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Abstract

In this paper, we study the flexibility of embeddings of bouquets of circles on
the projective plane and the Klein bottle. The numbers (of equivalence classes) of
embeddings of bouquets of circles on these two nonorientable surfaces are obtained
in explicit expressions. As their applications, the numbers (of isomorphism classes)
of rooted one-vertex maps on these two nonorientable surfaces are deduced.

1 Introduction

A surface is a compact 2-dimensional manifold without boundary. It can be represented
by a polygon of even edges in the plane whose edges are pairwise identified and directed
clockwise or counterclockwise. Such polygonal representations of surfaces can be also
written by words. For example, the sphere is written as O0 = aa− where a− is paired with
a, but with the opposite direction of a on the boundary of the polygon. The projective
plane, the torus and the Klein bottle are represented respectively by aa, aba−b− and

aabb. In general, Op =
p
∏

i=1

aibia
−
i b−i and Nq =

q
∏

i=1

aiai denote, respectively, a surface of

orientable genus p and a surface of nonorientable genus q. Of course, N1, O1 and N2

are, respectively, the projective plane, the torus and the Klein bottle. Every surface is
homeomorphic to precisely one of the surface Op (p ≥ 0), or Nq (q ≥ 1) [9,14]. Suppose
A = a1a2 · · ·at, t ≥ 1, is a word, then A− = a−

t · · ·a−
2 a−

1 is called the inverse of A.
Let S be the collection of surfaces and let AB be a surface. The following topological

transformations and their inverses do not change the orientability and genus of a surface:

TT 1: Aaa−B ⇔ AB where a /∈ AB, TT 2: AabBab ⇔ AcBc where c /∈ AB and
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TT 3: AB ⇔ (Aa)(a−B) where AB 6= ∅.

Notice that A and B are both linear orders of letters and permitted to be empty. The
parentheses stand for cyclic order when more than one cyclic orders occur, for distin-
guishing from one to another. In fact, what is determined under these operations is just
a topological equivalence ∼ on S.

The following relations can be deduced by using TT 1-3, as shown in, e.g.,[9].

Relation 1: (AxByCx−Dy−) ∼ ((ADCB)(xyx−y−)),
Relation 2: (AxBx) ∼ ((AB−)(xx)),
Relation 3: (Axxyzy−z−) ∼ ((A)(xx)(yy)(zz)).

In these three relations, A, B, C, and D are all linear orders of letters and permitted to be
empty. Parentheses are always omitted when unnecessary to distinguish cyclic or linear
order.

An embedding of a graph G into a surface S is a homeomorphism h : G → S of G into
S such that every component of S − h(G) is a 2-cell. Two embeddings h : G → S and
g : G → S of G into a surface S are said to be equivalent if there is a homeomorphism
f : S → S such that f ◦ h = g.

Given a graph G, how many nonequivalent embeddings of G are there into a given
surface. This is one of important problems in embedding flexibility, i.e, the classification
problem [16]. Research on this problem can be tracked back to [3] and some results have
been obtained, such as [1-2,4-8,15-18,20-21,23] etc.

In the following, we will introduce the joint tree model of a graph embedding, which
was established in [9] by Liu, based on his initial work in [10]. Some works have been
done based on the joint tree method [5,20-21,23].

Given a spanning tree T of a graph G, for 1 ≤ i ≤ β, we split each cotree edge ei into
two semi-edges and label them by the same letter as ai where β is the betti number of G.
The resulting graph is a tree consisting of tree edges in T and 2β semi-edges. We denote
this new tree by T̂ . Then indexing the 2β semi-edges of T̂ by +(always omitted) or −, so
that the indices of each pair of semi-edges labelled with same letter can be the same or
distinct. A rotation at a vertex v, denoted by σv, is a cyclic permutation of edges incident
with v. Let σG =

∏

v∈V (G) σv be a rotation system of G.

The tree T̂ with an index of each semi-edge and a rotation system of G is called a joint

tree of G. Denote by T̂ δ
σ the joint tree, in which δ = (δ1, δ2, · · · , δβ) be a binary vector,

δi can be 0 or 1 where δi = 0 means that the two indices of ai are distinct; otherwise,
the same. In fact, the edge ai with δi = 1 are the twisted edge [7] in the embedding. By
reading these lettered semi-edges with indices of a T̂ δ

σ in a fixed orientation (clockwise
or counterclockwise), we can get an algebraic representation for a surface. It is a cyclic
order of 2β letters with indices. Such a surface is called an associated surface [11] of G. If
two associate surfaces of G have the same cyclic order with the same δ in their algebraic
representations, then we say that they are the same; otherwise, distinct.

From [11], there is a 1-to-1 correspondence between associate surfaces and embeddings
of a graph, hence an embedding of a graph on a surface can be represented by an associate
surface of it.
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Let G be a graph, gp(G), g̃q(G), p ≥ 0, q ≥ 1 be the numbers (of equivalence classes)
of embeddings of G on the surface of orientable genus p and nonorientable genus q, re-
spectively.

Denote the bouquet of n circle by Bn. Gross et al obtain the genus distribution of
Bn [4], Kwak and Lee obtained the total embedding polynomial of Bn+1 from that of Bn

inductively and derive the total genus distribution of Bn+1 from it in [7], but we can’t
get the numbers of embeddings of Bn on nonorientable surfaces from their results easily
and directly. In this paper, by joint tree model, we study the flexibility of embeddings of
Bn on the projective plane and the Klein bottle. The numbers of embeddings of Bn on
these two nonorientable surface are obtained in explicit expressions. Then the structures
of those embeddings are described. As their applications, the numbers (of isomorphism
classes) of rooted one-vertex maps on these two nonorientable surfaces are deduced.

2 Some Lemmas

Lemma 2.1[11] An orientable surface S is a surface of orientable genus 0 if and only

if there is no form as AxByCx−1Dy−1 in it.

Lemma 2.2 Let S be a nonorientable surface, if there is a form as AxByCx−Dy− in

S, then the genus of S will be not less than 3; if there is a form as AxByCx−Dy or

AxByCyDx in S, then the genus of S will be not less than 2.

Proof: If the form as AxByCx−Dy− exists in S, by Relation 1, AxByCx−Dy−

∼ ADCBxyx−y−, and there is at least one pair of semi-edges z, zε with same indices,
because S is nonorientable. By Relation 1-3, we can get S ∼ A′zzxyx−y−∼ A′zzxxyy.
So the genus will be not less than 3.

If the form as AxByCx−Dy exists, by using Relation 2 twice, we get that
AxByCx−Dy ∼ AxBD−xC−yy ∼ ADB−C−xxyy, so the genus of S will be not less than
2. In the same way, we can get that the genus of S where the form AxByCyDx exists
will be not less than 2. Thus the proof is complete. �

The following lemma can be got from both [4] and [9] easily.

Lemma 2.3[4,9] The number of embeddings of Bn on the sphere is

g0(Bn) = (n − 1)!2n−1

(

2n

n

)

n + 1
.

The Catalan sequence is the sequence C0, C1, C2, . . . , Cn, . . . where Cn =
(2n

n )
n+1

(n =
0, 1, 2, . . .) is the nth Catalan number. Let F (x) =

∑

n≥0

Cnxn be the generating function of

{Cn}n≥0, then F (x) = 1−
√

1−4x

2x
[19].
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Lemma 2.4 For integers n ≥ k ≥ 0, we have

∑

x1+···+x2k=n−k

xj≥0,1≤j≤2k

2k
∏

j=1

(

2xj

xj

)

(xj + 1)
=

2k(2n − 1)!

(n − k)!(n + k)!
.

Proof: For F (x) = 1−
√

1−4x

2x
=

∞
∑

n=0

Cnxn, from [19],

F m(x) =

∞
∑

n=0

m(2n + m − 1)!

n!(n + m)!
xn, m ≥ 1, (1)

and

F m(x) = (
∞
∑

n=0

Cnxn)m =
∞
∑

n=0

(
∑

x1+···+xm=n

xj≥0,1≤j≤m

m
∏

j=1

Cxj
)xn, (2)

from (1) and (2), we can get that

∑

x1+···+xm=n

xj≥0,1≤j≤m

m
∏

j=1

Cxj
=

m(2n + m − 1)!

n!(n + m)!
.

Let m = 2k, n = n − k, the lemma follows. �

3 The number of embeddings of bouquets of circles

on the projective plane

Let S be a surface. If x, y ∈ S are in the form as S = AxByCxDy, then they are said to
be interlaced; otherwise, parallel.

Theorem 3.1 All the associate surfaces of Bnon the projective plane have the form as

A1a1 · · ·AkakAk+1a1 · · ·A2kak, 1 ≤ k ≤ n

in which Ai is either empty or Ai ∼ O0, 1 ≤ i ≤ 2k.

Proof: Suppose that there are k (1 ≤ k ≤ n) twisted edges a1, . . . , ak in the embedding
of Bn on the projective plane. When k ≥ 2, each pair of ai, aj, i 6= j must be interlaced in
the associate surface, otherwise its nonorientable genus will be greater than one, according
to Relation 2. So the associate surfaces have the form as A1a1 · · ·AkakAk+1a1 · · ·A2kak,
it still holds when k = 1. For 2(n − k) semi-edges corresponding to the n − k untwisted
edges in Ai, 1 ≤ i ≤ 2k, we have ∀x ∈ Ai, x

− ∈ Ai, by Lemma 2.2. And according to
Relation 2,

A1a1 · · ·AkakAk+1a1 · · ·A2kak ∼ A1A
−
k+1a

−
k A−

k · · ·a−
2 A−

2 Ak+2a2 · · ·A2kaka1a1.
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A1a1 · · ·AkakAk+1a1 · · ·Ak+kak ∼ N1

⇔ A1A
−
k+1a

−
k A−

k · · ·a−
2 A−

2 Ak+2a2 · · ·A2kak ∼ O0

⇔ Ai ∼ O0, 1 ≤ i ≤ 2k.

Thus the theorem is obtained. �

The structure of the embeddings of Bn on the projective plane is shown in Fig.1.

R

I
A1

A2

A2k

Ak+1

Ak

Ak+2

a1

a1

a2

a2

ak−1

ak−1

ak

ak

Fig.1 Bn on the projective plane

Theorem 3.2 The number of the embeddings of Bn on the projective plane is

g̃1(Bn) = (n − 1)!2n−1

(

22n−1 −
(2n)!

2(n!)2

)

.

Proof: By the joint tree method, there are
(

n

k

)

(k − 1)!2k−1 ways to choose and place
the k, 1 ≤ k ≤ n twisted edges, corresponding to 2k semi-edges a1, a1, . . . , ak, ak, in the
associate surface. Suppose that there are 2xj semi-edges in Aj, 1 ≤ j ≤ 2k, then each of
the 2xj semi-edges can be the first semi-edge in Aj, i.e., each of the 2xj letters can be the
first letter in the liner order of letters Aj. According to Theorem 3.1 and Lemmas 2.3,
2.4, the number of ways to put 2(n − k) semi-edges, corresponding to n − k untwisted
edges, into A1, . . . , A2k is

∑

x1+···+x2k=n−k

xj≥0,1≤j≤2k

(n − k)!

x1!x2! · · ·x2k!

2k
∏

j=1

(

2xjg0(Bxj
)
)

= 2n−k(n − k)!
∑

x1+···+x2k=n−k

xj≥0,1≤j≤2k

2k
∏

j=1

(

2xj

xj

)

(xj + 1)

=
2n−k+1k(2n − 1)!

(n + k)!
.

For 1 ≤ k ≤ n, the number of embeddings of Bn on the projective plane is

n
∑

k=1

(

n

k

)

(k − 1)!2k−12n−k+1k(2n − 1)!

(n + k)!
= (n − 1)!2n−1

n
∑

k=1

(

2n

n − k

)

,

by simplification, the theorem is obtained. �
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4 The number of embeddings of bouquets of circles

on the Klein bottle

There are at least 4 edges in the polygonal representations of the Klein bottle. And there
are only two ways, i.e., aabb and abab−. From those words, the associate surfaces of Bn

on the Klein bottle can be classified into two cases, according to the places of the twisted
edges. Case 1, all the twisted edges are of the form

A1a1 · · ·AiaiAi+1a1 · · ·A2iaiD1b1 · · ·DjbjDj+1b1 · · ·D2jbj, i, j ≥ 1, i + j ≤ n;

Case 2, all the twisted edges are of the form

A1a1 · · ·AkakAk+1a1 · · ·A2kak, 1 ≤ k ≤ n − 1;

in which A1, . . . , A2i, D1, . . . , D2j can be empty.

Theorem 4.1 The associate surfaces in Case 1 are Klein bottles if and only if one of

the following two conditions holds:

(1) A1D1 ∼ O0, At ∼ Dk ∼ O0, t ∈ [2, 2i], k ∈ [2, 2j];
(2) Ai+1Dj+1 ∼ O0, At ∼ Dk ∼ O0, t ∈ [1, i] ∪ [i + 2, 2i], k ∈ [1, j] ∪ [j + 2, 2j].

Proof: By using Relation 2 twice,
A1a1 · · ·AiaiAi+1a1 · · ·A2iaiD1b1 · · ·DjbjDj+1b1 · · ·D2jbj

∼ A1a1 · · ·Ai−1ai−1AiA
−1
2i a−1

i−1A
−1
2i−1 · · ·a

−1
1 A−1

i+1

D1b1 · · ·Dj−1bj−1DjD
−1
2j b−1

j−1D
−1
2j−1 · · · b

−1
1 D−1

j+1aiaibjbj (∗)

(∗) ∼ N2 ⇔ A1a1 · · ·Ai−1ai−1AiA
−1
2i a−1

i−1A
−1
2i−1 · · ·a

−1
1 A−1

i+1

D1b1 · · ·Dj−1bj−1DjD
−1
2j b−1

j−1D
−1
2j−1 · · · b

−1
1 D−1

j+1 ∼ O0

⇔ AiA
−1
2i ∼ · · · ∼ A2A

−1
i+2 ∼ DjD

−1
2j ∼ · · · ∼ D2D

−1
j+2

∼ A1A
−1
i+1D1D

−1
j+1 ∼ O0

Because the semi-edges in At, Bk, 1 ≤ t ≤ 2i, 1 ≤ k ≤ 2j, are all corresponding to
untwisted edges, according to Lemma 2.1,

∀x ∈ At, x
−1 ∈ At, t 6= 1, i + 1, ∀y ∈ Dk, y

−1 ∈ Dk, k 6= 1, j + 1.

At ∼ Dk ∼ O0, t 6= 1, i + 1, k 6= 1, j + 1.

For the same reason,

∀x ∈ A1, x
−1 ∈ A1 or x−1 ∈ D1; ∀y ∈ Ai+1, y

−1 ∈ Ai+1 or y−1 ∈ Dj+1.

If ∀x ∈ A1, x
−1 ∈ A1 and ∀y ∈ D1, y

−1 ∈ D1, then

A1A
−1
i+1D1D

−1
j+1 ∼ O0 ⇔ A1 ∼ D1 ∼ O0, Ai+1Dj+1 ∼ O0.
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The condition 2 holds.
If ∃x ∈ A1, x

−1 ∈ D1, or ∃y ∈ D1, y
−1 ∈ A1, then ∀x ∈ Ai+1, x

−1 ∈ Ai+1, ∀y ∈ Dj+1,
y−1 ∈ Dj+1, according to Lemma 2.1. Hence we have that

A1A
−1
i+1D1D

−1
j+1 ∼ O0 ⇔ A1D1 ∼ O0, Ai+1 ∼ Dj+1 ∼ O0.

The condition 1 holds. If A1 = ∅, then D1 ∼ A−
i+1D

−
j+1 ∼ O0, the condition 2 holds.

Above all, we get the conclusion. �

Theorem 4.2 The associate surfaces in Case 2 are Klein bottles if and only if one of

the following k conditions holds: AiA
−1
k+i ∼ N1, Aj ∼ O0, j 6= i, i + k, 1 ≤ i ≤ k.

Proof: By Relation 2,

A1a1 · · ·AkakAk+1a1 · · ·Ak+kak ∼ N2

⇔ A1a1 · · ·Ak−1ak−1AkA
−1
2k a−1

k−1A
−1
2k−1 · · ·a

−1
1 A−1

k+1 ∼ N1,

according to Lemma 2.2, the theorem follows. �

The structures of the embeddings of Bn on the Klein bottle in Cases 1 and 2 are shown
in Fig.2 and Fig3, respectively. Fig.2 describes the condition (1) in Theorem 4.1, Fig.3
describes the condition A1A

−
k+1 ∼ N1, Aj ∼ O0, j 6= 1, 1 + k, in Theorem 4.2.

-

?�

6

a

a

b

b

a1

a1

a2

a2

ai

ai

b1

b1

b2

b2

bj

bj

A1

D1

Ai+1

Dj+1

6
-

6

�

a

b b
−

a

A1Ak+1

a1a2

a1 a2 ak

ak

Fig.2 Bn on the Klein bottle in Case 1 Fig.3 Bn on the Klein bottle in Case 2

For convenience, we write
∑

x1+···+x2k=n−k

xj≥0,1≤j≤2k

2k
∏

j=1

(2xj
xj

)
(xj+1)

as G(n, k) in the following.

Theorem 4.3 The number of embeddings of Bn on the Klein bottle in Case 1 is

g̃1
2(Bn) = (n − 1)!2n−1

n
∑

t=1

t(t − 1)2

(

2n

n − t

)

.

Proof: For the symmetry, we suppose that i ≤ j. For the convenience of calculation, we
subdivide the two conditions in Theorem 4.1 into there conditions as follows:
a) At ∼ Dk ∼ O0, 1 ≤ t ≤ 2i, 1 ≤ k ≤ 2j.
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b) A1D1 ∼ O0, At ∼ Dk ∼ O0, t, k 6= 1.
c) Ai+1Dj+1 ∼ O0, At ∼ Dk ∼ O0, t 6= i + 1, k 6= j + 1.
We discuss the three conditions respectively, as follows.

a) If j > i, the number of ways to choose and place b1, · · · , bj is
(

n

j

)

(j − 1)!2j−1,

then the number of ways to choose and place a1, · · · , ai is
(

n−j

i

)

i!2i2j, similar with the
argument in the proof of Theorem 3.2, the number of ways of embeddings of the n− i− j
untwisted edges is 2n−j−i(n− j − i)!G(n, j + i). Hence, for the given i and j, the number
of embeddings is 2n

(

n

j

)

(j − 1)!
(

n−j

i

)

i!j(n − j − i)!G(n, j + i) = n!2nG(n, j + i).

For 1 ≤ i ≤ bn
2
c, i+1 ≤ j ≤ n− i, the number of embeddings of Bn on the Klein bottle is

n!2n

bn
2
c

∑

i=1

n−i
∑

j=i+1

G(n, j + i) = n!2n

n
∑

t=3

(d
t

2
e − 1)G(n, t).

If j = i, for the symmetry, the number of embeddings is 1
2
n!2n

bn
2
c

∑

i=1

G(n, 2i).

So the number of embeddings of Bn on the Klein bottle in condition a) is

g̃1a
2 (Bn) = n!2n

(

n
∑

t=3

(d
t

2
e − 1)G(n, t) +

1

2

bn
2
c

∑

i=1

G(n, 2i)
)

= n!2n−1

n
∑

t=2

(t − 1)G(n, t).

b) Let M = {r | r ∈ A1, r
−1 ∈ D1}, m = |M | ≥ 1. The argument is similar with that

of condition a). If j > i, the number of embeddings is

n!2n

bn
2
c

∑

i=1

n−i−1
∑

j=i+1

n−j−i
∑

m=1

G(n, j + i + m)

= n!2n

n
∑

t=4

t−1
∑

k=3

(d
k

2
e − t − 3)G(n, t)

= n!2n

n
∑

t=4

(d
t

2
e − 1)(b

t

2
c − 1)G(n, t).

If j = i, the number of embeddings is

1

2
n!2n

bn
2
c

∑

i=1

n−2i
∑

m=1

G(n, 2i + m) =
1

2
n!2n

n
∑

t=3

(d
t

2
e − 1)G(n, t).
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So the number of embeddings of Bn on the Klein bottle in condition b) is

g̃1b
2 (Bn) = n!2n

n
∑

t=3

(

(d
t

2
e − 1)(b

t

2
c − 1) +

1

2
(d

t

2
e − 1)

)

G(n, t)

= n!2n−2
n
∑

t=3

(t − 1)(t − 2)G(n, t).

For the symmetry, the number of embeddings of Bn on the Klein bottle in condition c) is
g̃1c

2 (Bn) = g̃1b
2 (Bn).

So the number of embeddings of Bn on the Klein bottle in Case 1 is

g̃1
2(Bn) = g̃1a

2 (Bn) + g̃1b
2 (Bn) + g̃1c

2 (Bn)

= n!2n−1
n
∑

t=1

(t − 1)2G(n, t) = (n − 1)!2n−1
n
∑

t=1

t(t − 1)2

(

2n

n − t

)

,

the theorem is obtained. �

Theorem 4.4 The number of embeddings of Bn on the Klein bottle in Case 2 is

g̃2
2(Bn) = (n − 1)!2n−1

n
∑

t=1

t(t − 1)

(

2n

n − t

)

.

Proof: The number of ways to choose and place a1, · · · , ak is
(

n

k

)

(k−1)!2k−1, then choose
one of the k conditions in Theorem 4.2. Suppose we choose AkA

−1
2k ∼ N1, then AkA

−1
2k

has the form as Ã1t1 · · · Ã|Γ|t|Γ|Ã|Γ|+1t1 · · · Ã2|Γ|t|Γ|, according to Theorem 3.1, in which
Γ = {t | t ∈ Ak and t−1 ∈ A2k}. Let m = |Γ|, then 1 ≤ m ≤ n− k, the number of ways to
place the m untwisted edges is

(

n−k

m

)

m!2m. And the number of ways to put the 2(n−k−m)

semi-edges, corresponding to the left n − k − m untwisted edges, into Aj, Ãi such that
Aj ∼ Ãi ∼ O0, j ∈ [1, k−1]∪ [k+1, 2k−1], 1 ≤ i ≤ 2m is 2n−k−m(n−k−m)!G(n, k+m).
Hence, the number of embeddings is

n!2n−1

n−1
∑

k=1

n−k
∑

m=1

G(n, k + m) = n!2n−1

n
∑

t=2

(t− 1)G(n, t) = (n− 1)!2n−1

n
∑

t=1

t(t− 1)

(

2n

n − t

)

,

the theorem is obtained. �

Theorem 4.5 The number of embeddings of Bn on the Klein bottle is

g̃2(Bn) = n!2n−1

(

(2n − 1)!
(

(n − 1)!
)2 − 4n−1

)
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Proof: The number of embeddings of Bn on the Klein bottle is g̃2(Bn) = g̃1
2(Bn)+g̃2

2(Bn),

according to Theorems 4.3, 4.4, g̃2(Bn) = (n − 1)!2n−1
n
∑

t=1

t2(t − 1)
(

2n

n−t

)

. By calculation

and certain simplification, one can get that

n
∑

t=1

t2(t − 1)

(

2n

n − t

)

= n

(

(2n − 1)!
(

(n − 1)!
)2 − 4n−1

)

,

thus the theorem follows. �

Examples

According to Theorems 3.2, 4.5, one can calculate the numbers of embeddings of Bn on
the projective plane and Klein bottle easily, give these numbers g̃1(Bn), g̃2(Bn), 1 ≤ n ≤ 8
as follows:

B1 B2 B3 B4 B5 B6 B7 B8

g̃1(Bn) 1 10 176 4464 148224 6090240 298414080 16987944960
g̃2(Bn) 0 8 336 14592 718080 40273920 2553384960 181129052160

Note that the numbers in the table are coincident with those in Table 1 given in [7] by
Kwak and Lee.

5 Applications

A map is an embedding of a graph on a surface, the graph is called the underlying graph

of the map. The enumeration of maps on surfaces have been developed and deepened by
people, based on the initial works by W.T.Tutte in the 1960s. The reader is referred to the
monograph [12] for further background about enumerative theory of maps. For a given
graph Γ, the relations between its genus distribution of rooted maps and genus distribution
of embeddings on orientable and nonorientable surfaces are given in [13]. We adopt the
same notations as that in [13], where r[Γ](x)(r̃[Γ](x)) and g[Γ](x)(g̃[Γ](x)) denote rooted
orientable (nonorientable) map polynomial on genus and orientable (nonorientable) genus
polynomial of Γ, respectively.

Theorem 5.1[13] For a connected graph Γ

|Aut 1

2

Γ|r[Γ](x) = 2ε(Γ)g[Γ](x)

and

|Aut 1

2

Γ|r̃[Γ](x) = 2ε(Γ)g̃[Γ](x)

where Aut 1

2

Γ and ε(Γ) denote the semi-arc automorphism group and the size of Γ.
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From [13], |Aut 1

2

Bn| = 2nn!, by Theorems 3.2, 4.5 and 5.1, one can get the number

(of isomorphism classes) r̃i(Bn) of rooted maps with the underlying graph Bn on the
nonorientable surface of genus i (i = 1, 2).

Corollary 5.1 The number of rooted maps with the underlying graph Bn on the projec-

tive plane is

r̃1(Bn) = 22n−1 −
(2n)!

2(n!)2
.

Corollary 5.2 The number of rooted maps with the underlying graph Bn on the Klein

bottle is

r̃2(Bn) = n

(

(2n − 1)!
(

(n − 1)!
)2 − 4n−1

)

.

The rooted maps with the underlying graph Bn is also called one-vertex maps. In
[22], the numbers of one-vertex maps on the projective plane and the Klein bottle are also
obtained, by enumerating functional equation. The result in Corollary 5.1 is the same to
that in [22], and the result in Corollary 5.2 is in much simpler form than that in [22].
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