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Abstract

We resolve the existence problem of (96, 20, 4) difference sets in 211 of 231 groups
of order 96. If G is a group of order 96 with normal subgroups of orders 3 and 4 then
by first computing 32- and 24-factor images of a hypothetical (96,20,4) difference
set in GG we are able to either construct a difference set or show a difference set does
not exist.

Of the 231 groups of order 96, 90 groups admit (96,20, 4) difference sets and 121
do not. The ninety groups with difference sets provide many genuinely nonabelian
difference sets. Seven of these groups have exponent 24.

These difference sets provide at least 37 nonisomorphic symmetric (96,20,4)
designs.

1 Introduction

A (v, k, \) difference set is a subset D of size k in a group G of order v with the property
that for every nonidentity g in G, there are exactly A ordered pairs (x,y) € D x D such

that

:)sy_l =g.

One may identify the set D with an element D in the group ring Z(G). In this case

write R
D = Z g

geD
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and

DY = Zg_l.

geD

We also write G for Z g. D is a difference set if the group ring element D satisfies the

geG
equation

DDV = (k- \lg + \G. (1)

If a group G has a difference set D then {gD : g € G} is the set of blocks of a
symmetric (v, k, A) design with point set G. On this design G acts by left multiplication
as a sharply transitive automorphism group. Conversely, any symmetric design with a
sharply transitive automorphism group on points is isomorphic to a design constructed
from the set of left translates of a difference set. A difference set is said to be “genuinely
nonabelian” if the underlying design has no abelian group acting regularly on points.

Difference sets with parameters (qd“(% +1), qd%, qdq;_—_ll), where ¢ = p/ is a
prime power, are known as McFarland difference sets. For ¢ = 4 and d = 1, we obtain
the (96,20,4) parameters. For more details on symmetric designs and difference sets,
the reader may consult [6], [11], [12], [13]. For more further discussion on McFarland
difference sets, see [7], [14].

We say Dy € Z(G), Dy € Z(G) are equivalent if there is an element ¢ € G and
an automorphism ¢ of G such that Dy = gp(D,). We say that two difference sets are
inequivalent if either they are subsets of nonisomorphic groups or if they are subsets in a
common group G but are not equivalent in G (as defined above.) Inequivalent difference
sets may give rise to isomorphic designs.

The adjacency matrix of a symmetric design has a set of invariant factors (or “ele-
mentary divisors”, associated with the Smith Normal Form of the matrix.) If A is the
adjacency matrix of the design, there are invertible matrices P and () such that PAQ is
a diagonal matrix. P and () may be chosen so that the (i,7) entry of PAQ divides the
(t+1,i+ 1) entry of PAQ (for all 4, 1 < i < v —1.) In the special case of the parameters
(96,20,4), we may assume that PAQ is the direct sum of six scalar matrices:

PAQ = I,, & 2I,, & AL, & 81,, & 161,, & 80I,..

Since the prime 5 divides k£ = 20 but does not divide £ — A\ = 16, then the rank of A over
GF(5) is 95 and r5 = 1. Thus the sum of the other matrix sizes, 1o + r1 + ro + 13 + 74,
is 95. The rank of A over GF(2) is 1o, the size of the identity matrix in this direct
sum. We will abbreviate the list of invariant factors with the 5-tuple (ro, 71, 72,73, 74). For
example, there are at least two distinct difference sets in the elementary abelian group
GAP[96,231]; one has invariant factor abbreviated by (30, 2,32, 2,29) while the other has
invariant factor abbreviated by (30,1, 34,1, 29). Both have 2-rank equal to 30. Although
nonisomorphic designs may have the same invariant factors, if the designs have different
invariant factors, they must be nonisomorphic. We found 37 different patterns of invariant
factors in the exhaustive search and so have at least 37 distinct, nonisomorphic designs.
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(See [13], Appendix C, for a discussion of invariant factors of incidence matrices and the
underlying design.)

Among the 37 different invariant factor patterns, there are eight distinct 2-ranks.
These eight different 2-ranks are 26, 28, 30, 32, 34, 36, 37 and 38.

A homomorphism f from G onto G’ induces, by linearity, a homomorphism from Z|[G]
onto Z[G']. If the kernel of f is the subgroup U, let T" be a complete set of distinct
representatives of cosets of U and, for g € T, set t, := |gUND|. The multiset {t,: g € T'}
is the collection of intersection numbers” of D with respect to U. The image of D under

the function f is f(D Z tyf(g). This group ring element satisfies the equation
geT
FDYF(D)Y = (k = Mg + AU|G @)

in the group ring Z[G’]. The contraction of D to a smaller homomorphic image often
provides useful conditions on the existence of a difference set in the original group. Because
the size of D is k we have the equation

> ty=k. (3)

geT

Because the coefficient of the identity element is the same on both sides of equation 2 we
have the equation
Dt = (k=N + AU (4)
g'eT
For example, suppose D is a (96, 20,4) difference set in G and G’ is a homomorphic
image of order 24. One solution to the equations

24 24
Z tl - 20, Z ti2 -
i=1 i=1

is a list {¢; : 1 <i < 24} with a single 4, sixteen 1s, and seven 0s. When this occurs, one
can show that there is a subgroup H' < G’ of order eight such that f (b) is equivalent to
(4)1e + (G — D).

The existence of such a homomorphic image gives considerable information about D.
In this case, if no other information is available, an exhaustive search through the cosets
of U where |[DNgU| = 1 will require a search space at size at most 417! ~ 10°. Additional
information, such as intersections sizes with a subgroup W of size 3, considerably shorten
the exhaustive search. (In this work we used both the normal subgroups of orders 3 and
4 to keep the search space relatively small.) Further details on this approach, including
GAP programs used, is available in [2] and at the webpage [16].

2 Summary of past work on (96,20,4) difference sets

In this paper we will refer to the groups as they appear in the SmallGroups library of
the software package GAP (Groups, Algorithms and Programming, [10].) For instance,
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when we work in groups of order 96 and write GAP[96,204] we mean group number 204
of order 96 in the GAP library. (GAP would list such a group as “[96,204]”.)

Before this paper, we had the following results.

McFarland, [14], used vector spaces of dimension d + 1 over finite fields of order ¢

to construct difference sets with parameters v = qd“(% +1), k= qd% and \ =
qdqd—_l) in abelian groups with an elementary abelian subgroup of order ¢¢*!. McFarland’s

)
cor[istruction (with ¢ = 4,d = 1) gives (96,20, 4) difference sets in GAP[96,231] & Z3 X Zg
and GAP[96,220|= Z3 X Z1».

Dillon, [7], generalized McFarland’s construction to work for a larger set of groups. He
constructed McFarland difference sets in groups that have an elementary abelian normal
subgroup of order ¢%*! in its center. Dillon’s construction gives (96, 20,4) difference sets
in GAP[96,218] and GAP[96,230].

Arasu and Sehgal, [4], constructed a (96,20,4) difference set in the abelian group
GAP[96,161] = Zy X Zy X Z5.

Golemac, Mandi¢ and Vuéicié, [8], constructed (96,20,4) difference sets in five non-
abelian groups. These five nonabelian groups are GAP[96,72], GAP[96,78], GAP[96,147],
GAP[96,174] and GAP[96,209)].

AbuGhneim and Smith, [1, 2|, constructed (96,20,4) difference sets in groups that
have Zj3 as a normal subgroup. There are 19 groups of order 96 that have Z3 as a normal
subgroup. These groups are GAP[96,:] where ¢ in the set {70, 159, 160, 162, 167, 194,
195, 196, 197, 218, 219, 220, 221, 226, 227, 228, 229, 230, 231}.

In recent work, [9], Golemac, Mandié¢ and Vudéicié¢ have constructed (96, 20, 4) difference
sets in 22 nonabelian groups. These groups are GAP[96,i] where ¢ in the set {13, 41, 64,
70, 71, 87, 144, 159, 160, 167, 185, 186, 188, 190, 194, 195, 196, 197, 226, 227, 228, 229}.

A result of Turyn ([17]) rules out the existence of difference sets in GAP[96,2] = Zgg
and GAP[96,59] = Zy X Zys.

Arasu, Davis, Jedwab, Ma and McFarland, [3], ruled out the existence of difference sets
in the last two abelian groups, GAP[96,46] = Z4 X Zo4 and GAP[96,176] = Zo X Ziy X ZLoy. As
a result of this work, we may conveniently summarize the existence of (96, 20, 4) difference
sets in abelian groups: “An abelian group G has a (96,20, 4) difference set if and only if
the exponent of G is no larger than 12.”

A result of AbuGhneim and Smith, [1, 2], ruled out any group G which has Zg X Zgy
or Zo X Doy or (Zs X Zsg) X Zy or Dyg as a factor group. Using this result we rule out
difference sets in GAP[96,i], where i is in the set {6, 7, 8, 9, 11, 18, 19, 25, 28, 37, 48, 55,
60, 76, 80, 81, 82, 89, 93, 102, 104, 109, 110, 111, 112, 115, 116, 127, 132, 134, 137, 207}.

Undergraduate students, Nichols ([15], under the supervision of Harriet Pollatsek,
Mt. Holyoke College) Axon, and Gotman, ([5], under the supervision of Emily Moore,
Grinnell College) used (16,6, 2) difference sets to construct images (96,20, 4) difference
sets in groups of order 32 and then used those images to construct (96,20,4) difference
sets in GAP[96,221] and GAP[96,231]. The difference sets found during this search had
the same 2-rank as difference sets which had been previously discovered.
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3 New Results on the existence of (96,20,4) Differ-
ence sets

Suppose G is a group of order 96 which has normal subgroups of order 3 and 4 and
suppose that D is a difference set in G. We used GAP to build the 4-images from the
2-images then again the 8-, 16-, 32-images from the 4-, 8-, 16-images respectively. In a
similar way we computed the 24-images. We wrote programs that combined the 32- and
24-images to construct difference sets in G' or to show such a difference set does not exist
after exhaustive search. One can find these programs with examples to explain them in
the dissertation of the first author, [2], and on the webpage of the second author, see [16].
We note that these programs give, by exhaustive search, all possible (96, 20, 4) difference
sets in some 72 groups groups of order 96, those groups that have both factor groups of
order 32 and 24.

Table 1 lists the Groups of order 96 which admit a (96, 20, 4) difference sets and have
factor groups of orders 32 and 24. In the first column of Table 1 appears the catalogue
number ¢ of the group [96, 7], according to the GAP SmallGroup library of groups of order
96. (The GAP command “e := Elements(SmallGroup(96,i));” can be used to create a
list e of the elements of the group G, indexed from 1 to 96.) The indices of the elements
of the difference set are provided in the second column of Table 1. The third column
provides, in abbreviated form (rg, 71,79, 73, 74), the invariant factors of symmetric designs
obtained from these difference sets.

In Table 1, we did not include difference sets which were known before. In each group
we list difference sets which give clearly different symmetric designs by providing difference
sets with distinct invariant factors. A complete list of nonequivalent difference sets can
be found in [2] and [16].

Our programs rule out, after an exhaustive search, the existence of difference sets in
85 groups. These groups are GAP[96,i| where 7 in the set {1, 4, 5, 12, 15, 16, 17, 21, 22,
23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 47, 49, 50, 53, 56,
57, 58, 61, 62, 63, 100, 106, 107, 108, 113, 114, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 128, 138, 139, 140, 148, 149, 150, 153, 154, 155, 156, 157, 158, 163, 171, 178, 179,
180, 181, 182, 183, 184, 208, 211, 213, 214, 215, 216, 217, 222, 224}

By combining our results with the results that have been done before we have 90
groups of order 96 that admit (96, 20, 4) difference sets. We have 121 groups that do not
admit (96, 20, 4) difference sets. We have 20 groups that are still in doubt. These groups,
where the existence of a difference set is still open, are GAP[96,i] where i in the set {3, 65,
66, 67, 68, 69, 73, 74, 187, 189, 191, 192, 193, 198, 199, 200, 201, 202, 203, 204}. (None
of the remaining open cases has a normal Sylow-3 subgroup. The group GAP[96,204] is
the unique group of order 96 without a normal subgroup of order 4 and looks to be a
particularly difficult case. The other 19 open groups have normal subgroups of orders 2
and 4 and so an exhaustive search may still be feasible.)

Abelian groups that admit (96, 20, 4) difference sets have exponent at most 12. We note
that some of the nonabelian groups in which we have constructed (96, 20, 4) difference sets
have exponent 24. These are cases were the exponent bound for the abelian case is violated
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by the nonabelian case. Groups which have (96, 20, 4) difference sets and exponent 24 are
GAP[96,i] where i € {10,14,20,51,52, 54, 177}.

The invariant factors obtained from the abelian difference sets are (30, 1,34, 1,29),
(30,2,32,2,29), (32,3,26,3,31), (32,4,24,4,31) and (34,4,20, 4,33). These invariant

factors are from Table 1 and [1].

genuinely nonabelian.

All difference sets with other invariant factors are

Table 1. List of (96,20, 4) Difference Sets

‘i ‘ Elements of D

‘ Invariant factors ‘

10

1,2,3,5,8,9,16, 32,37, 38, 48,
53,57,65,66,67,73,74,76,87

(34,6, 16, 6, 33)

1,2,3,5,8,9,12,22,27, 30, 37, 38,
46,65, 68, 69, 74, 86, 90, 95

(36,6, 12,6, 35)

13

1,2,3,4,10,12, 24, 26, 33, 38, 40,
43,46, 55,57,67,77,81,82,83

(26,6, 32,6, 25)

1,2,3,4, 10,12, 19, 21, 24, 26, 38, 44,
45, 46, 48, 60, 78, 87,90, 95

(32,2,28,2,31)

1,2,3,4,10,12, 14, 26, 33, 50, 55, 57,
68,69, 71,73, 81,82, 83,92

(26,10, 24,10, 25)

1,2,3,4,7,11,27,28, 38,44, 51, 56, 57,
98,59,65,79,82,85,96

(28,2, 36, 2, 27)

1,2,3,4,7,11, 14, 28, 30,44, 53, 56, 57,
59,64, 65,75,77,80,94

(28,6, 28, 6,27)

1,2,3,4,7,10,22,24, 26,27, 38,43, 51, 57,
58,69, 70, 71,73, 88

(30,6, 24, 6, 29)

1,2,3,4,7,10,12,14, 26, 37, 44, 50, 60,
75,77,78,79,85,92,93

(32,0,32,0,31)

1,2,3,4,7,10,12,14, 26, 37, 44, 50, 60,
66, 68, 75,78, 85,87, 88

(28, 4,32, 4,27)

1,2,3,4,7,10, 12, 14, 26, 37, 44, 45, 47,
50,60, 72,73, 75,78, 85

(30,2, 32, 2, 29)

1,2,3,4,7,10, 12, 14, 26, 37, 41, 44, 50,
60, 69, 75, 78, 85, 86, 95

(28,0, 40,0, 27)

14

1,2,3,6,8,27,28, 36, 37, 40, 43,
51,52,53,55,70,75,83,84,93

(38,4, 12,4, 37)

1,2,3,6,8,16,21, 27,28, 36, 46,
51,52,53,62,65,75,77,94,96

(36,6, 12, 6, 35)

1,2,3,6,8,12,16, 28, 30, 36, 43, 52,
959,60, 61, 65,70, 79, 80, 81

(36,4, 16, 4, 35)

20

1,2,3,5,7,8,30,31, 35, 39, 46, 54,
57,65,74,79,90,91, 93,96

(36, 1,22, 1, 35)
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41

1,2,3, 4,10, 14, 19, 22, 27, 39, 40, 52,
57,58, 66, 68, 74, 76, 87, 88

(32,2,28,2,31)

1,2,3,4,10, 14,19, 21, 44, 46, 52, 61,
62, 71,73, 74,79, 86,87, 96

(26, 6, 32, 6, 25)

1,2,3,4,10, 14,19, 21, 44, 45, 46, 48,
52,55, 68, 69, 74, 82, 83, 92

(28,2, 36,2,27)

1,2,3,4,10, 12, 19, 22, 24, 26, 33, 38, 40,
57,67,79, 81,82, 83,91

(30,6, 24, 6, 29)

1,2,3,4,7,10, 14, 22, 43, 52, 61, 62,
70, 71,73, 74,79, 86,87, 96

(26, 10, 24, 10, 25)

1,2,3,4,7,10, 14, 22, 43, 45, 48, 52,
55, 68,69, 70, 74, 82, 83, 92

(28, 6,28, 6, 27)

1,2,3,4,7,10, 14, 16, 30, 44, 51,
52,54, 66, 67,68, 74,81, 87, 88

(30,2, 32, 2, 29)

1,2,3,4,7,10, 14, 16, 30, 44, 51, 52,
54, 55,67, 74,80, 81,91, 96

(28,4,32,4,27)

1,2,3,4,7,10, 14, 16, 30, 34, 44, 51,
52,54, 62, 67,74, 81,82,94

(32,0,32,0, 31)

1,2,3,4,7,10, 12, 22, 24, 26, 38, 43,
54,60, 70, 71,73, 76,87, 95

(28,0, 40,0, 27)

51

1,2,3,4,6,10,13,19, 30, 32, 58, 61, 62,
69,75,77,79,82, 88,96

(36,6, 12,6, 35)

1,2,3,4,5,16, 18, 25,37, 58,62, 63,
64, 80, 81, 86, 88,90, 91, 95

(34,6, 16,6, 33)

52

1,2,3,4,8,10,18,19,27, 35,41, 43,
45,48, 58,71,82,87,90, 96

(34,8,12,8, 33)

1,2,3,4,8,10,17,18,19,27,41, 45,
48,64, 65,74, 83,89,91, 94

(36,8,8,8,35)

1,2,3,4,5,8,16,19, 32,43, 46, 49,
55, 58,63,70,73,86,92,94

(34,10, 8, 10, 33)

o4

1,2,3,4,6,12,24,29, 38, 39, 47
50, 55, 58, 60, 66, 80, 82, 83,94

(36,6, 12,6,35)

1,2,3,4,6, 11, 14, 21, 23, 42, 45, 50,
51,58, 65,71, 74,75, 83,86

(34,6, 16,6, 33)

1,2,3,4,5,21,22,34,35,40, 51,
63,70, 73,76, 78, 81, 82,89, 90

(34,4, 20, 4, 33)

1,2,3,4,5,8,16, 32,37, 38,46, 50, 55,
65, 66, 68,82, 83,93, 95

(34,3,22,3,33)

75

1,2,3,4,7,9,21,22,24,25,33, 35,
41,46,48,53,57,71,87,90

(34,4, 20, 4, 33)

1,2,3,4,7,8,13, 21,22, 41, 46, 47,
56,72, 74, 80, 84, 92, 94, 95

(32,8, 16,8, 31)
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77

1,2,3,4,7,9, 16, 24, 43, 45, 52, 55,
63,65, 71, 72,83, 84,89, 92

(34, 4, 20, 4, 33)

78

1,2,3,4,7,13,21, 22, 23, 26, 27, 46,
49, 56, 58, 60, 68, 72, 75, 95

(34,3,22,3,33)

1,2,3,4,7,12,25, 37,40, 41, 43,
49,56, 58, 63, 68, 69, 76, 78, 88

(32,4, 24, 4, 31)

1,2,3,4,7,12,13, 26, 39, 44, 49,
56,57, 66,76, 78, 85, 86, 87, 95

(30,8, 20, 8, 29)

1,2,3,4,7,10,11, 12, 13, 31, 34, 39,
44, 54,75, 81,82, 85,92, 93

(30,7,22,7,29)

79

1,2,3,4,7,13,21, 22, 25, 29, 46,
47.51,53, 58,60, 69, 72, 74, 86

(34, 4, 20, 4, 33)

83

1,2,3,4,7,13,21, 22, 25, 29, 46, 48,
68,71, 74,77,79, 83,84, 87

(34, 4, 20, 4, 33)

1,2,3,4,7,12,24, 25,29, 40, 41,
57,63, 65, 68,69, 70,75, 78, 88

(32,4, 24, 4, 31)

1,2,3,4,7,10,11, 12, 31, 34, 40,
51,53, 58, 63,65, 70,82, 91,93

(32,3,26,3,31)

84

1,2,3,4,7,21,22, 24, 25, 36, 46,
47,55, 56, 62, 69, 87, 89, 94, 96

(32,8, 16,8, 31)

1,2,3,4,7,21,22, 24, 25, 29, 46, 47,
55,63, 72, 83,84, 88,92, 95

(34, 4, 20, 4, 33)

1,2,3,4,7,12,24, 29, 35, 40, 43,
52,53, 65,66, 81,86,87,90,95

(34,2, 24,2, 33)

1,2,3,4,7,9,12,25,40, 50,63, 65,
66,70, 78,81, 86, 87,90, 95

(32,2,28,2,31)

85

1,2,3,4,7,21,22, 26,28, 30, 33,
36,45, 46,49, 53,69, 73,75,95

(34,4, 20, 4, 33)

1,2,3,4,7,19,25,32,40,49, 54, 55,
56, 58,63, 64,76, 79, 80,93

(32,2,28,2,31)

1,2,3,4,7,12,13, 26, 28, 44, 53, 64,
66,67, 74,76,81, 86, 87, 95

(32,8, 16,8, 31)

1,2,3,4,7,8,19, 29, 35,40, 41, 61,
68,69, 74, 77,85, 88, 93, 94

(34,2, 24,2, 33)

86

1,2,3,4,7,21,22, 25, 41,45, 46, 48,
49,56, 59,61, 63, 77, 80, 86

(34,4, 20, 4, 33)

1,2,3,4,7,16,28,32,35, 44, 51,
52,54, 58,59, 74, 82, 83, 85, 94

(32,8, 16,8, 31)

87

1,2,3,4,7,12,24, 29, 35, 40, 43, 52,
53,65, 66, 81, 86, 87,90, 95

(30, 2,32, 2, 29)

1,2,3,4,7,12,24,25, 36, 44, 54, 56,
57,66,67,75,85,86,87,95

(30, 8, 20, 8, 29)
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1,2,3,4,7,12,24,25,29,40,57,63,
65, 66, 70,75, 78, 86, 87,95

(32,4, 24, 4, 31)

1,2,3,4,7,12,24, 25,29, 40, 41, 57,
63, 65,68, 69, 70, 75, 78, 88

(32,2,28,2, 31)

1,2,3,4,7,10,11,12, 31, 34, 36, 37,
39,58, 70,78, 80, 82,90, 91

(30,7,22,7,29)

1,2,3,4,7,10,11,12, 31, 34, 35, 37,
40,57,70,78,79, 83,90, 92

(32,3,26,3,31)

88

1,2,3,4,7,21,22, 26, 28, 32, 36, 46, 49,
54,58,69, 71,73, 87,90

(34,2,24, 2, 33)

1,2,3,4,7,21,22, 26,28, 32, 36, 46,
48,49,54,71,76, 81,87, 88

(34,3,22,3,33)

1,2,3,4,7,21,22, 26,28, 32, 36, 45,
46,49, 54, 69,73, 76,81, 95

(34,4, 20, 4, 33)

90

1,2,3,4,7,21,22, 25,29, 36, 46, 48,
49, 59,68, 77,79, 84, 87,89

(32,8,16,8,31)

1,2,3,4,7,19,25, 35,40, 41, 56,
61, 68,69, 74,77,80, 83,85, 88

(32,4, 24, 4, 31)

1,2,3,4,7,19,23,25, 35,40, 47, 48,
56,61,73,74,77,80, 83,85

(32,3,26,3,31)

1,2,3,4,7,16, 28, 44, 45, 49, 52, 61,
63,64, 71,72, 80, 83,89, 92

(34, 4, 20, 4, 33)

1,2,3,4,7,10, 11, 12, 19, 31, 40, 51,
53,58, 61,63, 64, 80, 94, 96

(32,2,28,2,31)

91

1,2,3,4,7,21,22,25, 33, 35, 46, 47,
53,56, 66, 74, 75,81, 88,89

(34,3,22,3,33)

92

1,2,3,4,7,21,22,25, 33, 35, 46, 53,
56,68,71,73,74,75,81,87

(34,3,22,3,33)

1,2,3,4,7,21,22,25,28,46,47, 59,
62,63,72,74,77,79, 88,95

(34,4, 20, 4, 33)

1,2,3,4,7,19,25,27,28,40, 55, 58,
60, 63,64, 74,76,79, 80,93

(30,8, 20, 8, 29)

1,2,3,4,7,19,23,25,27, 28, 40,47,
48,58, 60, 63,64,73,74,76

(30,7,22,7,29)

94

1,2,3,4,7,9,21, 22, 24, 25, 35, 45,
46,47, 53,58, 60, 69, 75, 87

(34,4, 20, 4, 33)

1,2,3,4,7,9,16, 25, 33, 43, 45, 50,
63,65,71,72,75,78,81,89

(32,8, 16,8, 31)

95

1,2,3,4,7,19,24,26,27,35,53, 54,
95,56, 61, 65,67, 78,83,92

(34,4, 20, 4, 33)

1,2,3,4,7,9,21,22, 35, 46, 48, 50,
52,59,71,79, 84, 86, 88, 96

(32,8, 16,8, 31)
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1,2,3,4,7,8,19, 32, 35, 40, 50, 55, 56,
58,75,78,79, 80, 85,93

(34,3,22,3,33)

96

1,2,3,4,7,19,25,28,40,41, 55, 63,
64, 68, 69, 74, 83, 84, 88, 92

(34, 4, 20, 4, 33)

97

1,2,3,4,7,9,16, 24, 37,45, 52,62, 63,
70,71,72,79,82,89,91

(34, 4, 20, 4, 33)

98

1,2,3,4,7,12,13, 26, 28, 44, 53, 64,
66, 67,74, 76,81, 86,87, 95

(32,2,28,2,31)

1,2,3,4,7,12,13, 26, 28, 44, 45, 53, 64,
67,71,72,74,76, 81,89

(32,4, 24, 4, 31)

1,2,3,4,7,10, 11, 12, 13, 31, 34, 44, 54, 57,
64, 67,79, 90,92, 94

(32,3,26,3,31)

99

1,2,3,4,7,13,19, 25,41, 50, 55, 56, 62,
67,68, 69, 82, 85, 88, 96

(34, 4, 20, 4, 33)

1,2,3,4,7,9,16, 25,33, 37,50,57, 59,
63,70, 78,82,83,90,94

(32,8, 16,8, 31)

101

1,2,3,4,7,21,22, 25,29, 36, 46, 48,
49, 66,68, 71,79, 83,84, 92

(34, 4, 20, 4, 33)

103

1,2,3,4,7,21,22, 26,28, 30, 33, 36, 45,
46,49,53,69,73,75,95

(34, 4, 20, 4, 33)

1,2,3,4,7,21,22,25, 33, 35, 46, 47,
53,56, 66, 74, 75,81, 88,89

(34,2, 24,2, 33)

105

1,2,3,4,7,16,28,37,45,49, 52, 59,
62,63,70,71,72,77,79,89

(34,4, 20, 4, 33)

129

1,2,3,4,7,9,16, 32, 36, 45,49, 52,
54, 58,64,70,71,72,89,90

(30,8, 20, 8, 29)

1,2,3,4,7,9,16, 23,32, 36,47, 48, 49,
52,54, 58,64, 70,73,90

(30,7,22,7,29)

1,2,3,4,7,9,13,21,22,27,32,46, 47,
52,58,66,72,74,88,90

(34,4, 20, 4, 33)

1,2,3,4,7,9,12, 13,22, 31, 32,39, 41,
48,56, 67,71, 76,90, 95

(34,2, 24,2, 33)

1,2,3,4,7,8,21,22,29, 35,41, 46,
62,66,72,73,74,79, 82,96

(34,3,22,3,33)

130

1,2,3,4,7,9,16, 33, 35, 45, 50, 52,
53,57,65,70,71,72,89,90

(32,4, 24,4, 31)

1,2,3,4,7,9,16, 23,32, 35,44, 47,48,
50,52, 54,73,75,81,85

(32,3,26,3,31)

131

1,2,3,4,7,9,21, 22, 36,46, 49, 52,
55,59, 61,68, 72,73, 87,96

(32,2,28,2,31)

1,2,3,4,7,9,21,22, 35, 46, 50, 52, 59,
62,68,71,73,77,87,93

(34,4, 20, 4, 33)
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1,2,3,4,7,9,16, 32, 36, 49, 52, 54, 58,
959, 64, 70, 82, 83,90, 94

(32,8,16,8,31)

133

1,2,3,4,7,9,16, 36,43, 45,49, 52,
55,71,72,83, 84,85, 89,96

(34, 4, 20, 4, 33)

1,2,3,4,7,8, 21,22, 24, 28, 35, 46, 47,
55, 66, 69, 72, 82, 84, 96

(32,8,16,8,31)

1,2,3,4,7,8,16, 24, 28, 30, 35, 44,
59,60, 75,78, 82,83, 85,94

(32,2,28,2, 31)

135

1,2,3,4,7,19, 25,40, 41, 49, 56, 61,
63, 64, 68, 69, 80, 83, 88, 92

(32,2,28,2, 31)

1,2,3,4,7,19,24,29, 35,40, 52, 54, 55,
57,60,75,79,80,85,93

(34,4, 20, 4, 33)

136

1,2,3,4,7,21,22, 24, 25, 32, 36, 41, 46,
48,54, 56, 76,81, 89,95

(34,4, 20, 4, 33)

1,2,3,4,7,9, 21,22, 24, 25, 35, 46,
59,61, 68, 72,73, 80, 86, 92

(32,2,28,2, 31)

141

1,2,3,4,7,12,24, 25,29, 37, 40, 41,
43, 63,68, 69, 78, 81,88, 90

(32,2,28,2, 31)

1,2,3,4,7,21,22, 25,33, 35,46, 53, 56,
68,71,73,74,75,81,87

(34, 4, 20, 4, 33)

1,2,3,4,7,12,13,26, 43,49, 53, 56,
58,65, 66,67, 86, 87,90, 95

(34,3,22,3,33)

1,2,3,4,7,12,13, 26, 28, 39, 44, 51,
66,74, 78, 81,85, 86, 87, 95

(34,2, 24,2, 33)

142

1,2,3,4,7,19, 24, 25, 29, 32, 40, 41,
54,63, 64, 68,69, 81, 88, 90

(32,2,28,2,31)

1,2,3,4,7,19,23, 24,25, 29, 32, 40, 47,
48,54,63,64,73,81,90

(32,3,26,3,31)

1,2,3,4,7,13,21, 22, 24, 25, 28, 41, 46,
48,55, 71,82, 84,92, 95

(34,4, 20, 4, 33)

1,2,3,4,7,10,11, 12, 19, 31, 40, 51,
53,58, 61, 63, 64, 80, 94, 96

(32,4, 24,4, 31)

1,2,3,4,7,9,21,22,24,25, 35, 46, 59,
62,68,71,73,79,87,92

(34,2, 24,2, 33)

1,2,3,4,7,9,21,22,24,25, 35, 46,47,
99, 62,66, 79, 88,89, 92

(32,8, 16,8, 31)

143

1,2,3,4,7,8,19, 28,36, 39,41, 68, 69,
74,80, 83, 84, 85, 88, 91

(30,8, 20, 8, 29)

1,2,3,4,7,8,19, 23,28, 36, 39, 47
48,73,74, 80,83, 84, 85,91

(30,7,22,7,29)

1,2,3,4,7,8,16, 24, 29, 30, 36, 43,
959,60, 76, 78, 82, 83, 85, 94

(34,4, 20, 4, 33)
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144

1,2,3,4,7,10,11, 12,19, 31, 40, 51,
53,58, 61, 63,64, 80,94, 96

(30,2, 32,2, 29)

1,2,3,4,7,9,21,22, 35, 46, 50, 52, 59,
62,68,71,73,77,87,93

(34,2, 24,2, 33)

145

1,2,3,4,7,9,16, 32, 35, 44, 50, 52, 54,
59,75, 81,82,83,85,94

(34, 4, 20, 4, 33)

146

1,2,3,4,7,21,22, 25, 46, 47, 49, 56, 62,
63,79, 87, 88,89, 94, 96

(34,3,22,3,33)

1,2,3,4,7,21,22,24,25, 36, 46, 56,
59,62,68,72,73,79,87,91

(34, 4, 20, 4, 33)

1,2,3,4,7,12,25,37,40, 43, 49, 56, 58,
63, 66, 76,78, 86, 87,95

(32,4, 24, 4, 31)

1,2,3,4,7,10, 11, 12, 31, 34, 37, 40,
43, 53,63, 75,81, 83,92, 93

(32,3,26,3,31)

147

1,2,3,4,7,9,21,22, 24,25, 35, 46, 47,
59, 62, 66, 79, 88, 89, 92

(32,4, 24, 4, 31)

151

1,2,3,4,7,9, 21,22, 32, 35, 41,
46, 47,50, 52, 58,72, 75,78, 87

(34, 4, 20, 4, 33)

1,2,3,4,7,8,19,27,28, 39,50, 53, 54,
62,63, 65,78,91,93,94

(34,3,22,3,33)

152

1,2,3,4,7,8,19,24,33,37,53, 55,
56,57,63,67,75,79,80,93

(34, 4, 20, 4, 33)

1,2,3,4,7,8,13,19, 32,54, 55, 56, 58,
67,74,75,79,80, 85,93

(32,8, 16,8, 31)

159

1,2,3,4,7,11,12, 13,21, 23, 28, 53, 54,
56,60, 65, 72, 85, 86, 88

(32,2,28,2,31)

1,2,3,4,7,9,16, 32, 36, 45,49, 52,
54, 58,64,70,71,72,89,90

(32,4, 24,4, 31)

1,2,3,4,7,9,16, 26,43, 45,49, 53, 58,
60, 63,65, 71,72,89,90

(30, 8, 20, 8, 29)

1,2,3,4,7,9,16, 26, 32, 44, 45,49, 63,
64,71,72,76,78,81,89

(30,2, 32, 2, 29)

1,2,3,4,7,9,16, 23, 32, 36,47, 48,
49,52, 54, 58, 64,70, 73,90

(32,3,26,3,31)

1,2,3,4,7,9,16,23,26,43,47, 48, 49,
53,58, 60, 63,65, 73,90

(30,7,22,7,29)

1,2,3,4,7,10,12,13, 26, 33, 39, 44, 47,
48,52,57,66,81, 85,95

(32,0,32,0,31)

160

1,2,3,4,10,12,13, 16, 22, 29, 56, 60,
64,70,75,76,77,82,92,94

(26,10, 24,10, 25)

1,2,3,4,10,12,13, 16, 22, 29, 56, 59,
60, 64, 70,75, 76, 83,91, 96

(26,6, 32,6,25)
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1,2,3,4,10, 12,13, 16, 21, 29, 40, 41, 46,
48, 56, 60, 75, 76, 86, 89

(32,2,28,2,31)

1,2,3,4,7,12,24,25, 36,40, 43, 56,
58,64, 66, 78, 86, 87,90, 95

(30,2, 32, 2, 29)

1,2,3,4,7,10,13,27,29,40, 43, 56, 57,
58,77,78,82,85,92,94

(28,6, 28, 6,27)

1,2,3,4,7,10,13,27,29,40, 43, 56, 57,
58,59, 78,83, 85,91, 96

(28,2, 36,2, 27)

1,2,3,4,7,10,13, 22,29, 39, 55, 56,
66,67, 68,72,73,82,83,93

(30,6, 24, 6, 29)

1,2,3,4,7,10, 13, 22, 27, 29, 39, 41, 48,
56,57, 58, 67, 78, 86, 89

(32,0,32,0,31)

1,2,3,4,7,10,12, 13, 29, 33, 40, 43,
53,56, 59, 78, 79, 80, 85, 94

(28,0, 40,0, 27)

1,2,3,4,7,10,12,13,29, 33, 40,43, 53,
55,56, 78, 82, 83, 85, 93

(28,4, 32,4, 27)

161

1,2,3,4,5,8,17,29, 31, 33, 37, 53,
60,61, 64,69, 76, 77,83, 84

(32,4, 24, 4, 31)

1,2,3,4,5,8, 21,22, 29, 37, 46, 48,
52,68,71,74,77,81,84,95

(34, 4, 20, 4, 33)

1,2,3,4,5,8,17,20,29, 33,37, 46, 47,
53,64,69,73,76,77,83

(32,3, 26,3,31)

162

1,2,3,4,5,10, 13,22, 29, 30, 32, 34,
39,42, 67,69, 73, 76, 86, 92

(32,2, 28,2,31)

1,2,3,4,5,10,13,22,29, 30, 32, 34, 38,
39,47,69,70,76,92,95

(32,0,32,0,31)

1,2,3,4,5,8,17, 30, 32, 36, 38, 54, 65,
67,68,69,75,77,83, 88

(30, 8, 20,8, 29)

1,2,3,4,5,8,17, 20, 30, 32, 36, 46,
47,54,65,69,73,75,77,83

(30,7,22,7,29)

164

1,2,3,4,5,10,13,27, 39,44, 50, 57,
59,63, 76, 80, 85,86, 87,95

(34,4, 20, 4, 33)

1,2,3,4,5,8,21,22,30, 36, 38, 42,47,
48,60, 77,81,91,93,95

(32,8, 16,8, 31)

165

1,2,3,4,5,9,21,22,27, 46, 48, 50,
56,61, 66,79, 86,88, 89,96

(34,4, 20, 4, 33)

166

1,2,3,4,5,8,9,13,21,22, 24,48,
52,61,63,67,71,73,90,94

(34,4, 20, 4, 33)

167

1,2,3,4,10,11,13,17, 27, 33, 39, 40,
95,57,63,68,70,72,73,83

(30,6, 24, 6, 29)

1,2,3,4,10, 11, 13, 17, 27, 33, 39, 40, 42,
47,55, 57,72, 83, 85,88

(32,0,32,0,31)

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #RS&

13



1,2,3,4,10, 11,13, 17, 22, 27, 55, 62,
63, 64,67, 69, 75, 76, 86, 88

(26, 6, 32, 6, 25)

1,2,3,4,10, 11,13, 17, 22, 27, 55, 56,
60, 62, 64,69, 75, 76, 82, 84

(32,2,28,2,31)

1,2,3,4,10, 11,13, 17,22, 27, 42, 46,
55, 62,64, 69, 71,73, 75,76

(28,2, 36,2,27)

1,2,3,4,5,13,21,22, 25, 27, 42, 47
48,50, 58, 59, 62, 75, 85, 88

(30,2, 32, 2, 29)

1,2,3,4,5,11, 13, 22, 27, 43, 52, 55,
63, 68,70,72,73,81,82,93

(26, 10, 24, 10, 25)

1,2,3,4,5,11, 13,22, 27, 42, 43, 47,
52,55, 72, 81,82, 85,88, 93

(28,4,32,4,27)

1,2,3,4,5,11, 13, 22,27, 31, 43, 55,
63, 68,70, 72,73, 84,90, 91

(28,6,28, 6, 27)

1,2,3,4,5,11, 13, 20, 22, 27, 43, 52, 55,
67,71,72,81,82,93,95

(28,0,40,0,27)

1,2,3,4,5,8, 21,22, 30, 42, 47, 48, 50,
52,60, 66, 81, 86, 88, 96

(34,2, 24,2, 33)

168

1,2,3,4,5,14,27, 30, 32, 36, 44, 50,
56, 57,76, 80,81,82,87,94

(34, 4, 20, 4, 33)

1,2,3,4,5,8, 21,22, 30, 42, 47, 48,
50,52, 60, 66, 81, 86, 88, 96

(34,3,22,3,33)

1,2,3,4,5,8,21, 22,29, 37, 43, 48, 52,
58,60, 65, 68, 73, 75, 77

(36,3, 18,3, 35)

169

1,2,3,4,5,8,14, 24, 30, 33, 37, 54,
56,64,72,75,81,82,83,94

(32,8, 16,8, 31)

170

1,2,3,4,5,13,21,22,27,47, 48, 50,
52,59,63,70,74, 84, 88,94

(34,4, 20, 4, 33)

1,2,3,4,5,10,13,27, 39,44, 50, 57,
59,63, 76, 80, 85,86, 87,95

(32,4, 24,4, 31)

1,2,3,4,5,10,13,27, 38, 39, 44, 50, 57,
59,67, 68,76, 80, 87, 88

(32,2,28,2,31)

1,2,3,4,5,9,21,22,36,47,48,51, 55,
56,70, 78,84, 85, 88, 96

(32,8, 16,8, 31)

1,2,3,4,5,9,13,21,22,48,52, 55, 56,
61,63,68,70,73,77,91

(34,2, 24,2, 33)

172

1,2,3,4,5,8,21, 22, 36,42, 48, 51, 52,
59,60, 63, 68, 73, 81, 90

(34,4, 20, 4, 33)

173

1,2,3,4,5,13,21,22, 30,46, 48, 50,
95,61, 82,85, 88,89, 93, 96

(34,4, 20, 4, 33)

1,2,3,4,5,8,17,24, 33, 39, 52, 57,
99,65, 66, 78,79, 80,92,93

(32,8, 16,8, 31)
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174

1,2,3,4,5,8, 21,22, 24, 31,42, 47, 48,
59,66, 78, 81, 86, 88, 96

(32,4, 24, 4, 31)

1,2,3,4,5,6,7,14,23,28, 33, 46, 51,
53,56,72,79,85,87,92

(34, 4, 20, 4, 33)

1,2,3,4,5,6,7,10, 20, 23, 39, 44,
50, 57,63, 76,79,80, 87,94

(34,1, 26,1, 33)

175

1,2,3,4,5,8,9,21, 22, 37, 42, 48, 51,
52,60, 68, 73,82, 90, 95

(34, 4, 20, 4, 33)

177

1,2,3,5,6, 15, 17, 22, 24, 26, 29, 44,
56,63,67,71,73,78,79,94

(34,7,14,7,33)

205

1,2,3,5,7,9,10,22,27,32,37, 38,41,
48,56,57,65,71,76, 86

(32,8,16,8,31)

1,2,3,5,7,9,10, 14, 22,27, 28, 37, 45, 57,
60, 65, 68, 73,76, 87

(34,4, 20, 4, 33)

1,2,3,5,7,9,10,12, 16, 33, 38, 51, 56,
64,70,76, 80, 82,84,92

(30,8, 20, 8, 29)

206

1,2,3,5,7,9, 14, 22,27, 31, 37, 41, 48,
56,57, 60, 65, 76, 86, 89

(34,2,24, 2, 33)

1,2,3,5,7,9,12, 14, 31, 40, 43, 56, 58,
68,71,75,78,85,88,89

(32,4, 24, 4, 31)

1,2,3,5,7,9, 11,12, 14, 29, 40, 43, 51,
61,62,77,78,81, 85,96

(32,2,28,2, 31)

1,2,3,5,7,9,11,12, 14, 29, 34, 40,
43,51,78,81,84,85,91, 92

(32,3,26,3,31)

209

1,2,3,6,7,9,10, 15,28, 33, 39, 44,
47,48, 53,57,66, 76, 85,95

(32,4, 24,4, 31)

210

1,2,3,6,7,9,10, 15,28, 33,39, 44, 45,
53,57,68,69, 76, 85, 89

(34,3,22,3,33)

1,2,3,6,7,9,10, 15,27, 28,32, 44, 38,
64,67,68,69,71,72,90

(34, 4,20, 4, 33)

212

1,2,3,6,7,9,10,15,27,28, 30,41, 46,47,
60, 64, 65, 87, 89,90

(30,8, 20, 8, 29)

1,2,3,6,7,9,10, 15,27, 28, 30, 39, 47,
65, 66,69, 70, 78,81, 89

(34,4, 20, 4, 33)

1,2,3,6,7,9,10, 15,27, 28, 30, 32, 46,
47,64, 65, 66,69, 75,89

(32,8, 16,8, 31)

1,2,3,6,7,9,10,12, 15, 23, 28, 37, 46,
53,72,76,81, 85, 86, 88

(30,7,22,7,29)

218

1,2,3,6,7,9,10,12, 15,19, 32, 39, 51,
56,69, 72,73, 85, 86,90

(32,4, 24,4, 31)

1,2,3,4,7,10, 13, 26, 34, 39, 44, 52,
66, 63, 84, 85, 87, 88,91, 92

(32,2,28,2,31)
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1,2,3,4,7,10, 11, 13, 31, 34, 39, 41,
44, 48,71, 82,85, 92,93, 95

(32,0,32,0,31)

1,2,3,4,7,8,10,22, 30, 32, 33, 36, 41,
52,57,64,72,73,85,95

(34,2, 24,2, 33)

1,2,3,4,7,8,10, 19, 21, 23, 36, 48, 52,
54,58, 60, 70, 75, 86, 95

(32,3,26,3,31)

219

1,2,3,5,7,11, 14, 19, 23, 28, 32, 56,
67,73,75,78,81, 85, 86, 87

(32,0,32,0,31)

1,2,3,4,7,10,12, 13, 22, 26, 43, 52, 53,
58,61, 62,70,77,90,96

(30, 4, 28, 4, 29)

220

1,2,3,4,6,10, 11, 13, 27, 38, 44, 53,
56,59, 61, 66,67, 71,72, 88

(32,2,28,2, 31)

1,2,3,4,6,10,11, 12, 13, 32, 38, 44,
45, 46, 55, 69, 74, 82, 86, 95

(32,0,32,0,31)

221

1,2,3,4,6,9,16, 20, 25, 26, 46, 53, 58,
59,72,74,77,79,82,84

(30, 4, 28, 4, 29)

1,2,3,4,6,9,16, 20, 22, 25, 26, 53, 59,
62,74,77,79,81,82,89

(32,0,32,0,31)

1,2,3,4,6,9, 14, 15,22, 31, 34, 37, 41,
47,64,70,74,83, 84,91

(30, 1,34, 1, 29)

1,2,3,4,6,8,10, 18, 34, 39, 51, 52, 54,
61,63, 66, 80,90, 91, 96

(32,4, 24, 4, 31)

1,2,3,4,6,8,10, 18, 22, 34,39, 48, 51,
52,61, 63, 66, 70, 89, 91

(32,3,26,3,31)

223

1,2,3,4,6,9,13,20,23,25,46, 47, 49,
54,58,65, 72,84, 88,96

(34,4, 20, 4, 33)

225

1,2,3,4,5,6,11,13,19, 28, 58, 63, 69,
73,83, 85,87,91,94, 96

(34,6, 16, 6, 33)

1,2,3,4,6,8,10,12,15,17, 31, 36, 42,47,
48,66, 89,91, 92,93

(37,6, 10, 6, 36)

1,2,3,4,5,13,15,19, 20, 28, 29, 36, 48,
56,59, 62, 74, 85, 86, 96

(36,6, 12,6, 35)

230

1,2,3,4,7,10, 11, 13,31, 34, 39, 41,
44,72,73, 80, 85, 86,91, 94

(30,2, 32, 2, 29)

1,2,3,4,7,10,11, 13,27, 31, 32, 40, 43,
58,61, 77,80, 85,90, 94

(30,1, 34, 1, 29)

231

1,2,3,4,5,6,8, 12, 30,39, 42, 44, 54,
55,67, 70,72, 75,84, 86

(30,2, 32, 2, 29)

1,2,3,4,5,6,8, 12,19, 32, 34, 40, 42,
46,65, 72, 75, 86, 90, 93

(30,1, 34, 1, 29)
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