A and l1 6∈ A,
[l1, n]\{n − ξ2} , if r2 + 1 6∈ A and l1 ∈ A,
(l1, n] \{l1 + ξ3}, if r2 + 1 ∈ A and l1 6∈ A,
[l1, n]\{l1 + ξ4, n − ξ5} , if r2 + 1 ∈ A and l1 ∈ A,

(17)

for some ξ2 ∈ [0, n], ξ3 ∈ [1, n], ξ4 ∈ [1, b − 1], ξ5 ∈ [0, n]. Moreover, in all cases where
they arise, the parameters ξi, i = 1, ..., 5, are uniquely determined by n and s according
to the following relations :

cl2 = (b + 1)r2 − ξ1, (18)

cl1 = (b + 1)n − ξi, i ∈ {2, 5}, (19)

c(r2 + 1) = bs + (l1 + ξi), i ∈ {3, 4}. (20)
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Remark : As is the case in [1], Theorem 2.5 does not precisely determine the maxi-
mum L-avoiding subsets of [1, n] for every n �b,c 0. For any particular n, some of the
possibilities listed for A may either not be L-avoiding or not have maximum size. But
the important point is that we have a bounded number of possibilities for any n, and the
symmetric difference between any two of these possibilities is also bounded in size, both
bounds being independent of n, b and c. Since the periodicity phenomenon described in
Section 4 of [1] easily generalises to the present setting, Theorem 2.5 thus reduces the
precise classification of the extremal L-avoiding sets to a finite computation for any given
L.

Proof of Theorem 2.5 : Again we follow the approach in [1]. On the one hand,
since t = 2 here, there are fewer steps in the analysis. On the other hand, we will need a
somewhat modified argument in one of the steps. We shall thus present the full argument
quite carefully, though not in every single detail. We will need something analogous to
Lemma 1 of [1]. Let z ∈ N. Then x + by = cz will have solutions where x and y are close
to c

b+1
. Indeed if 1−ε := c

b+1
−

⌊

c
b+1

⌋

then we have a solution (x0, y0) =
(

c
b+1

− bε, c
b+1

+ ε
)

.
For each i ≥ 0 define the solution

(xi, yi) :=

(

c

b + 1
− b(i + ε),

c

b + 1
+ i + ε

)

.

Now for any z ∈ N and d ≥ 0 let Id
z denote the interval [xd, yd]. Then the analogue of

Lemma 1 we need is

Lemma 2.6 Let A ⊆ [1, n] be L-avoiding and z ∈ A. Then for any d ≥ 0, |Id
z \A| ≥ d+1.

Let A be a maximum L-avoiding subset of [1, n]. By Lemma 2.1 we know that |A| =
|A1| = |A2| and by Lemma 2.2 that r3 < s, when n is sufficiently large. The proof of
Theorem 2.5 is accomplished in three steps. First, by comparing A2 with A1 we show that
A contains almost the whole interval (l2, r2]. Here the argument entirely parallells that in
[1]. In the second step we deduce that (r2, l1] ∩ A is almost empty. Here we use Lemma
2.6, but in a somewhat different way than in [1], as we will instead use an approach similar
to that in the proof of Lemma 2.1. The final step is to compare A with A1 to show that
A contains almost all of (l1, n].

Step 1 : If s > l2 then clearly [s, r2] ⊆ A. Lemma 2.2 and (15) give s ∈ [S, S + 2].
Suppose s ≤ l2. We want to show that s = l2. Suppose on the contrary that B := [s, l2)
is non-empty. Put

C := I1
s ∪

⋃

b∈B\{s}

I0
b .

It is clear that C ⊆ [l2, r2] for all n �b,c 0. The crucial point is that (3) guarantees
that all the intervals making up C are pairwise disjoint. Thus Lemma 2.6 implies that
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|C\A| > |B|, which contradicts the maximality of A. Thus s = l2, which implies on the
one hand (computation required, using (3)) that s ≥ S, and on the other that

|A ∩ [s, r2]| = |(s, r2]|. (21)

If r2 6∈ A we infer that A ∩ [s, r2] = [s, r2). If r2 ∈ A then cs − br2 = cl2 − br2 6∈ A, so
−c + 1 ≤ cl2 − (b + 1)r2 ≤ −1 and hence

−c + 1

b + 1
≤

c

b + 1
l2 − r2 < 0.

But if c
b+1

l2 − r2 ≤ −1 then I1
l2

⊆ (l2, r2] (for n �b,c 0), which would contradict (21).
Thus c

b+1
l2 − r2 ∈ (−1, 0), which confirms that A∩ [s, r2] = [s, r2]\{r2− ξ1} for the unique

ξ1 ∈ [1, b] satisfying (18). We also deduce that r2 + 1 6∈ A since cl2 − b(r2 + 1) < r2 − b
and thus lies in A.

This completes Step 1 and shows that A must contain a set I2 which is one of the
possibilities given by (16).

Step 2 : We will show that if n �b,c 0 then A ∩ [r2 + 2, l1) = φ. We have

|A| = |A1| = |(A\(r2, l1]) ∪ (l1, n]|.

So the idea is to show that if A ∩ [r2 + 2, l1) were non-empty, then it would have to have
smaller cardinality than (l1, n]\A. Since b > 1 the direct analogue of the argument in [1]
will not work. Instead we gain inspiration from the proof of Lemma 2.1. First suppose
there exists z ∈ A ∩

(

n
c
, bn

c

]

. As in the proof of Lemma 2.1, this implies that

|A| <

(

1 −
b − 1

b2

)

n + 2,

and thus, by Theorem 2.4, A can’t possibly be maximum L-avoiding for n �b,c 0. Next

suppose there exists z ∈ A ∩
(

bn
c
, (b+1)n

c

]

. Again, as in the proof of Lemma 2.1, this will

gives us a σ ∈ [0, n] such that

|A ∩ [n − σ, n]| ≤

(

1 −
b − 1

b2

)

(σ + 1).

Clearly then, by Theorem 2.4, there exists a constant κ2
b,c > 0 such that A cannot possibly

be maximum L-avoiding if σ > κ2
b,c. Thus there exists a corresponding κ3

b,c > 0 such that

we can now deduce that A ∩
(

n
c
, l1 − κ3

b,c

]

is empty.
Let U1 := A∩ [r2 +2, n/c] and U2 := A∩ (l1 −κ3

b,c, l1). It remains to show that U1 and
U2 are empty, so let us suppose otherwise.

For z ∈ U1, let Cz := {cz − bs, cz − b(s + 1)}. Also let Cr2+1 := {c(r2 + 1)− bs}. Then
Cz ∩ A = φ for any z ∈ A ∩ [r2 + 1, n/c]. Clearly, if n �b,c 0 then Cz ⊂ (l1, n − Ω(n)].
Also (3) guarantees that the Cz are pairwise disjoint.
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For z ∈ U2 let Dz := I1
z ∩ Ac if z is the smallest element of U2 and Dz := I0

z ∩ Ac

otherwise. Again (3) guarantees that the Dz are pairwise disjoint. Clearly there exists a
constant κ4

b,c > 0 such that all the Dz are contained in [n − κ4
b,c, n]. Thus the Dz are also

disjoint from the Cz.
In summary, we can thus conclude that, for n sufficiently large,

|(l1, n] ∩ Ac| ≥ δ1 + 2|U1| + (|U2 + 1 − δ2),

where δ1 = 1 if r2 + 1 ∈ A and zero otherwise, and δ2 = 1 if U2 = φ and zero otherwise.
It follows immediately that |A| < |A1| unless U1 and U2 are both empty. This completes
Step 2.

Step 3 : It just remains to show that the possibilities for A ∩ [l1, n] are as given by
(17). By Steps 1 and 2 we only have four cases to consider, according to A ∩ {r2 + 1, l1}.
To verify the various possibilities for I1 one considers the numbers c(r2 + 1) − bs or
cl1 − (b + 1)n as appropriate, the analysis being similar to that in the latter part of Step
1 above. We omit the details and consider the proof of Theorem 2.5 as complete.

We close this section by showing that, in general, the bound (3) cannot be significantly
decreased without the extremal sets avoiding x + by = cz looking quite different than
those described in the above theorem. In particular we have a counterexample to the
conjecture in [4] that a bound of c > (b + 1)3/2 should suffice. For a counterexample we
set c = b2. Let Lb denote the equation x + by = b2z where b > 1. The constructions
considered earlier in this section yield that

λ0,Lb
≥ D(b, b) =

(b2 − b − 1)(b4 − b2 + 1)

b2[b4 − b(b + 1)]
.

But for every b > 1 the true value of λ0,Lb
is larger. For let

Ab := {u · b3i : u > 0, i ≥ 0 and b † u}.

(Here we use a superscript so as not to confuse these sets with those described in eq.(4)
earlier). Then clearly Ab is an Lb-avoiding subset of N and

d(Ab) =
b2

b2 + b + 1
>

(b2 − b − 1)(b4 − b2 + 1)

b2[b4 − b(b + 1)]
∀ b ≥ 2.

We conjecture the following :

Conjecture 2.7 For every n > 0 and every b ≥ 2 the set Ab ∩ [1, n] is an Lb-avoiding
subset of [1, n] of maximum size. In particular λ0,Lb = ρLb = b2

b2+b+1
.

We suspect in fact that for n �b 0 any extremal Lb-avoiding subset of [1, n] must be
very similar to Ab ∩ [1, n]. Frustratingly we have not been able to verify any of these
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assertions in general, not even the value of λ0,Lb. We do have proofs of Conjecture 2.7 for
b = 2, 3 which we now present. They employ the same idea, but things get pretty messy
for b = 3 and we don’t see how to make the same idea work for larger b.

Theorem 2.8 Conjecture 2.7 holds for b = 2 and b = 3.

Proof for b = 2 : Fix n > 0. Put A = A2 ∩ [1, n]. Let B be an L2-avoiding sub-
set of [1, n]. We must show that | B | ≤ | A |. We will do this by exhibiting a one-to-one
function

f : B\A → A\B.

For k = 1, 2 let

Bk := B ∩ {u · 23i+k : 2 † u, i ≥ 0}.

Then B\A = B1 tB2. For x ∈ B\A, we shall define f(x) according as to whether x ∈ B1

or x ∈ B2.

First suppose x ∈ B1. Then x = 2y for some y ∈ A. But y 6∈ B since B avoids L2

and

4 · y = 2 · y + (2y).

So in this case we define f(x) = y.

Next suppose x ∈ B2. Then x = 4y for some y ∈ A. Then 3y ∈ A, but 3y 6∈ B
since B avoids L2 and

4(3y) = 2(4y) + (4y).

So in this case we define f(x) = 3y.

It is clear that the restrictions of f to both B1 and B2 are one-to-one. So it remains
to show that f(B1) ∩ f(B2) = φ.

So let y, z ∈ A and suppose that f(2y) = f(4z). Thus y = 3z and so 2y = 6z. So
both 4z ∈ B and 6z ∈ B. But this is a contradiction, since B avoids L2 and

4(4z) = 2(6z) + (4z).

Proof for b = 3 : Fix n > 0. Put A = A3 ∩ [1, n] and let B be an L3-avoiding subset
of [1, n]. As before we will describe an explicit one-to-one function f : B\A → A\B. We
define the sets B1 and B2 in an analogous manner to above and for x ∈ B\A will define
f(x) according as to whether x ∈ B1 or B2. This time, both the definition of f and the
proof that it is one-to-one will be somewhat more complicated than before, so we divide
this process into three clear steps.
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Step 1 : We define f on B1 and show that f |B1
is one-to-one.

Let x ∈ B1. Then x = 3y for some y ∈ A. Then 2y ∈ A. Now it can’t be the case
that both y and 2y lie in B, since B avoids L3 and

9 · y = 3(2y) + (3y).

Hence we define

f(x) =

{

y, if y 6∈ B,
2y, otherwise.

We need to show that f is on-to-one on B1. Suppose otherwise. Then there is an x =
3y ∈ B1 such that 2x = 6y ∈ B1 and f(x) = f(2x) = 2y. But this implies that y ∈ B,
which is a contradiction, since B avoids L3 and

9 · y = 3 · y + (6y).

Step 2 : We define f on B2 in such a way that

f(B1) ∩ f(B2) = φ.

Let x ∈ B2. Then x = 9y for some y ∈ A. Now 4y ∈ A, but 4y 6∈ B since B avoids L3

and

9(4y) = 3(9y) + (9y).

If 4y ∈ f(B1) then either

(a) 12y ∈ B, in which case f(12y) = 4y, or
(b) 12y 6∈ B, but 6y ∈ B and f(6y) = 4y. In this case, the definition of f on B1 implies

that 2y ∈ B. I also claim that in this case, y 6∈ B ∪ f(B1). Suppose y ∈ B. Then, since
6y ∈ B, the equation 9 · y = 3 · y +(6y) contradicts the fact that B avoids L3. So suppose
y ∈ f(B1). Then either y = f(3y) or y = f(3y/2). But if 3y ∈ B then, since both 6y and
9y are also in B, the equation 9(3y) = 3(6y) + (9y) contradicts the fact that B avoids
L3. And if 3y/2 ∈ B then the equation 9( 3y

2
) = 3(3y

2
)+(9y) likewise gives a contradiction.

Hence, we begin by defining

f(x) =

{

4y, if 12y 6∈ B and {2y, 6y} 6⊆ B,
y, if 12y 6∈ B and {2y, 6y} ⊆ B.

It remains to define f(x) when 12y ∈ B. Notice that then 2y 6∈ B, since 9(2y) =
3(2y) + (12y). If 2y ∈ f(B1) then either 2y = f(3y) or 2y = f(6y). So we define

f(x) = 2y, if 12y ∈ B, 3y 6∈ B and 6y 6∈ B.
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Next suppose 3y 6∈ B but 6y ∈ B. Then y 6∈ B since 9 · y = 3 · y + (6y). And y 6∈ f(B1)
either, since if it were then either y = f(3y) or y = f(3y/2). But 3y 6∈ B, by assumption,
and 3y/2 6∈ B since 9( 3y

2
) = 3(3y

2
) + (9y).

Thus we may define

f(x) = y, if 12y ∈ B, 3y 6∈ B and 6y ∈ B.

Finally, it remains to define f when both 12y and 3y are in B. I claim that in this
case, 8y 6∈ B ∪ f(B1). Suppose 8y ∈ B. Then 9(3y) = 3(8y) + (3y), contradicting B’s
avoidance of L3. Suppose 8y ∈ f(B1). Then either 8y = f(12y) or 8y = f(24y). But
f(12y) = 4y, since 4y 6∈ B, by the definition of f on B1. Otherwise 24y ∈ B, in which
case 9(9y) = 3(24y) + (9y), provoking another contradiction.

Thus we may define

f(x) = 8y, if 12y ∈ B and 3y ∈ B.

This completes the definition of f on B2, and it is automatic that f(B1) ∩ f(B2) = φ.

Step 3 : We show that f |B2
is one-to-one.

So suppose that there are y, z ∈ A with y 6= z but f(9y) = f(9z). Without loss of
generality, f(9y)/9y < f(9z)/9z. We then have nine cases to consider.

Case I : f(9y) = y, f(9z) = 2z and 12y 6∈ B.

Then y = 2z and {2y, 6y} ⊆ B. But 2y = 4z and then the equation 9(4z) = 3(9z) + (9z)
contradicts B’s avoidance of L3.

Case II : f(9y) = y, f(9z) = 2z and 12y ∈ B.

Then 12y = 24z and the equation 9(9z) = 3(24z) + (9z) contradicts B’s avoidance of
L3.

Case III : f(9y) = y, f(9z) = 4z and 12y 6∈ B.

Then 6y = 24z ∈ B and we get the same contradiction as in Case II.

Case IV : f(9y) = y, f(9z) = 4z and 12y ∈ B.

Then we still have that 6y = 24z ∈ B, so we get the same contradiction as in Case
II.

Case V : f(9y) = y, f(9z) = 8z and 12y 6∈ B.
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Then 12z = 3y/2 ∈ B and the equation 9( 3y
2
) = 3(3y

2
) + (9y) yields a contradiction.

Case VI : f(9y) = y, f(9z) = 8z and 12y ∈ B.

Then we still have that 12z = 3y/2 ∈ B, so we get the same contradiction as in Case V.

Case VII : f(9y) = 2y and f(9z) = 4z.

Then y = 2z and 12y = 24z ∈ B, so we get the same contradiction as in Case II.

Case VIII : f(9y) = 2y and f(9z) = 8z.

Then 12z = 3y ∈ B, contradicting the definition of f and the fact that f(9y) = 2y.

Case IX : f(9y) = 4y and f(9z) = 8z.

Then y = 2z and 3z = 3y/2 ∈ B, so we get the same contradiction as in Case V.

We have now completed Steps 1,2 and 3, and with that the proof of
Theorem 2.8.

3 Results for Family II equations

In this section, L denotes an equation b(x + y) = cz, where b and c are positive integers
such that b > 1 and GCD(b, c) = 1. These equations were briefly touched on in [4], and
the case b = 1 was studied in detail in [1]. We present a theorem which describes extremal
L-avoiding subsets of [1, n] for all values of b, c and n. The most interesting part of the
theorem is part (i) which shows that the situation when c > 2b is quite different from
when b = 1, since the extremal sets we describe are a ‘hybrid’ between the two possibilities
predicted by the Question in the introduction.

Theorem 3.1 (i) If c > 2b then, for every n > 0, the set

An =

(

2bn

c
, n

]

∪

{

x ∈

[

1,
2bn

c

]

: x 6≡ 0 (mod b)

}

is an L-avoiding subset of [1, n] of maximum size. In particular, λ0,L = 1 − 2
c
.

(ii) If 2 ≤ c < 2b then, for every n > 0, the set

A′
n = {x ∈ [1, n] : x 6≡ 0 (mod b)}

is an L-avoiding subset of [1, n] of maximum size. In particular, λ0,L = 1 − 1
b
.

(iii) If c = 1 then, for every n > 0, the set

A′′
n =

( n

2b
, n

]
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is an L-avoiding subset of [1, n] of maximum size. In particular, λ0,L = 1 − 1
2b

.

Note that

|An| = n −

⌊

2n

c

⌋

, (22)

|A′
n| = n −

⌊n

b

⌋

, (23)

|A′′
n| = n −

⌊ n

2b

⌋

. (24)

Proof of part (i) : We fix c > 2b and proceed by induction on n. The theorem obvi-
ously holds if n = 1. Fix n > 1 and let B be any L-avoiding subset of [1, n]. We must
show that |B| ≤ |An|.

First suppose there exists a number z ∈ B ∩ ( bn
c
, 2bn

c
] which is a multiple of b. Let

z = bz1. Then t := cz1 ∈ (n, 2n] and, since B avoids L, there are no solutions in B to the
equation

x + y = t.

Now the map f : x 7→ t − x is a 1-1 mapping from the interval I := [t − n, n] to itself,
and for each x ∈ I, at most one of x and f(x) lies in B. Define s ∈ [1, n] so that
t − n = n − s + 1. Then we conclude that

|B ∩ [n − s + 1, n]| ≤ bs/2c .

If s = n then |B| ≤
⌊

n
2

⌋

≤ |An|, by (22). Otherwise, the induction hypothesis yields that

|B| ≤ |An−s| +
⌊s

2

⌋

= (n − s) −

⌊

2(n − s)

a

⌋

+
⌊s

2

⌋

< |An| + 1,

and since |B| is an integer, we conclude that |B| ≤ |An|, as desired.

Thus we may assume that B contains no multiples of b in the interval ( bn
c
, 2bn

c
]. If B

contains no multiples of b at all in the range [1, 2bn
c

], then trivially |B| ≤ |An|. So let’s
assume B does contain such a number, and let the largest such be z0. Thus z0 ∈ [1, bn

c
].

Let z0 = bz1. Then cx1 ∈ [c, n] and there are no solutions in B to

x + y = cz1. (25)

Note that since c > 2b, we have cz1 > 2z0, so if (x, y) is a solution to (25), then x ≤ z0 ⇒
y > z0.
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Suppose cz1 ≡ j (mod b). Then for every number x ∈ [1, z0] such that x 6≡ j (mod b),
at most one of x and cz1 − x lies in B. But note that, for every such x, cz1 − x is not
divisible by b, and is strictly greater than z0. We conclude that at least z0 − z1 ≥ z1

numbers are missing from B which are either multiples of b in [1, z0] or not divisible by
b. This implies that |B| ≤ |An| and completes the proof of part (i) of Theorem 3.1.

Proof of Part (ii) : We divide the proof into two cases.

Case I : 2 ≤ c < b.

Fix n > 0 and an L-avoiding subset B of [1, n]. We must show that |B| ≤ |A′
n|. If B

contains no multiples of b we are done, so suppose the contrary. Let z = bz1 be the largest
element of B which is a multiple of b. Then it suffices to produce at least z1 numbers in
the interval [1, z] which are not in B. Since B avoids L, it contains no solutions to the
equation

x + y = cz1.

Thus B contains no more than
⌈

cz1

2

⌉

of the numbers in the interval [1, cz1]. But since
2 ≤ c < b, it follows that z1 ≤

⌊

cz1

2

⌋

and cz1 < z. Thus we are done.

Case II : b < c < 2b.

We proceed by induction on n. The theorem obviously holds for n = 1. Now fix n > 1
and an L-avoiding subset B of [1, n]. If B contains no multiples of b then we are done, so
we may assume that B contains some such elements.

First suppose there exists z ∈ B ∩ ( b
c
n, n] which is a multiple of b. Let z = bz1. Then

cz1 ∈ (n, c
b
n] ⊆ (n, 2n]. To simplify notation, set cz1 := t1 and t1 −n := n− s1 +1 . Since

B avoids L, it contains no solutions to the equation

x + y = t1.

The map f : x 7→ t1 − x is a 1-1 mapping from the interval I1 = [n − s1 + 1, n] to itself
and for each x ∈ I1 at most one of the numbers x and f(x) lies in B. Thus

| B ∩ I1 | ≤ bs/2c .

Then clearly (since b ≥ 2) the induction argument implies that |B| ≤ |A′
n|.

Thus we may assume that B ∩ ( b
c
n, n] contains no multiples of b. But then another

application of the induction hypothesis yields that |B| ≤ |A′
n| in this case too.

Thus part (ii) of the theorem is proved.

Proof of Part (iii) : The argument is similar to that in Case I of part (ii). Let B be
an L-avoiding subset of [1, n]. If B contains no multiples of b, then clearly |B| ≤ |A′′

n|. So
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suppose z = bz1 is the largest multiple of b in B. Then

|B ∩ (z, n]| ≤ (n − z) −

⌊

n − z

b

⌋

. (26)

Since B avoids L, it contains no solutions to the equation

x + y = z1.

Thus
|B ∩ [1, z]| ≤ z −

⌊z1

2

⌋

= z −
⌊ z

2b

⌋

. (27)

Clearly, (26) and (27) imply that |B| ≤ |A′′
n| (with strict inequality unless z1 = bn/bc).

This completes the proof of Theorem 3.1.

Concluding remark It is worthwhile to investigate if the proof of Theorem 3.1 can
be used to obtain a stronger result, namely a classification of the extremal sets. We
choose not to go into this matter in this paper, which we think already contains enough
in the way of detailed, technical computations. In any case, the important thing is the
‘hybrid’ nature of the extremal sets in part (i) of the theorem. Note that, for each b ≥ 2,
the sets An have strictly greater asymptotic density than any sets of type II′. This follows
from (22), Lemma 1(b) of [4] and a straightforward computation.
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