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Abstract

This paper deals with new infinite families of small dense sets in desarguesian
projective planes PG(2, q). A general construction of dense sets of size about 3q2/3

is presented. Better results are obtained for specific values of q. In several cases, an
improvement on the best known upper bound on the size of the smallest dense set
in PG(2, q) is obtained.

1 Introduction

A dense set K in PG(2, q), the projective plane coordinatized over the finite field with q
elements Fq, is a point-set whose secants cover PG(2, q), that is, any point of PG(2, q)
belongs to a line joining two distinct points of K. As well as being a natural geometrical
problem, the construction of small dense sets in PG(2, q) is relevant in other areas of
Combinatorics, as dense sets are related to covering codes, see Section 4, and defining
sets of block designs, see [2]; also, it has been recently pointed out in [13] that small dense
sets are connected to the degree/diameter problem in Graph Theory [17].

A straightforward counting argument shows that a trivial lower bound for the size k
of a dense set in PG(2, q) is k ≥ √

2q, see e.g. [19]. On the other hand, for q square there
is a nice example of a dense set of size 3

√
q, namely the union of three non-concurrent

lines of a subplane of PG(2, q) of order
√

q.
If q is not a square, however, the trivial lower bound is far away from the size of

the known examples. The existence of dense sets of size b5
√

qlogqc was shown by means
of probabilistic methods, see [2, 14]. The smallest dense sets explicitly constructed so

far have size approximately cq
3

4 , with c a constant independent on q, see [1, 9, 18]; for
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a survey see [2, Sections 3,4]. A construction by Davydov and Österg̊ard [6, Thm. 3]
provides dense sets of size 2q/p + p, where p is the characteristic of Fq; note that in the

special case where q = p3, p ≥ 17, the size of these dense sets is less than q
3

4 .
The main result of the present paper is a general explicit construction of dense sets

in PG(2, q) of size about 3q
2

3 , see Theorem 3.2. For large non-square q, q 6= p3, these are
the smallest explicitly constructed dense sets, whereas for q = p3 the size is the same as
that of the example by Davydov and Österg̊ard.

Using the same technique, smaller dense sets are provided for specific values of q, see
Theorem 3.7 and Corollary 3.8; in some cases they even provide an improvement on the
probabilistic bound, see Table 1.

Our constructions are essentially algebraic, and use linearized polynomials over the
finite field Fq. For properties of linearized polynomials see [15, Chapter 3]. In the affine
line AG(1, q), take a subset A whose points are coordinatized by an additive subgroup
H of Fq. Then H consists of the roots of a linearized polynomial LH(X). Let D1 be the
union of two copies of A, embedded in two parallel lines in AG(2, q), namely the lines
with equation Y = 0 and Y = 1. The condition for a point P = (u, v) in AG(2, q) to
belong to some secant of D1 is that the equation

LH(X) − vLH(Y ) + u = 0

has at least one solution in Fq2 . This certainly occurs when the equation

LH(X) − vLH(Y ) = 0 has precisely q solutions in F
2
q. (1)

This leads to the purely algebraic problem of determining the values of v for which
(1) holds. A complete solution is given in Section 2, see Proposition 2.5, by showing that
this occurs if and only if −v belongs to the set Fq \MH , with

MH :=

{

LH1
(β1)

p

LH2
(β2)p

}

. (2)

Here, H1 and H2 range over all subgroups of H of index p, that is | H | / | Hi |= p, while
βi ∈ H \ Hi.

This shows that the points which are not covered by the secants of D1 are the points
P = (u, v) with −v ∈ MH . The final step of our construction consists in adding a possibly
small number of points Q1, . . . , Qt to D1 to obtain a dense set. For the general case, this
is done by just ensuring that the secants QiQj cover all points uncovered by the secants
of D1. For special cases, the above construction can give better results when more than
two copies of A are used.

It should be noted that sometimes in the literature dense sets are referred to as 1-
saturating sets as well.
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2 On the number of solutions of certain equations

over Fq

Let q = p` with p prime, and let H be an additive subgroup of Fq of size ps with 2s ≤ `.
Also, let

LH(X) =
∏

h∈H

(X − h) ∈ Fq[X]. (3)

Then LH is a linearized polynomial, that is, there exist β0, . . . , βs ∈ Fq such that LH(X) =
∑s

i=0 βiX
pi

, see e.g. [15, Theorem 3.52].
For m ∈ Fq, let

Fm(X, Y ) = LH(X) − mLH(Y ). (4)

As the evaluation map (x, y) 7→ Fm(x, y) is an additive map from F
2
q to Fq, the equation

Fm(X, Y ) = 0 has at least q solutions in F
2
q. The aim of this section is to determine for

what m ∈ Fq the number of solutions of Fm(X, Y ) = 0 is precisely q, see Proposition 2.5.
Let Fp denote the prime subfield of Fq.

Lemma 2.1. If m ∈ Fp, then the number of solutions in F
2
q of the equation Fm(X, Y ) = 0

is qps.

Proof. Note that as m ∈ Fp, mLH(Y ) = LH(mY ) holds. Then,

Fm(X, Y ) = LH(X − mY ) =
∏

h∈H

(X − mY − h).

As the equation X − mY − h = 0 has q solutions in F
2
q, the claim follows.

Lemma 2.2. For any α ∈ Fq,

Xp − αp−1X =
∏

i∈Fp

(X − iα) .

Proof. The assertion is trivial for α = 0. For α 6= 0, the claim follows from

∏

i∈Fp

(X − iα) = αp
∏

i∈Fp

(

X

α
− i

)

= αp

((

X

α

)p

− X

α

)

.

For any subgroup H ′ of H of size ps−1, pick an element β ∈ H \ H ′ and let

aH′ = LH′(β)p−1. (5)

Note that aH′ does not depend on β. In fact,

∏

h∈H

(X − h) =
∏

i∈Fp

∏

h′∈H′

(X − h′ − iβ) =
∏

i∈Fp

LH′(X − iβ) =
∏

i∈Fp

(LH′(X) − iLH′(β)) ,
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and then, by Lemma 2.2,

LH(X) = LH′(X)p − aH′LH′(X). (6)

Also, if aH1
= aH2

holds for two subgroups H1 and H2 of H, then by (6) it follows that

(LH1
(X) − LH2

(X))p = aH1
(LH1

(X) − LH2
(X));

this yields LH1
(X) = LH2

(X), whence H1 = H2.
Let

MH :=

{

LH1
(β1)

p

LH2
(β2)p

| H1, H2 subgroups of H of size ps−1, βi ∈ H \ Hi

}

. (7)

Note that for any λ ∈ Fp,
LH1

(λβ1)
p

LH2
(β2)p

= λ
LH1

(β1)
p

LH2
(β2)p

,

whence λMH = MH holds provided that λ 6= 0. In particular,

−MH = MH . (8)

As H1 = H2 is allowed in (7), we also have that

F
∗
p ⊆ MH . (9)

Lemma 2.3. For any m ∈ MH , the equation Fm(X, Y ) = 0 has at least pq solutions.

Proof. Fix H1, H2 subgroups of H of size ps−1, β1 ∈ H \ H1, and β2 ∈ H \ H2, in such a

way that m =
LH1

(β1)p

LH2
(β2)p . Let α =

LH1
(β1)

LH2
(β2)

. We claim that

Fm(X, Y ) =
∏

i∈Fp

(LH1
(X − iβ1) − αLH2

(Y )). (10)

In order to prove (10), note first that by Lemma 2.2

∏

i∈Fp

(LH1
(X − iβ1) − αLH2

(Y )) = (LH1
(X) − αLH2

(Y ))p − aH1
(LH1

(X) − αLH2
(Y )).

Then, Equation (6) for H ′ = H1 gives

∏

i∈Fp

(LH1
(X − iβ1) − αLH2

(Y )) = LH(X) − αpLH2
(Y )p + aH1

αLH2
(Y ).

As aH1
α = αpaH2

and m = αp, Equation (6) for H ′ = H2 implies (10).
Now, the set of solutions of LH1

(X) − αLH2
(Y ) = 0 has size at least q, as it is the

nucleus of an Fp-linear map from F
2
q to Fq. As the solutions of LH1

(X−iβ1)−αLH2
(Y ) = 0

are obtained from those of LH1
(X)−αLH2

(Y ) = 0 by the substitution X 7→ X + iβ1, (10)
yields that Fm(X, Y ) = 0 has at least pq solutions.

the electronic journal of combinatorics 14 (2007), #R75 4



Lemma 2.4. The size of MH is at most (ps − 1)2/(p − 1).

Proof. Note that for each pair H1, H2 of subgroups of H of size ps−1 there are precisely
p − 1 elements in MH of type LH1

(β1)
p/LH2

(β2)
p. In fact,

(

LH1
(β1)

p

LH2
(β2)p

)p−1

=
ap

H1

ap
H2

.

As aH1
/aH2

only depends on H1 and H2, the claim follows.
Now, the number of additive subgroups of H of size ps−1 is (ps − 1)/(p− 1). Therefore

MH consists of at most

(p − 1) ·
(

ps − 1

p − 1

)2

elements.

We are now in a position to prove the main result of the section.

Proposition 2.5. Let Fm(X, Y ) be as in (4). The equation Fm(X, Y ) = 0 has more than
q solutions if and only if either m ∈ MH or m = 0.

Proof. The claim for m = 0 follows from Lemma 2.1. Assume then that m 6= 0. Denote
νm the number of solutions of Fm(X, Y ) = 0. Also, denote F

∗
q/F

∗
p the factor group of the

multiplicative group of F
∗
q by F

∗
p. Consider the map

Φ : {(H1, H2) | H1, H2 subgroups of H of size ps−1, H1 6= H2} → F
∗
q/F

∗
p

(H1, H2) 7→ LH1
(β1)p

LH2
(β2)p F

∗
p ,

with βi ∈ H\Hi. Note that Φ is well defined: for any βi, β
′
i ∈ H\Hi, LHi

(βi)
p = λLHi

(β ′
i)

p

for some λ ∈ F
∗
p, as

LHi
(βi)

p−1 = LHi
(β ′

i)
p−1 = aHi

(see (5)).
For any µ ∈ MH , the size of Φ−1(µF

∗
p) is related to νµ. More precisely,

#Φ−1(µF
∗
p) ≤

νµ

q
− 1

p − 1
. (11)

In order to prove (11), write the unique factorization of Fµ as follows:

Fµ(X, Y ) = P1(X, Y ) · P2(X, Y ) · . . . · Pr(X, Y ).

Note that the multiplicity of each factor is 1. In fact, all the roots of LH(X) are sim-
ple, whence both the partial derivatives of Fµ are non-zero constants. Assume that

Φ(H1, H2) = µF
∗
p. Let α =

LH1
(β1)

LH2
(β2)

, and note that, by Equation (10),

Fµ(X, Y ) = (LH1
(X) − αLH2

(Y ))
∏

i∈F∗

p

(LH1
(X − iβ1) − αLH2

(Y )) .
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Assume without loss of generality that P1(0, 0) = 0, so that P1(X, Y ) divides LH1
(X)−

αLH2
(Y ). We consider two actions of the group H on the set of irreducible factors of Fµ.

For each h ∈ H, let (Pi(X, Y ))σ1(h) = Pi(X + h, Y ), and (Pi(X, Y ))σ2(h) = Pi(X, Y + h).
Assume that the stabilizer S1 of P1(X, Y ) with respect to the action σ1 has order pt.
Then the X-degree of P1(X, Y ) is at least pt. Note also that the orbit of P1(X, Y ) with
respect to σ1 consists of ps−t factors, each of which has X-degree not smaller than pt. As
the X-degree of Fµ is ps, we have that r = ps−t, and that the X-degree of P1(X, Y ) is
precisely pt. Taking into account that S1 stabilizes P1(X, Y ), we have that for any h ∈ S1

the polynomial X + h divides P1(X, Y ) − P1(0, Y ), whence

P1(X, Y ) − P1(0, Y ) = Q(Y )LS1
(X) (12)

for some polynomial Q. Now, let S2 be the stabilizer of P1(X, Y ) under the action σ2,
and let pt′ be the order of S2. The above argument yields that r = ps−t′, and therefore
t = t′. Also,

P1(X, Y ) − P1(X, 0) = Q̄(X)LS2
(Y ) (13)

for some polynomial Q̄. As the degrees of P1(X, Y ), LS1
(X), LS2

(Y ) are all equal to pt,
Equation (12) together with (13) imply that

P1(X, Y ) = γLS1
(X) − γ′LS2

(Y ),

for some γ′, γ ∈ Fq. Therefore,
νµ ≥ qr = qps−t.

As P1(X, Y ) divides LH1
(X) − αLH2

(Y ), and as H1 is the stabilizer of the set of factors
of LH1

(X) − αLH2
(Y ) with respect to the action σ1, the group S1 is a subgroup of H1.

The number of possibilities for subgroups H1 is then less than or equal to the number of
subgroups of H of size ps−1 containing S1, which is ps−t−1

p−1
. Also, for a fixed H1, there is

at most one possibility for H2; in fact, Φ(H1, H2) = Φ(H1, H
′
2) yields aH2

= aH′

2
, which

has already been noticed to imply H2 = H ′
2. Then

#Φ−1(µF
∗
p) ≤

ps−t − 1

p − 1
,

and therefore (11) is fulfilled.
Now, let M be the size of MH \Fp. By counting the number of pairs (x, y) ∈ F

2
q such

that LH(x) 6= 0 and LH(y) 6= 0, we obtain

(q − ps)2 =
∑

m∈F∗

q

(νm − p2s) .

Then, taking into account Lemma 2.1,

(q − ps)2 ≥ (p − 1)(qps − p2s) + (q − p − M)(q − p2s) − Mp2s +
∑

µ∈MH\Fp

νµ. (14)
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Note that if equality holds in (14), then the proposition is proved. Straightforward com-
putation yields that (14) is equivalent to

−M +
∑

µ∈MH\Fp

νµ

q
≤ (ps − p)(ps − 1).

Let Mv be the number of elements µ in MH \ Fp such that νµ = qpv. Then

−M +
∑

µ∈MH\Fp

νµ

q
=

∑

v

Mv(p
v − 1).

On the other hand, taking into account (11), we obtain that

∑

v

Mv(p
v − 1) ≥

∑

µF∗

p∈Im(Φ)

(p− 1)2#Φ−1(µF
∗
p) = (p − 1)2 ps − 1

p − 1

ps − p

p − 1
= (ps − p)(ps − 1).

Therefore equality must hold in (14), and the claim is proved.

3 Dense sets in PG(2, q)

Let q = p`. For an additive subgroup H of Fq of size ps with 2s ≤ `, let LH(X) be as in
(3), and MH be as in (7). For an element α ∈ Fq, define

DH,α = {(LH(a) : α : 1) | a ∈ Fq} ⊂ PG(2, q). (15)

As a corollary to Proposition 2.5, the following result is obtained.

Proposition 3.1. Let α1, α2 be distinct elements in Fq. Then a point P = (u : v : 1)
belongs to a line joining two points of DH,α1

∪DH,α2
provided that v /∈ (α2 −α1)MH +α2.

Proof. Assume that v /∈ (α2 − α1)MH + α2 and that v 6= α2. Then by Proposition 2.5,
the equation

LH(X) +
v − α2

α1 − α2
LH(Y ) = 0

has precisely q solutions, or, equivalently, the additive map

(x, y) 7→ LH(x) +
v − α2

α1 − α2
LH(y)

is surjective. This yields that there exists b, b′ ∈ Fq such that

LH(b) +
v − α2

α1 − α2

LH(b′) = u,

which is precisely the condition for the point P = (u : v : 1) to belong to the line joining
(LH(b′ + b) : α1 : 1) ∈ DH,α1

and (LH(b) : α2 : 1) ∈ DH,α2
.

If v = α2, then clearly P is collinear with two points in {(LH(a) : α2 : 1) | a ∈ Fq}.
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Theorem 3.2. Let q = p`, and let H be any additive subgroup of Fq of size ps, with
2s ≤ `. Let LH(X) be as in (3), and MH be as in (7). Then the set

D ={(LH(a) : 1 : 1), (LH(a) : 0 : 1) | a ∈ Fq} ∪ {(0 : m : 1) | m ∈ MH}
∪ {(0 : 1 : 0), (1 : 0 : 0)}

is a dense set of size at most
2q

ps
+

(ps − 1)2

p − 1
+ 1.

Proof. Let P = (u : v : 1) be a point in PG(2, q). If v /∈ MH , then P belongs to the
line joining two points of D by Proposition 3.1, together with (8). If v ∈ MH, then P is
collinear with (0 : v : 1) ∈ D and (1 : 0 : 0) ∈ D. Clearly the points P = (u : v : 0) are
covered by D as they are collinear with (1 : 0 : 0) and (0 : 1 : 0). Then D is a dense set.

The set {LH(a) | a ∈ Fq} is the image of an Fp-linear map on Fq
∼= F

`
p whose kernel

has dimension s, therefore its size is p`−s. Note that the point (0 : 1 : 1) belongs to both
{(LH(a) : 1 : 1) | a ∈ Fq} and {(0 : m : 1) | m ∈ MH} . Then the upper bound on the
size of D follows from Lemma 2.4.

The order of magnitude of the size of D of Theorem 3.2 is pmax{`−s,2s−1}. If s is chosen
as d`/3e, then the size of D satisfies

#D ≤



















2q
2

3 + 1 + q
2
3 −2q

1
3 +1

p−1
, if ` ≡ 0 (mod 3)

2
(

q
p

)
2

3

+ 1 +
p2( q

p)
2
3 −2p( q

p)
1
3 +1

p−1
, if ` ≡ 1 (mod 3)

21
p
(qp)

2

3 + 1 + (qp)
2
3 −2(qp)

1
3 +1

p−1
, if ` ≡ 2 (mod 3)

.

Note that when s = 1, then MH coincides with F
∗
p, and then the size of D is 2 q

p
+p. A

dense set of the same size and contained in three non-concurrent lines was constructed in
[6, Thm. 3]. It can be proved by straightforward computation that it is not projectively
equivalent to any dense set D constructed here.

In order to obtain a new upper bound on the size of the smallest dense set in PG(2, q), a
generalization of Theorem 3.2 is useful. Let A = {α1, . . . , αk} be any subset of k elements
of Fq, and let

D(A) =
⋃

i=1,...,k

DH,αi
, M(A) =

⋂

i,j=1,...,k, i6=j

(αj − αi)MH + αj. (16)

Arguing as in the proof of Theorem 3.2, the following result can be easily obtained from
Proposition 3.1.

Theorem 3.3. The set

D(H, A) = D(A) ∪ {(0 : m : 1) | m ∈ M(A)} ∪ {(0 : 1 : 0), (1 : 0 : 0)}

is dense in PG(2, q).
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Computing the size of D(H, A) is difficult in the general case, as we do not have
enough information on the set M(A). However, by using some counting argument it is
possible to prove the existence of sets A for which a useful upper bound on the size of
M(A) can be established.

Proposition 3.4. For any v > 1, there exists a set A ⊂ Fq of size v + 1 such that

#M(A) ≤ (#MH)v

(q − 1)v−1
.

In order to prove Proposition 3.4, the following two lemmas are needed.

Lemma 3.5. Let E1 and E2 be any two subsets of F
∗
q. Then there exists some α ∈ F

∗
q

such that

#(E1 ∩ αE2) ≤
#E1#E2

q − 1
.

Proof. For any β ∈ F
∗
q, let E(β) be the subset of F

∗
q consisting of those α for which β ∈ αE2.

Then

∑

β∈F∗

q

#E(β) = #{(α, β) ∈ (F∗
q)

2 | β ∈ αE2} =
∑

α∈F∗

q

#αE2 = (q − 1)#E2. (17)

Note that the size of E(β) does not depend on β, since E(β′) = β′

β
E(β). Therefore, (17)

yields that #E(β) = #E2 for any β ∈ F
∗
q. Then

#E1#E2 =
∑

β∈E1

#E(β) = #{(α, β) ∈ (F∗
q)

2 | β ∈ E1 ∩ αE2} =
∑

α∈F∗

q

#(E1 ∩ αE2),

whence the claim follows.

Lemma 3.6. Let E be a subset of F
∗
q, and let v be an integer greater than 1. Then there

exist α1 = 1, α2, . . . , αv ∈ F
∗
q such that

#
⋂

i:=1,...,v

αiE ≤ (#E)v(q − 1)1−v.

Proof. We prove the assertion by induction on v. For v = 2 the claim is just Lemma
3.5 for E1 = E2 = E. Assume that the assertion holds for any v′ ≤ v. Then there exist
α1 = 1, α2, . . . , αv−1 ∈ F

∗
q such that

#
⋂

i:=1,...,v−1

αiE ≤ (#E)v−1(q − 1)2−v.

Lemma 3.5 for E1 = ∩i:=1,...,v−1αiE, E2 = E, yields the assertion.
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Proof of Proposition 3.4. According to Lemma 3.6, there exist α1 = 1, α2, . . . , αv ∈ F
∗
q

such that
#

⋂

i:=1,...,v

−αiMH ≤ (#MH)v(q − 1)1−v.

Let A = {0, α1, . . . , αn}, and let M(A) be as in (16). As

M(A) ⊆
⋂

i:=1,...,v

−αiMH ,

the claim follows. 2

As a straightforward corollary to Theorems 3.3 and 3.2, and Proposition 3.4, the
following result is then obtained.

Theorem 3.7. Let q = p`, with ` odd. Let H be any additive subgroup of Fq of size ps,
with 2s + 1 = `. Let LH(X) be as in (3), and MH be as in (7). Then for any integer
v ≥ 1 there exists a dense set D in PG(2, q) such that

#D ≤ (v + 1)ps+1 + (#MH)v(q − 1)1−v + 2. (18)

Corollary 3.8. Let q = p2s+1. Then there exists a dense set in PG(2, q) of size less than
or equal to

min
v=1,...,2s+1

{

(v + 1)ps+1 +
(ps − 1)2v

(p − 1)v(p(2s+1) − 1)(v−1)
+ 2

}

.

Proof. The claim follows from Theorem 3.7, together with Lemma 2.4.

For several values of s and p, Corollary 3.8 improves the probabilistic bound on the
size of the smallest dense set in PG(2, q), namely, there exists some integer v such that

(v + 1)ps+1 +
(ps − 1)2v

(p − 1)v(p(2s+1) − 1)(v−1)
+ 2 < 5

√

q log q, (19)

see Table 1.
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Table 1 - Values of p, s, v for which (19) holds
s p v
1 p ∈ [3, 79] 1
2 p ∈ [3, 53] 2
3 p ∈ [2, 83] 2
4 p ∈ [2, 53] 3
5 p = 2 4
5 p ∈ [3, 73] 3
6 p = 2 5
6 p ∈ [3, 47] 4
7 p = 2 6
7 p = 3 5
7 p ∈ [5, 61] 4
8 p = 2 7
8 p ∈ [3, 43] 5
9 p = 2 8
9 p = 3 6
9 p ∈ [5, 47] 5
10 p = 2 9
10 p = 3 7
10 p ∈ [5, 37] 6
11 p = 2 10
11 p = 3 7
11 p ∈ [5, 43] 6
12 p = 2 11
12 p = 3 8
12 p ∈ [5, 31] 7
13 p = 2 12
13 p = 3 8
13 p ∈ [5, 37] 7
14 p = 3 9

s p v
14 p ∈ [5, 29] 8
15 p = 3 10
15 p = 5 9
15 p ∈ [7, 31] 8
16 p = 3 10
16 p ∈ [5, 23] 9
17 p = 3 11
17 p = 5 10
17 p ∈ [7, 29] 9
18 p = 3 11
18 p ∈ [5, 23] 10
19 p = 3 12
19 p = 5 11
19 p ∈ [7, 23] 10
20 p = 3 13
20 p ∈ [5, 19] 11
21 p = 3 13
21 p = 5 12
21 p ∈ [7, 23] 11
22 p = 3 14
22 p ∈ [5, 19] 12
23 p = 3 15
23 p = 5 13
23 p ∈ [7, 19] 12
24 p = 3 15
24 p ∈ [5, 17] 13
25 p = 3 16
25 p ∈ [5, 7] 14
25 p ∈ [11, 17] 13

s p v
26 p = 3 16
26 p ∈ [5, 13] 14
27 p = 3 17
27 p ∈ [5, 7] 15
27 p ∈ [11, 17] 14
28 p = 3 18
28 p = 5 16
28 p ∈ [7, 13] 15
29 p = 3 18
29 p ∈ [5, 7] 16
29 p ∈ [11, 13] 15
30 p = 3 19
30 p = 5 17
30 p ∈ [7, 13] 16
31 p = 3 19
31 p ∈ [5, 7] 17
31 p ∈ [11, 13] 16
32 p = 3 20
32 p = 5 18
32 p ∈ [7, 11] 17
33 p = 3 21
33 p ∈ [5, 7] 18
33 p = 11 17
34 p = 3 21
34 p = 5 19
34 p ∈ [7, 11] 18
35 p = 3 22
35 p ∈ [5, 7] 19
35 p = 11 18

s p v
36 p = 3 22
36 p = 5 20
36 p = 7 19
37 p = 3 23
37 p ∈ [5, 7] 20
38 p = 3 24
38 p = 5 21
38 p = 7 20
39 p = 3 24
39 p ∈ [5, 7] 21
40 p = 3 25
40 p = 5 22
40 p = 7 21
41 p = 3 26
41 p = 5 23
41 p = 7 22
42 p = 3 26
42 p = 5 23
42 p = 7 22
43 p = 5 24
43 p = 7 23
44 p = 5 24
44 p = 7 23
45 p = 5 25
45 p = 7 24
46 p = 5 25
47 p = 5 26
48 p = 5 26
49 p = 5 27

In order to produce concrete examples of small dense sets of type D = D(H, A), with
` = 2s + 1, for which the strict inequality holds in (18), a computer search has been
carried out. The sizes of the resulting dense sets are described in Table 2 below. Taking
into account that for q ≤ 859 dense sets of size smaller than 4ps+ 1

2 have been obtained by
computer in [7, 8], only values of q > 859 are considered in Table 2.
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Table 2 - Sizes of some dense sets in PG(2, q) of type D(H, A) with ` = 2s + 1
q #A #D(H, A) q #A #D(H, A)

211 4 258 59 3 9609
213 4 532 75 2 1030
215 4 1162 77 3 7205
217 5 2576 79 3 50947
219 5 5210 115 2 3994
37 3 245 117 3 43947
39 3 764 135 2 6592
311 3 2771 137 3 85712
313 4 8788 175 2 14740
55 2 376 177 3 250599
57 3 1877 195 2 20578

4 Applications to covering codes

A code with covering radius R is a code such that every word is at distance at most
R from a codeword. For linear covering codes over Fq, it is relevant to investigate the
so-called length function l(m, R)q, that is the minimum length of a linear code over Fq

with covering radius R and codimension m, see the monography [3]. It is well known that
the minimum size of a dense set in PG(2, q) coincides with l(3, 2)q, see e.g. [4]. From our
Corollary 3.8, we then obtain the following result.

Theorem 4.1. Let q = p`, with ` = 2s + 1. Then

l(3, 2)q ≤ min
v=1,...,2s+1

{

(v + 1)ps+1 +
(ps − 1)2v

(p − 1)v(p(2s+1) − 1)(v−1)
+ 2

}

.

It should also be noted that upper bounds on l(m, 2)q, m ≥ 5 odd, can be obtained
from small dense sets. In fact, from a dense set of size k in PG(2, q) it can be constructed
a linear code over Fq with covering radius 2, codimension 3 + 2m, and length about qmk,
see [5, Theorem 1].
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