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Abstract
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graph and use them to settle affirmatively a conjecture of Ku regarding the least
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1 Introduction

Let G be a finite group and S ⊆ G a symmetric subset of generators (s ∈ S ⇒ s−1 ∈ S)

satisfying 1 6∈ S. The Cayley graph Γ(G, S) has the elements of G as its vertices, and

two elements u, v ∈ G are joined by an edge provided vu−1 = s for some s ∈ S. 1 It

is clear that Γ(G, S) is regular of vertex degree |S|. Let Sn be the symmetric group of

permutations of X = {1, 2, . . . , n}, and let Dn := {σ ∈ Sn : σ(x) 6= x, ∀x ∈ X} denote

∗I would like to thank Cheng Ku for bringing his conjecture to my attention and for many stimulating

discussions, David Wales for pointing out a discrepancy in an earlier draft, Rick Wilson and the mathe-

matics department of the California Institute of Technology for their kind hospitality, and the referee for

suggesting several improvements in the exposition.
1The condition 1 6∈ S precludes loops, while the symmetry condition allows us to consider the graph

as being undirected.
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the derangements on X, namely the set of fixed point free permutations of Sn. (Note that

Dn is symmetric in the above sense, as the inverse of a derangement is a derangement.)

We call Γn := Γ(Sn,Dn) the derangement graph on X. Much is known about this graph:

• Γn is connected (n > 3). This follows because every permutation can be written as

the product of adjacent transpositions (k, k+1), and these, in turn, can be expressed

as the product of the two derangements (1, 2, . . . , n)2 and (n, n−1, . . . , 1)2(k, k+1).

(If n = 3 this fails because the product of two odd permutations is even.) Thus, for

n > 3 the derangements generate Sn, which means that every vertex of Γn can be

reached from the identity. To ensure Γn is connected we therefore assume n ≥ 4 in

all that follows.

• Γn is Hamiltonian. This was first observed by Eggleton and Wallis [7] and subse-

quently by others (see, e.g., [18]).

• α(Γn) = (n − 1)!, where α is the independence number. This was first proved by

Deza and Frankl [5], who also observed that the bound is achieved by a coset of

the stabilizer of a point. Cameron and Ku [3] (and, independently, Larose and

Malvenuto [12]) showed that these are the only such maximum independent sets.

(See also [9].)

• ω(Γn) = n, where ω is the clique number, because a maximum clique in Γn is just

a Latin square of size n.

• χ(Γn) = n, where χ is the chromatic number. This follows from a result of Godsil.

We say a Cayley graph Γ(G, S) is normal if S is closed under conjugation. Godsil

shows ([8], Corollary 7.1.3) that for any normal Cayley graph, χ(Γ) = ω(Γ) if

α(Γ)ω(Γ) = |V (Γ)|, where |V (Γ)| is the number of vertices of Γ. The generating set

Dn of Γn is a union of conjugacy classes, because a derangement is just a permutation

with no cycles of length one, and cycle type is preserved under conjugation. Γn has

n! vertices, so the claim follows.

Now recall that, for any regular graph of degree k with N vertices, the independence

number satisfies the Delsarte-Hoffman bound

α ≤ N
−η

k − η
, (1.1)

where η is the least eigenvalue of the adjacency matrix of the graph. Graphs in which

equality holds have several interesting properties. For example, in such graphs we have

equality between α and the Shannon capacity of the graph. (For an extensive discussion

of the Delsarte-Hoffman bound and its implications, see [14].) For the derangement graph

N = n! and k = Dn := |Dn|, so we get

η ≤
−Dn

n− 1
. (1.2)
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This prompted Cheng Ku to make the following

Conjecture 1.1. [See, e.g., [11]] The least eigenvalue of the adjacency matrix of the

derangement graph is given by

η =
−Dn

n− 1
.

The main objective of this work is to provide several interesting formulae for the

eigenvalues of the derangement graph and to prove Conjecture 1.1. We begin by recalling

a result due to Diaconis and Shahshahani on the eigenvalues of a normal Cayley graph.

This leads us to a discussion of the characters of the symmetric group. Using a result of

Stanley we relate these to symmetric function theory and compute a rough bound on the

eigenvalues. We then employ the factorial symmetric functions of Chen and Louck (which

are related to the shifted symmetric functions of Okounkov and Olshanski) to derive a

remarkable recurrence formula for the eigenvalues of Γn. This is the critical tool we need

to prove the conjecture.

2 The Standard Representation

The following theorem for the eigenvalues of a normal Cayley graph is due to Diaconis

and Shahshahani [6] (for an earlier related result, see [1]; for the version below, see [17]):

Theorem 2.1. Let A be the adjacency matrix of a normal Cayley graph Γ(G, S). Then

the eigenvalues of A are given by

ηχ =
1

χ(1)

∑

s∈S

χ(s),

where χ ranges over all the irreducible characters of G. Moreover, the multiplicity of ηχ

is χ(1)2.

Recall that a partition λ of n, written λ ` n or |λ| = n, is a weakly decreasing sequence

(λ1, λ2, . . . , λ`) such that
∑

i λi = n. Its length is ` and each λi is a part of the partition.

Partitions are represented by Ferrers diagrams:

(4, 3, 2, 2, 1, 1) ←→

and are also written using multiplicity notation

(4, 3, 2, 2, 1, 1) ←→ 41312212.
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As is well known (see, e.g., [10, 13, 20]) the irreducible characters χλ of Sn are indexed by

partitions λ ` n. Also, as the cycle type of a permutation of Sn is just the partition whose

parts are the cycle lengths, the conjugacy classes of Sn are also labeled by partitions.

The standard representation of Sn corresponding to the partition λ = (n−1, 1) plays an

important role in the sequel. It is constructed as follows. Let V be an n dimensional inner

product space with orthonormal basis (e1, e2, . . . , en). Then Sn acts on V by permuting

each vector

σ(ei) = eσ(i)

and extending by linearity. One says that V affords the defining representation of Sn.

It is clear that Sn leaves fixed the one dimensional subspace U generated by the vector
∑

i ei, so U affords the trivial representation of Sn (which is clearly irreducible). The

orthogonal complement W = U⊥ also affords an irreducible representation of dimension

n− 1, namely the standard representation, and we have the equivariant decomposition

V = U ⊕W.

As characters are additive on direct sums, it follows that

χW = χV − χU .

χV (σ) just counts the number of fixed points of σ, so

χW (σ) = #{fixed points of σ} − 1. (2.1)

From (2.1) and Theorem 2.1 the eigenvalue of the derangement graph corresponding to

the standard representation W is thus

ηW =
1

χW (1)

∑

σ∈Dn

χW (σ) =
−Dn

n− 1
. (2.2)

This is precisely the conjectured least eigenvalue.

In the table below we illustrate the truth of Conjecture 1.1 for the derangement graph

Γ6 by summing the characters of S6 over the derangements. Notice that the standard

representation yields the least eigenvalue (η5111 = −53). 2

2The first half of the table is taken from [10] with corrections for the minor typographical errors

therein. The second half is obtained by pointwise multiplication of the entries in the first half by the

alternating character.
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Class 16 2114 2212 23 3113 312111 32 4112 4121 5111 61 ηλ

# Elts 1 15 45 15 40 120 40 90 90 144 120

61 1 1 1 1 1 1 1 1 1 1 1 +265

5111 5 3 1 -1 2 0 -1 1 -1 0 -1 -53

4121 9 3 1 3 0 0 0 -1 1 -1 0 +15

4112 10 2 -2 -2 1 -1 1 0 0 0 1 +13

32 5 1 1 -3 -1 1 2 -1 -1 0 0 -11

312111 16 0 0 0 -2 0 -2 0 0 1 0 -5

3113 10 -2 -2 2 1 1 1 0 0 0 -1 -5

23 5 -1 1 3 -1 -1 2 1 -1 0 0 +7

2212 9 -3 1 -3 0 0 0 1 1 -1 0 +5

2114 5 -3 1 1 2 0 -1 -1 -1 0 1 +1

16 1 -1 1 -1 1 -1 1 -1 1 1 -1 -5

3 The Eigenvalues of the Derangement Graph

Next we derive an explicit formula for the eigenvalues of the derangement graph. We

assume the reader has some familiarity with symmetric function theory, but for complete-

ness we recall a few facts here (for more details, see e.g., [10, 13, 20]). Consider the ring

Z[x1, x2, . . . , xn] of all polynomial functions in n variables over the integers. The sym-

metric group acts by permuting variables, and the invariant polynomials form the ring of

symmetric functions

Λn = Z[x1, x2, . . . , xn]Sn .

There are many bases for Λn. In what follows we will use two: the complete (homogeneous)

symmetric functions and the Schur functions. Given a partition λ = (λ1, λ2, . . . , λn), the

complete symmetric function hλ is defined by

hλ := hλ1
hλ2
· · ·hλn

,

where

hk :=
∑

i1+i2+···+in=k

xi1
1 xi2

2 · · ·x
in
n

and ij ∈ Z≥0 for j = 1, . . . , n.

There are many equivalent ways to define the Schur functions. The combinatorial

definition is as follows. A semistandard Young tableau of shape λ is a Ferrers diagram of

λ in which the boxes are filled with numbers that weakly increase across rows and strictly
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increase down columns. For example,

(4, 3, 2, 2, 1, 1) ←→

1 1 3 3
2 3 4
3 4
6 6
7
8

.

The type of T is a vector giving the multiplicities of each entry in the tableau. In the

above example, type(T ) = (2, 1, 4, 2, 0, 2, 1, 1). Associated to each tableau is the monomial

denoted xT , defined by raising each variable to its corresponding entry in the type vector.

For the above example

xT = x2
1x2x

4
3x

2
4x

2
6x7x8.

A semistandard Young tableau T is standard if type(T ) =

n times
︷ ︸︸ ︷

(1, 1, . . . , 1), which means that

it is filled with the numbers from 1 to |λ|.
This construction admits a slight generalization. Let ν ⊆ λ (i.e., νi ≤ λi for all i).

A skew semistandard Young tableau of shape λ/ν and type α is obtained by subtracting

the boxes of the Ferrers shape of ν from those of λ and filling in the boxes as before. For

example, if λ = (4, 3, 2, 2, 1, 1), ν = (3, 2, 1), and α = (1, 0, 2, 1, 1, 1, 1), one such tableau

is

• • •
• •
• −→

7
4

1
3 3
5
6

.

The tableau monomials are defined as before. Then the skew Schur function of shape λ/ν

is

sλ/ν(x1, x2, . . . , xn) =
∑

T

xT ,

where the sum extends over all skew semistandard Young tableau of shape λ/ν. Although

it is not obvious from this definition, sλ/ν is a symmetric function (see, e.g., [20], Theorem

7.10.2, p. 311). If ν = ∅ then sλ is the Schur function of shape λ.

The canonical (or Hall) inner product on Λn can be defined by the requirement that

the Schur functions comprise an orthonormal basis:

(sλ, sν) = δλ,ν .

It can be shown ([20], Eq. 7.61) that

(sλ, hν) = Kλ,ν,

the electronic journal of combinatorics 14 (2007), #R82 6



where Kλ,ν is the Kostka number, namely the number of semistandard Young tableau of

shape λ and type ν.

Following Stanley we define

dλ :=
∑

s∈Dn

χλ(s), (3.1)

where χλ is the irreducible character of the symmetric group corresponding to the partition

λ. Stanley shows that this function admits a nice expansion in terms of Schur functions:

Theorem 3.1. [[20], Exercise 7.63, p. 519]

∑

λ`n

dλsλ =
n∑

k=0

(−1)n−k(n)khk1n−k , (3.2)

where (n)k = n(n− 1) · · · (n− k + 1) is the falling factorial function.

Taking inner products of both sides of (3.2) with sλ gives

dλ =

n∑

k=0

(−1)n−k(n)kKλ,k1n−k . (3.3)

It is clear that Kλ,k1n−k = fλ/k where fλ/µ is the number of standard Young tableau

of skew shape λ/µ, because the type k1n−k means that there are k ones in the Young

diagram, and these are necessarily all in the top row. The remaining entries must all

be distinct. By (3.1) and Theorem 2.1 the eigenvalues of the derangment graph can be

written

ηλ :=
dλ

fλ
(3.4)

because (see, e.g., [20], Equation 7.79) the dimension χλ(1) of the irreducible represen-

tation corresponding to the irreducible character χλ is simply the number of standard

Young tableau of shape λ. Hence we get

Theorem 3.2. The eigenvalues of the derangement graph are given by

ηλ =

n∑

k=0

(−1)n−k(n)k
fλ/k

fλ
.

A more explicit formula for ηλ can be obtained by using Frobenius’ formula for the

number of standard Young tableau of skew shape ([20], Cor. 7.16.3, p. 344):

fλ/µ = |λ/µ|! det

(
1

(λi − µj − i + j)!

)n

i,j=1

, (3.5)

the electronic journal of combinatorics 14 (2007), #R82 7



where λ ` n (and 1/x! = 0 if x < 0). The number of skew standard Young tableau of

shape λ/k is thus

fλ/k = (n− k)!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
(λ1−k)!

1
(λ1+1)!

1
(λ1+2)!

· · · 1
(λ1+`−1)!

1
(λ2−k−1)!

1
λ2!

1
(λ2+1)!

· · · 1
(λ2+`−2)!

1
(λ3−k−2)!

1
(λ3−1)!

1
λ3!

· · · 1
(λ3+`−3)!

...
...

...
. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
`×`

, (3.6)

where ` is the length of λ. Following the usual convention we define the shifted partition

µ associated to λ

µi := λi + `− i. (3.7)

In terms of µ we can write

fλ/k = (n− k)!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
(µ1−`−k+1)!

1
(µ1−`+2)!

1
(µ1−`+3)!

· · · 1
µ1!

1
(µ2−`−k+1)!

1
(µ2−`+2)!

1
(µ2−`+3)!

· · · 1
µ2!

1
(µ3−`−k+1)!

1
(µ3−`+2)!

1
(µ3−`+3)!

· · · 1
µ3!

...
...

...
. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
`×`

. (3.8)

Factoring out the terms in the last column gives

fλ/k =
(n− k)!
∏

i µi!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(µ1)`+k−1 (µ1)`−2 (µ1)`−3 · · · 1

(µ2)`+k−1 (µ2)`−2 (µ2)`−3 · · · 1

(µ3)`+k−1 (µ3)`−2 (µ3)`−3 · · · 1

...
...

...
. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
`×`

. (3.9)

(x)n is a monic polynomial of degree n in x, so using column operations on the last `− 1

columns we get

fλ/k =
(n− k)!
∏

i µi!
|M(µ)|, (3.10)

where

M(µ) :=










(µ1)`+k−1 µ`−2
1 µ`−3

1 · · · 1

(µ2)`+k−1 µ`−2
2 µ`−3

2 · · · 1

(µ3)`+k−1 µ`−2
3 µ`−3

3 · · · 1

...
...

...
. . .










`×`

. (3.11)

Combining Theorem 3.2, Equations (3.10) and (3.11), and the well-known degree formula

(cf., [10], (11.6))

fλ =
n!

∏

i µi!

∏

i<j

(µi − µj) (3.12)

yields
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Theorem 3.3. The eigenvalues of the derangement graph are given by

ηλ =
n∑

k=0

(−1)n−k |M(µ)|
∏

i<j(µi − µj)
. (3.13)

4 Derangement Numbers and an Approximation

Scheme

One approach to evaluating (3.13) is to sum the determinants. To this end, for all m ≥ 0

we define a shifted derangement number

b(r; m) :=
r∑

k=0

(−1)r−k(r)k+m. (4.1)

The ordinary derangement number Dr is b(r; 0) (see, e.g., [21], p. 67).

Lemma 4.1. The derangement numbers satsify the following properties:

i. The first six derangement numbers are D0 = 1, D1 = 0, D2 = 1, D3 = 2, D4 = 9,

and D5 = 44.

ii. Dn = [n!/e], where [x] is the nearest integer to x. In particular, the derangement

numbers are monotonic increasing for n ≥ 1.

iii. For n ≥ 1 the derangement numbers satisfy the following recursions:

Dn = nDn−1 + (−1)n (4.2)

and

Dn = (n− 1)(Dn−1 + Dn−2). (4.3)

Proof. These properties all follow easily from the definition of Dn.

Theorem 4.2. The eigenvalues of the derangement graph are given by

ηλ =
(−1)n

∏

i<j(µi − µj)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(−1)µ1b(µ1; `− 1) µ`−2
1 µ`−3

1 · · · 1

(−1)µ2b(µ2; `− 1) µ`−2
2 µ`−3

2 · · · 1

(−1)µ3b(µ3; `− 1) µ`−2
3 µ`−3

3 · · · 1

...
...

...
. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
`×`

, (4.4)

where µ is defined as in (3.7).

Proof. This follows immediately from (3.13), (4.1), and the multilinearity of the determi-

nant.
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We can use Theorem 4.4 to approximate ηλ. First we need

Lemma 4.3. The shifted derangement number satisfies

b(r; m) = (−1)m(r)mDr−m. (4.5)

Proof. Use (4.1) and the fact that

(r)k+m =
r!

(r −m− k)!
=

r!

(r −m)!

(r −m)!

(r −m− k)!
= (r)m(r −m)k.

From Lemma 4.1 and Lemma 4.3 we get

b(r; m) = (−1)m r!

(r −m)!
Dr−m ≈ (−1)m r!

e
, (4.6)

whence

ηλ ≈
(−1)n+`−1

e
∏

i<j(µi − µj)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(−1)µ1µ1! µ`−2
1 µ`−3

1 · · · 1

(−1)µ2µ2! µ`−2
2 µ`−3

2 · · · 1

(−1)µ3µ3! µ`−2
3 µ`−3

3 · · · 1

...
...

...
. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
`×`

. (4.7)

When µ1 is much greater than µ2, µ3, . . . the first term in the Laplace expansion of the

determinant by the first column dominates the other terms, and we have

ηλ ≈
(−1)n+l−1

e
(−1)µ1

µ1!

(µ1 − µ2)(µ1 − µ3) · · · (µ1 − µl)
(4.8)

≈
1

e
(−1)n+l−1+µ1

µ1!

µl
1

. (4.9)

This gives a rough estimate for the eigenvalues when λ1 � λ2.

5 Complete Factorial Symmetric Functions

Instead of summing the determinants, we investigate the structure of the summands more

carefully. Begin again with (3.13). It follows from results of Chen and Louck [4] that

the summands can be expressed in terms of what they call complete factorial symmetric

functions wk(z1, z2, . . . , z`).
3 We recall some of their results here. The key is their Lemma

2.1 (which they attribute to Verde-Star [22]):

3In [4] Chen and Louck also define what they call factorial Schur functions, which were generalized

by Macdonald [13], and subsequently generalized further by Okounkov and Olshanski [16] to what they

called shifted Schur functions. The summands are special cases of shifted Schur functions. We will point

out some connections of our results to those of Okounkov and Olshanski as we proceed.
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Lemma 5.1. The divided difference of the falling factorial function is

(x)m+1 − (y)m+1

x− y
=

∑

0≤k≤m

(x)k(y − k − 1)m−k.

Using this lemma iteratively gives ([4], Proposition 2.2 and Equation 2.5)

1
∏

1≤i<j≤`(zi − zj)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(z1)`+k−1 z`−2
1 z`−3

1 · · · 1

(z2)`+k−1 z`−2
2 z`−3

2 · · · 1

(z3)`+k−1 z`−2
3 z`−3

3 · · · 1

...
...

...
. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
`×`

= wk(z1, z2, . . . , z`), (5.1)

where

wk(z1, z2, . . . , z`) =
∑

i1+i2+···+i`=k

∏

1≤j≤`

(zj − i1 − i2 − · · · − ij−1 − j + 1)ij , (5.2)

or, equivalently,

wk(z1, z2, . . . , z`) =
∑

1≤i1≤i2≤···≤ik≤`

(zi1−i1+1)(zi2−i2)(zi3−i3−1) · · · (zik−ik−k+2). (5.3)

Observe that these functions, while symmetric, are inhomogeneous. 4, 5 They are related

to the ordinary complete symmetric functions by

wk(z1, z2, . . . , z`) = hk(z1, z2, . . . , z`) + lower order terms.

Of particular importance for our purposes are the following two properties of the

complete factorial symmetric functions. The first is a stabilization property: 6

Theorem 5.2.

wk(z1, z2, . . . , z`−1, 0) = wk(z1, z2, . . . , z`−1) (5.4)

Proof. This follows directly from (5.1) by factoring out the product z1z2 . . . z`−1 from both

the numerator and denominator.

The second is a recurrence property:

Theorem 5.3. [[4], Proposition 2.4]

wk(z1, z2, . . . , z`) = wk(z2− 1, z3− 1, . . . , z`− 1)+ z1wk−1(z1− 1, z2− 1, . . . , z`− 1). (5.5)

We will use both of these results in the next section.
4The symmetry follows immediately from (5.1) and the well known fact that the quotient of an

alternating polynomial by the Vandermonde determinant is a symmetric polynomial.
5Okounkov and Olshanski also define what they refer to as complete shifted functions h∗

k
(x1, x2, . . . , x`),

but these are neither symmetric nor homogeneous. They become symmetric when reexpressed in

terms of the shifted variables zi = xi − i + constant. By picking the constant judiciously we get

h∗

k
(x1, x2, . . . , x`) = wk(z1, z2, . . . , z`). Notice that the relationship between the two sets of variables

is precisely the relationship between λ and µ (cf., (3.7)).
6This result is implicit in the work of [4] and also follows from the corresponding stabilization property

of the shifted Schur functions given in [16].
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6 A Recurrence Relation for the Eigenvalues of the

Derangement Graph

Comparing Theorem 3.3 and (5.1) we obtain

Theorem 6.1. The eigenvalues of the derangement graph are given by

ηλ =

n∑

k=0

(−1)n−kwk(µ1, µ2, . . . , µ`), (6.1)

where µ is the shifted partition associated to λ (defined in (3.7)) and n = |λ|.

Remark 6.2. It follows from Theorem 6.1 that the spectrum of the derangement graph is

integral. This result can also be shown directly from Theorem 2.1 by observing that central

characters are algebraic integers (see, e.g., [10] (3.2) or [19], Corollary 1 of Proposition

16, p. 52) and that the characters of the symmetric group are integral valued.

From Theorem 3.2 and Theorem 6.1 we obtain the useful identification 7

wk(µ1, µ2, . . . , µ`) = (n)k
fλ/k

fλ
. (6.2)

Next we combine Theorem 5.3 and Theorem 6.1 to derive a powerful recurrence relation

for the eigenvalues of the derangement graph. To this end we observe that the wks satisfy

a vanishing property: 8

Theorem 6.3. wk(µ1, µ2, . . . , µ`) = 0 whenever k > λ1.

Proof. From (3.7), µi = λi +`−i. Thus, if k > λ1 then k+`−1 > λ1 +`−1 = µ1. But, by

construction, the parts λi are weakly decreasing, so the parts µi are strongly decreasing.

Hence k + `− 1 > µi for all i, and the entire first column of the matrix in the numerator

in (5.1) (with zi = µi) vanishes.

Remark 6.4. In the light of (6.2) the vanishing theorem merely formalizes the intuitive

idea that we cannot remove more than λ1 boxes from the first row of a Young tableau.

To state the main result of this section we need some terminology. To any tableau

of shape λ we may assign xy-coordinates to each of the boxes by defining the upper-left-

most box to be (1, 1), with the x axis increasing to the right and the y axis increasing

downwards. Then the hook through the box (x, y) is the union of the boxes (x′, y) and

(x, y′), where x′ ≥ x and y′ ≥ y. We will call the hook through the box (1, 1) the principal

hook (of λ). By abuse of notation, we let h denote either the principal hook itself or its

cardinality. (Its meaning will be clear from context.) We also let λ−h denote the partition

7This is a special case of Theorem 8.1 in [16].
8This is a special case of the vanishing theorem of Okounkov and Olshanski ([16], Theorem 3.1).
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obtained from λ by removing the principal hook. We call the first column of the tableau

of shape λ the principal ladder (of λ), and define λ− 1 as the partition obtained from λ

by removing its principal ladder. (The latter notation makes more sense if one thinks of

λ− 1 as the vector subtraction (λ1, λ2, . . . , λ`)− (1, 1, . . . , 1).) By successively removing

the principal hooks and ladders of λ we obtain the key result.

Theorem 6.5. For any partition λ the eigenvalues of the derangement graph satisfy the

following recurrence:

ηλ = (−1)h
(
ηλ−h + (−1)λ1hηλ−1

)
(6.3)

with initial condition η∅ = 1.

Proof. By Theorem 6.1 and the vanishing theorem we can write

η′
λ =

∞∑

k=0

(−1)kwk(µ1, µ2, . . . , µ`), (6.4)

where

η′
λ := (−1)|λ|ηλ. (6.5)

Using (5.5) in (6.4) yields

η′
λ =

∞∑

k=0

(−1)k [wk(µ2 − 1, µ3 − 1, . . . , µ` − 1) + µ1wk−1(µ1 − 1, µ2 − 1, . . . , µ` − 1)] .

(6.6)

From (3.7) we know that µi = λi+`−i, so subtracting one from each part of µ is the same

as subtracting one from each part of λ. Thus, the partition (µ1 − 1, µ2 − 1, . . . , µ` − 1)

is associated to the partition λ− 1. Similarly, the partition (µ2 − 1, µ3 − 1, . . . , µ` − 1) is

associated to the partition λ− h. The second term in (6.6) can be written

−µ1

∞∑

k=0

(−1)k−1wk−1(µ1−1, µ2−1, . . . , µ`−1) = −µ1

∞∑

k=0

(−1)kwk(µ1−1, µ2−1, . . . , µ`−1),

(6.7)

because by convention w−1 = 0. Thus (6.6) becomes

η′
λ = η′

λ−h − µ1η
′
λ−1. (6.8)

Now, µ1 = λ1+`−1 = h. Moreover, |λ| = n implies that |λ−h| = n−h and |λ−1| = n−`.

Hence, from (6.5) and (6.8)

(−1)nηλ = (−1)n−hηλ−h − (−1)n−`hηλ−1 (6.9)

= (−1)n−h
(
ηλ−h + (−1)λ1hηλ−1

)
, (6.10)

from which the stated recurrence follows. Finally, Equation (6.1) and the fact that w0 = 1

gives η∅ = 1. (Note that we have implicitly used the stabilization property of complete

factorial symmetric functions (Theorem 5.2).)
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Theorem 6.5 allows us to compute the eigenvalues of the derangement graph corre-

sponding to certain simple shapes. For example, for hook shapes we have

Corollary 6.6. Let λ = j1n−j denote the hook shape with first part j and remaining parts

1. Then for 1 ≤ j ≤ n,

ηj1n−j = (−1)n
(
1 + (−1)jnDj−1

)
. (6.11)

Proof. From Theorem 6.5

ηj1n−j = (−1)n
(
η∅ + (−1)j · n · ηj−1

)
. (6.12)

Furthermore, either from the recurrence itself or directly from Theorem 2.1 we see that

ηr =
∑

σ∈Dr
1 = Dr.

Remark 6.7. This result also follows with a little work from the properties of derangement

numbers given in Lemma 4.1 and a result of Okazaki ([15]; see [20], Exercise 7.63, p. 469).

7 Proof of the Conjecture

Theorem 7.1. Conjecture 1.1 holds for all λ with n ≥ 4, and, moreover, for n ≥ 5 the

standard representation gives the unique minimum eigenvalue.

The proof is divided into four parts. First we show that the maximum eigenvalue is

obtained by the trivial representation. Next, we show the conjecture holds for hooks,

then that it holds for all near hooks, that is, partitions of the form λ = j21n−j−2 where

2 ≤ j ≤ n− 2. Finally, we show that it holds for all other partitions. First note that, by

direct computation using Theorem 6.5, we have, for n = 4: η14 = −3, η212 = 1, η22 =

3, η31 = −3, η4 = 9. Clearly, in this case the least eigenvalue is achieved by the standard

representation λ = 31, but it is not unique, as the minimum is also realized by the

alternating representation.

Lemma 7.2. The maximum eigenvalue of the derangement graph Γn is ηn = Dn.

Proof. This can be shown using Theorem 6.5, but it follows most easily from the fact that

k is the largest eigenvalue of any regular graph of degree k. (See, e.g., [2], Proposition

3.1.)

Lemma 7.3. Conjecture 1.1 holds for hooks.

Proof. From (6.11)

η(n−1,1) = (−1)n
(
1 + (−1)n−1nDn−2

)
= (−1)n − nDn−2, (7.1)
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so

α := ηj1n−j − η(n−1,1) = (−1)n
(
1 + (−1)jnDj−1

)
− (−1)n + nDn−2

= n
(
Dn−2 + (−1)n+jDj−1

)
.

We must show that α > 0 for j < n − 1. (By Lemma 7.2 we already know the trivial

representation corresponding to j = n is positive–indeed, it is the largest eigenvalue.) If

n + j is even then α > 0 and there is nothing to prove, so assume n + j is odd. As n ≥ 5,

Dn−2 > Dj−1 for all 1 ≤ j ≤ n− 2 by Lemma 4.1 (ii), whence it follows that α > 0.

Lemma 7.4. Conjecture 1.1 holds for near hooks.

Proof. Applying Theorem 6.5 twice gives

ηj21n−j−2 = (−1)n−1
(
η1 + (−1)j(n− 1)η(j−1,1)

)

= (−1)n+j−1(n− 1)η(j−1,1)

= (−1)n−1(n− 1)
(
1 + (−1)j−1jDj−2

)

= (n− 1)
(
(−1)n−1 + (−1)n+jjDj−2

)
. (7.2)

Thus, from (7.1) and (7.2),

β := ηj21n−j−2 − η(n−1,1)

= (n− 1)
(
(−1)n−1 + (−1)n+jjDj−2

)
+ nDn−2 + (−1)n−1

= nDn−2 + (−1)n+j(n− 1)jDj−2 + (−1)n−1n. (7.3)

We must show β > 0. But, regardless of the parity of n + j,

β ≥ nDn−2 − (n− 1)(n− 2)Dn−4 + (−1)n−1n, (7.4)

because Dj−2 ≤ Dn−4 for j ≤ n− 2 and n ≥ 5 by Lemma 4.1 (ii). Using Lemma 4.1 (iii)

we can write

Dn−2 = (n− 2)Dn−3 + (−1)n−2 = (n− 2)(n− 3)Dn−4 + (n− 2)(−1)n−3 + (−1)n−2, (7.5)

so

β ≥ [n(n− 2)(n− 3)− (n− 1)(n− 2)] Dn−4 + n(n− 2)(−1)n−1

= [n− 2]
[
(n2 − 4n + 1)Dn−4 + (−1)n−1n

]
> 0, (7.6)

because both terms in square brackets are positive for n ≥ 5.

Proof (of Theorem 7.1). We have already verified the result in the case n = 4, so assume

n ≥ 5. Now let λ ` n. By Lemmas 7.3 and 7.4 we may assume λ is neither a hook

(in which case we would have n = h), nor a near hook (in which case we would have
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n = h+1). So we may safely assume n ≥ h+2 and h > ` ≥ 2. Then we get the following

chain of equalities and inequalities:

|ηλ| = |ηλ−h + (−1)λ1hηλ−1| (Theorem 6.5)

≤ |ηλ−h|+ h|ηλ−1|

≤ Dn−h + hDn−` (Lemma 7.2)

< (1 + h)Dn−` (Lemma 4.1 (ii) and h > `)

≤ (n− 1)Dn−`

≤ (n− 1)Dn−2

= Dn−1 + (−1)n (Lemma 4.1 (iii))

≤ Dn−1 + 1

< Dn−1 + Dn−2

=
Dn

n− 1
(Lemma 4.1 (iii))

= |η(n−1,1)| (Equation (2.2)).
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