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Abstract

This is an account for the combinatorially minded reader of various categories of

directed and undirected graphs, and their analogies with the category of sets. As an

application, the endomorphisms of a graph are in this context not only composable,

giving a monoid structure, but also have a notion of adjacency, so that the set of en-

domorphisms is both a monoid and a graph. We extend Shrimpton’s (unpublished)

investigations on the morphism digraphs of reflexive digraphs to the undirected case

by using an equivalence between a category of reflexive, undirected graphs and the

category of reflexive, directed graphs with reversal. In so doing, we emphasise a

picture of the elements of an undirected graph, as involving two types of edges with

a single vertex, namely ‘bands’ and ‘loops’. Such edges are distinguished by the

behaviour of morphisms with respect to these elements.

Introduction

One aim of this article is to present to the combinatorially minded reader a case for using

categorical methods in the theory of graphs. We argue that such methods have advantages

in leading to new approaches, new methods and wider analogies, and so in giving a guide

to handling more complex situations, such as labelled graphs. The spirit of this method

is to study constructions on graphs in terms of the relation to all graphs in the given

category, via the agreed morphisms of graphs.

The basic analogy is between the theory of sets and the theory of graphs. A difficulty

for such an analogy is that the theory of sets is usually based on the notion of membership,
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which bifurcates for graphs since a graph has not only vertices, but also between vertices

it has edges (in the undirected case) or arcs (in the directed case). What then should be

a ‘member’ of a graph?

To make such an analogy, we recognise that analogies in mathematics are generally not

between objects themselves but between the relations between objects, and these relations

are dealt with by abstraction of structure and axiomatisation of this structure. The use

of category theory for this theme is discussed in [6].

Relations between sets are well described by the notion of function, and so it is sensible

to discuss the properties of the category, Set, of sets and functions between sets. These

properties were developed by Lawvere and Tierney as those of an elementary topos, and

publicised initially in, for example, [9, 28]. In particular, Set has a subobject classifier

(given by the usual characteristic function of a subset); has finite limits (which includes

the notion of product A× B); and is cartesian closed so that, analogously to the rule of

indices cab = (cb)a, there is an exponential bijection

Set(A× B,C) ∼= Set(A, Set(B,C)). (exp-sets)

Here a function f : A × B → C has an ‘adjoint’ f̂ : A → Set(B,C) where f̂(a) is the

function which maps b to f(a, b), so that a function of two variables is regarded as a

variable function of one variable.

By analogy, for a category Dgph of directed graphs, in which Dgph(B,C) denotes the

set of morphisms B → C of directed graphs, we need also a directed graph DGPH(B,C)

with Dgph(B,C) as its set of vertices, and an exponential law

Dgph(A×B,C) ∼= Dgph(A,DGPH(B,C)). (exp-graphs)

Note that for sets there is no distinction between Set and SET since abstract sets have no

structure.

It turns out that we can define several categories of undirected graphs and of directed

graphs so that each forms an elementary topos: thus these categories have properties

analogous to properties of the category Set, and this allows for intuition from Set to

suggest constructions and theorems on graphs.

One such construction is the notion of automorphism graph. The automorphisms of

a set X form a group Aut(X), namely another set with a multiplication, identity and

inverses satisfying the usual axioms. Analogously, not only should there be a group

Aut(D) of automorphisms of a graph D, but also an automorphism graph AUT(D), so

that AUT(D) is both a group and a graph, with vertex set Aut(D). The graphical nature

of AUT(D) gives a notion of adjacency between automorphisms, and in particular the

notion of inner automorphism, defined as an automorphism of D adjacent to the identity

morphism. These ideas were explored by Shrimpton in [21, 22, 23], for the case of directed
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graphs, where he described inner automorphisms in graph-theoretic terms using the notion

of inner subgraph. See also [3].

In order to set up categories of graphs or of digraphs we have to define morphisms. It

turns out that the notion of morphism of directed graphs has two fairly definitive answers.

If we choose to allow morphisms to map an arc to a vertex, then we should work with the

category of reflexive graphs, where each vertex has a distinguished, associated loop. This

case will be our main concern. If we choose not to allow morphisms to map an arc to a

vertex we obtain the category of irreflexive graphs. Both of these categories are toposes

(we drop the word elementary), and so it is easy to formulate new notions by direct

analogy with the topos Set of sets. We will explain what this means, with examples,

in Sections 1 and 3. The distinction between the two toposes is eloquently argued by

Lawvere in [15].

We shall also explore, in Sections 5 and 7, corresponding notions in the undirected case.

The question of what should be an undirected graph, and morphisms of such graphs, leads

to the question of the properties of the corresponding category. It turns out that the most

transparent and simple definition does not yield a cartesian closed category. This makes it

difficult to decide what should be (if at all) the automorphism object AUT(G) of such an

undirected graph G, since we cannot then ensure that AUT(G) has the structure of both

an undirected graph and a group. In particular there is not a clear notion of composition

AUT(G) × AUT(G) → AUT(G) .

There is however an alternative definition of undirected graphs and their morphisms,

namely to consider an undirected graph as a directed graph with a reversal. This is the

approach taken by Bumby and Latch in [7] and in several other sources, and does yield a

topos Rdgph.

We now point out an unexpected consequence. We have a standard picture of an

undirected graph with one edge and two vertices as

• e • (1)

Considered as a directed, reflexive graph with involution, the picture is

•
a

** •
ra

jj (2)

where the reversal r fixes both vertices and interchanges the arcs.

We expect the operation of identifying a pair of vertices to give a morphism of graphs.

For (2) this operation gives a directed graph with one vertex and two loops.

•a 99 raee (3)

This leads us to consider which of the following pictures should correspond to identifying

the two vertices in the graph in (1):

•e or •e (4)
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We prefer the first picture, which we call a band, and regard the second picture, which

we call a loop, as obtained by a further identification1 – it corresponds to a directed loop

a with ra = a. In the first case, when defining a morphism, an edge in the domain may

map to an edge, band or loop in the range; a band may map to a band or loop; but a loop

may only map to a loop. This distinction is discussed in more detail in counterexample

5.1.

In this article, in order to distinguish clearly between the various cases, edges and

arcs always have two distinct vertices. Thus our intuitive picture of an undirected graph

should (from this viewpoint) consist not only of vertices, edges and loops but also bands,

corresponding to the fact that the edges give rise to unordered pairs of vertices. It just

happens that most of the graphs studied by graph theorists have no bands and often no

loops. Once this extension of the usual notion of undirected graph is made, we may easily

define the notion of morphism of an undirected graph as above, and obtain a topos Ugph

of reflexive undirected graphs, which is equivalent to the topos Rdgph of reflexive digraphs

with reversal.

The principal advantage of Ugph over Rdgph is that the pictures of graphs, and the

lists of elements, are simpler. The advantage of Rdgph over Ugph is that it is easier to show

that Rdgph is a topos. In either of these toposes we have a clear notion of automorphism

object AUT(G), which is a group in this category.

If we decide that pairs of loops in the digraph, as in (3), should be identified to

a (single) loop in the associated graph, then we are changing our topos of undirected

graphs to a reflexive subcategory Gph of Ugph. If A is an object of this subcategory, then

AUT(A) is still an object of Ugph, but not necessarily an object of Gph. We give an

example of this in Section 5. The reflection ρ : Rdgph → Gph does not preserve products,

as we show, and so ρ(AUT(A)) does not necessarily inherit a group structure.

Topos theory is a well-developed subject (see, for example, [14]), but even basic facts,

such as “presheaves form a topos”, can be very illuminating when applying standard

topos-theoretic results to specific combinatorial applications.

A further advantage of this topos-theoretic approach is that more complicated situ-

ations can also be handled by exploiting known properties of elementary toposes. For

example, a labelled graph G can be considered as a morphism of graphs f : G→ L where

the graph L is a collection of loops at a single vertex (but it could be more general). The

theory of toposes [28] tells us that the category of morphisms over L is also a topos, and

so we have a notion of automorphism object AUTL(G) for a labelled graph, described ex-

plicitly by general constructions of topos theory. We plan to pursue these generalisations

elsewhere.

Other authors have developed and advertised categorical methods for the study of

graphs. Gersten (1983) [10], Ribenboim (1983) [19], Stallings (1983) [24], are interested

1In [16] these are called loops and one lane loops respectively.
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in algebraic applications, particularly to group theory. Waller (1976) [27] was interested

in topological analogies. Brown [3] advertised the approach of Shrimpton [23] to auto-

morphism structures. Bumby and Latch [7] are interested in seeing how category theory

concepts apply to a category of graphs. Hell [12] applies categorical concepts to topics

such as chromatic numbers, and Hell and Nešetřil [13] give a wider survey. Waller [26],

Vigna [25] and Boldi and Vigna [1] give applications to network problems. Zivaljevic [29]

applies related groupoid methods (see also [5]) to graph problems. Golubitsky and Stew-

art [11] show that many generic features of the dynamics of asymmetric networks can be

understood from the groupoid viewpoint. In view of the large work on topos theory, as

shown in Johnstone [14], we hope that this approach will also prove fruitful to a range of

applications in and of graph theory.

1 Categories of Graphs

The spirit of categorical methods in graph theory, as in other areas, is to study a given

graph, or a given construction on graphs, by means of its relations to all other graphs.

The first step in this process is the notion of morphism between graphs, and so of the

category of graphs which is to be studied. It is this aspect of graph theory which is often

not emphasised. The next step is the study of categorical constructions in the chosen

category of graphs.

An advantage of this method is that it allows a study of the relations between similar

classes of objects, for example between various types of graphs, by the use of functors

between categories, and of natural transformations between functors. Such an analysis

of reflexive and irreflexive digraphs was carried out by Lawvere in [15] from the point of

view of topos theory.

In a category C, the set of arrows from an object x to an object y is denoted by C(x, y),

and we write a : x → y for a ∈ C(x, y). The composition of a : x → y and b : y → z is

written (using the algebraic convention) ab : x → z. We refer the reader to [2, 17, 18] for

the basic ideas of category theory, but we shall explain many of the results we need.

We first list the various categories of graphs which will be considered. A digraph D has

a set V (D) of vertices, a set U(D) of elements, and source and target maps s, t : U(D) →

V (D). We commonly write an element e as (e : se −→ te), and denote by D(u, v) the set

of elements with source u and target v. An element ` is a loop if s` = t`. The elements

which are not loops are called arcs, so that U(D) is partitioned as L(D)∪A(D), the sets

of loops and arcs in D.

The traditional digraph category Tdgph consists of all directed graphs and morphisms
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between them. Morphisms are pairs of maps which commute with the source and target:

µ = (µV , µU) ∈ Tdgph(D,D′) ⇔ µV : V (D) → V (D′), µU : U(D) → U(D′),

µV ◦ s = s′ ◦ µU , µV ◦ t = t′ ◦ µU .

In a reflexive digraph we wish to be able to map elements to vertices. There are two

equivalent ways to achieve this. One approach is to include the sets of vertices in the

set of elements. The source and target maps become endofunctions on U(D), satisfying

s ◦ t = t, t ◦ s = s, and the vertex set is V (D) = Im s = Im t ⊆ L(D). A morphism

µ : D → D′ of reflexive digraphs is a function µ : U(D) → U(D′) which preserves source

and target, and so maps vertices to vertices, loops to loops, and arcs to any type of

element. This is the approach we shall adopt, and we denote the category of reflexive

digraphs by Dgph.

The alternative approach is to keep the sets V (D) and U(D) separate, but to add a

function ε : V (D) → U(D) such that s ◦ ε = t ◦ ε = id, and require all morphisms to

preserve ε. Then mapping an arc a ∈ D to a loop ε′x′ ∈ D′ can be thought of as mapping

a to the vertex x′.

We now come to the case of undirected graphs.

For X a set, we denote by S2(X) the set of singleton and two-element subsets of X.

Any endofunction φ on X determines an endofunction φ∗ on S2(X) by applying φ to each

element.

As indicated in the introduction, we wish to allow reflexive graphs to contain bands, so

we also allow these in the irreflexive case. An undirected graph G consists of the following:

• a set V (G) of vertices,

• a set U(G) of elements,

• a boundary map ∂G : U(G) → S2(V (G)),

• a subset E(G) = {e ∈ U(G) : |∂(e)| = 2} ⊆ U(G) of edges,

• a partition of the set of elements ` of U(G) with |∂(`)| = 1 into disjoint subsets

B(G), L(G), called respectively the sets of bands and loops in G.

Our initial intuition was that an undirected graph G should contain a set of loops

L(G) with an involutive pairing function r : L(B) → L(B); that single loops should be

loops with r(`) = `; and that the remaining pairs of loops should form bands (`, r(`)). We

later came to realise that a band should be a single element of G.

A morphism µ : G→ G′ of undirected graphs is a pair (µV , µU) such that

µV : V (G) → V (G′), µU : U(G) → U(G′), (µV )∗ ◦ ∂ = ∂′ ◦ µU ,

µU(B(G)) ⊆ L(G′) ∪ B(G′), µU(L(G)) ⊆ L(G′).
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The total graph category Tgph consists of all undirected graphs and morphisms between

them.

In a reflexive graph G we again take a single underlying set U(G) of elements, which

may be vertices, loops, bands, or edges, and a boundary map ∂ : U(G) → S2(U(G))

satisfying ∂∗ ◦∂ = ∂. The vertex set is V (G) = {u ∈ U(G) | ∂u = {u}}. So morphisms are

endofunctions on U(G) which preserve the boundary and do not map loops to bands. The

reflexive cases provide our main objects of study, and we denote the category of reflexive,

undirected graphs by Ugph.

As an aside, we recall that a k-colouring of the vertices of G with k colours is an

assignment of a colour to each vertex in such a way that adjacent vertices are coloured

differently. So, in the irreflexive case, a k-colouring is a morphism from G to the complete

graph Kk, where the colours are the vertices of Kk. The chromatic number χ(G) is the

smallest k such that G has a k-colouring. In the reflexive case we allow the image of an

edge to be a vertex, violating the colouring condition. Thus the results in this article are

not immediately relevant to colouring problems.

Two types of subcategory of Dgph and Ugph are of interest. A graph or digraph is

relational if there are no multiple edges or arcs, so that adjacency is a relation on the set

of vertices. An irreflexive graph or digraph is strict if there are no loops and no multiple

edges or arcs. A reflexive graph or digraph is strict if there are no multiple edges or arcs

and the only loops are the vertices. The full subcategories of Ugph and Dgph of strict

graphs and digraphs are denoted by Sugph and Sdgph respectively.

2 Some categorical notions

We reprise some of the basic notions we shall need. For more information see [2] or [17].

Let C be a category. Objects i, t of C are called respectively initial, terminal if, for

all objects A of C, the sets C(i, A), C(A, t) are singletons. It is easy to prove that any

two initial objects are isomorphic, as are any two terminal objects. For all our graph

categories the empty graph ∅, with no vertices and no edges or arcs, is an initial object.

We denote by T the graph or digraph with just one vertex and no other element. In the

reflexive cases T is a terminal object. In the irreflexive cases the terminal object has one

vertex and one loop. For any graph B or digraph D, the set Ugph(T,B) or Dgph(T,D) is

the set of vertices. Notice that, even at this simple level, we are making analogies between

different types of graph.

A product of objects A1, A2 in C is an object P with two arrows p1 : P → A1, p2 : P →

A2 with the property that for any object Q of C and arrows q1 : Q → A1, q2 : Q → A2,

there is a unique arrow f : Q → P such that q1 = fp1, q2 = fp2. It follows that the

induced functions on the sets of arrows

(p1∗, p2∗) : C(Q,P ) → C(Q,A1) × C(Q,A2), f 7→ (fp1, fp2) (5)
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is a bijection, and the arrow f is entirely determined by its components fp1 and fp2.

This definition determines the triple (P, p1, p2) up to isomorphism, as is shown by what

is known as the ‘usual universal argument’. For suppose (P ′, p′1, p
′
2) is another product

of A1, A2. Then the morphisms (p′1, p
′
2) determine a morphism f : P ′ → P such that

p′1 = fp1, p′2 = fp2. Similarly we get a unique morphism f ′ : P → P ′ such that

p1 = f ′p′1, p2 = f ′p′2. It follows that, for i = 1, 2, ff ′p′i = p′i and f ′fpi = pi.

P ′ ED
p′1

��

@A
p′2

//

f

  B
BB

BB
BB

B

P p1
//

p2

��

f ′

``BBBBBBBB
A1

A2

(6)

The uniqueness property, with Q = P, q1 = p1, q2 = p2, gives f ′f = 1P . Similarly

ff ′ = 1P ′, so f, f ′ are mutually inverse arrows.

Another notion we will use is the coequaliser. Given two arrows a, b : A → B in C, a

coequaliser of a, b is an object C and an arrow c : B → C such that ac = bc and that c

is universal for this property. This means that if d : B → D is another arrow such that

ad = bd, then there is a unique arrow f : C → D such that cf = d, as in (7). Again, a

coequaliser is uniquely determined up to isomorphism.

C

f

��

A
a //

b
// B

c

88qqqqqqqqqqqqq

d
&&NNNNNNNNNNNNN

D

(7)

The product is a special case of the notion of limit, and the coequaliser is a special case

of the notion of colimit. The latter notion is important when considering the intuitive

notion of gluing pieces together. In particular, a digraph D can be considered as a

coequaliser of functions s, t : U → D, where U is a disjoint union of vertices, loops and

arcs, and the functions s, t describe how these elements are glued together in D. For more

details see [4, §8.2].

Functors are morphisms of categories, preserving source, target and composition, and

we shall use the notion of an adjoint pair of functors. Given two functors F : C → D,

G : D → C, we say F is left adjoint to G if there are natural bijections

φ : D(FC,D) → C(C,GD)

for all objects C of C and D of D. It may then be proved that G is determined up to

natural equivalence by F , and vice versa.
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An important use of adjoints is that, when F is left-adjoint to G, F preserves colimits

(and, in particular, coequalisers), and G preserves limits (and, in particular, products).

We give here the standard proof for the case of products.

Let p1 : D → A1, p2 : D → A2 be a product of A1, A2 in D. Then we have natural

bijections

C(C,GD) ∼= D(FC,D) ∼= D(FC,A1) × D(FC,A2)

∼= C(C,GA1) × C(C,GA2) ∼= C(C,GA1 ×GA2).

Now taking C = GD we get in C a morphism f : GD → GA1 × GA2, and taking

C = GA1 × GA2 we get a morphism g : GA1 × GA2 → GD. It is then easy to prove,

using naturality of the bijections, that fg = id and gf = id.

Suppose now that C is a category with finite products. We say that C is closed if, for

all objects A of C, the functor − × B : C → C has a right adjoint. This is equivalent to

saying that, for all objects B,C of C, there is an object HOM(B,C) of C, functorial in

B,C, together with natural bijections

C(A×B,C) ∼= C(A,HOM(B,C))

for all objects A,B,C of C. The object HOM(B,C) is called the internal hom in C.

A category C is cartesian closed if it has a terminal object; all finite products specified;

and internal homs. These functors are right adjoint to 0 : C → 1; the diagonal functor

C → C × C; and (−×B) : C → C respectively.

A topos is a category with properties analogous to those of the category Set of sets

and functions. Specifically, it has finite limits and colimits, is cartesian closed, and has a

subobject classifier (see [18], I.6).

An example of a cartesian closed category is the category Cat of small categories and

functors. The internal hom in this category is written CAT. The objects of CAT(C,D) are

the functors C → D and the morphisms are the natural transformations of these functors.

In fact CAT(C,D) is a well defined category as long as C is small.

One of the applications of these results is that, for any cartesian closed category of

graphs, since a product of graphs is symmetric the product G×H can be built up from

knowing the product of the basic elements of G and H, namely loops, bands and edges.

An important result is that if C is a small category, and Cop is the category opposite

to C, then the functor category CAT(Cop, Set) = SetC
op

is a topos (see for example [18]).

Now Dgph = CAT(Cop
3 , Set) where C3 is the category with one object and three arrows,

C3 : 0 •

10

��
σ

jj

τ

FF (8)
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and composition rules στ = σ, τσ = τ , from which it follows that σ2 = σ, τ 2 = τ .

This means that D ∈ Dgph may be considered as the functor D : C
op
3 → Set in which

D(0) = U(D), D(10) = 1U(D), D(σ) = s, D(τ) = t.

Since C3 has a single object it is a monoid, and we say that Dgph is a category of actions

of C3. Similarly Tdgph = CAT(Cop
4 , Set) where C4 has objects 1, 2; two identity arrows;

and C4(1, 2) = {σ, τ}, (see [7]):

C4 : 1 •11 44
τ

33
σ

++
• 2 12jj

In what follows we assume that all graphs and digraphs are reflexive unless otherwise

stated.

3 The category of reflexive, directed graphs

The simplest digraph is the empty digraph ∅, and the next simplest is the terminal di-

graph T with only one element, which is necessarily a vertex. For every digraph D both

Dgph(∅, D) and Dgph(D, T ) are singletons, while Dgph(T,D) is bijective with the set of

vertices of D.

There is a standard 1-arc digraph I and a 1-loop digraph Λ pictured as:

I : 1 •
ι // • 2 Λ : 0 • λjj

The digraph I plays a special role in Dgph, namely that L(D) ∪ A(D) is bijective with

the set of morphisms I → D. Further, given two morphisms µ, ν : D → D′, we have

µ = ν if and only if µ ◦ π = ν ◦ π for all morphisms π : I → D. Thus I is a generator for

Dgph. This property is analogous to the property of the group of integers in the category

of groups. We can also determine the loops in a digraph D as the morphisms Λ → D.

The properties of the category Dgph which we find most useful are the existence of

products and of internal hom, the latter giving morphism digraphs.

The usual representation of the product of digraphs D1 and D2 is the digraph D1×D2

with elements U(D1) × U(D2), source and target maps s1 × s2 and t1 × t2, and with the

obvious projections from D1 ×D2 to D1 and D2. Note that

V (D1 ×D2) = V (D1) × V (D2) and L(D1 ×D2) = L(D1) × L(D2).
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We may display I × I and I × Λ as follows:

//

��

1st (1, 1)

(1,ι)

��

(ι,ι)

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

(ι,1) // (2, 1)

(2,ι)

��

2nd (1, 0)
(ι,λ)

,,

(ι,0)

22

(1,λ)

��
(2, 0)

(2,λ)

		

(1, 2)
(ι,2)

// (2, 2)

As another example, for any digraph D there is a canonical isomorphism

D × T → D, (e, •) 7→ e .

As discussed in the introduction, the internal hom DC = DGPH(C,D) of two digraphs

C,D is a digraph defined by the condition that, for all digraphs B, there is a natural

bijection

Dgph(B × C,D) ∼= Dgph(B,DGPH(C,D)). (9)

This bijection characterises the digraph H = DGPH(C,D) up to isomorphism, by the

uniqueness up to equivalence of right adjoints to a functor.

Equation (9) also allows us to prove the existence of DGPH(C,D), by identifying its

vertices with the morphisms T → DGPH(C,D), which are just the morphisms C → D,

and by identifying its loops and arcs with the morphisms I → DGPH(C,D). Thus the

loops or arcs DGPH(C,D)(ν1, ν2) are morphisms of the form

ψ′ : I × C → D, (1, a) 7→ ν1a, (2, a) 7→ ν2a, (ι, a) 7→ ψa ∈ D(ν1sa, ν2ta).

For the diagram form of the internal hom we identify (ψ ′ : ν1 −→ ν2) with the function

ψ : U(C) → U(D), (a : u −→ v) 7→ (ψa : ν1u −→ ν2v) , (10)

so that each arc of DGPH(C,D) is a ‘diagram of type C in D’.

Example 3.1 If 1A is the identity morphism, and ρ the other automorphism of the di-

graph A shown below, there are arrows (ψ : 1A −→ ρ) and (φ : ρ −→ 1A) in DGPH(A,A) :

A : 0
a

** 1
b

jj DGPH(A,A) : 1A

ψ
** ρ

φ

kk

and DGPH(A,A) has diagram form

a
0 &&
b

1
gg

0
a ''

1
b

gg ++kk 1
b ''

0
a
gg

b
1 ''
a

0
ff
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Either of these explicit descriptions can now be used as a definition of the morphism

digraph DGPH(C,D), and the exponential law (9) may be verified directly. As we shall

explain later (see the proof of Proposition 6.2) this law is a special case of results on

functor categories, and so we do not give a proof here.

Remark 3.2 An alternative, non-categorical version of an exponential digraph DC is

frequently used in articles on Hedetniemi’s conjecture, which states that χ(G × H) =

min{χ(G), χ(H)}. It was shown in [8] that this conjecture is equivalent to the statement

that KG
k is k-colourable whenever χ(G) > k. In these articles the digraph DC has as

vertices the morphisms C → D and there is an arc f → g provided there is an arc

f(x) → g(y) in D whenever there is an arc x → y in C. Such a DC is necessarily

relational (strict??), which makes sense for vertex colourings, whereas our DC need not

be. The corresponding definition of HG for graphs specifies an edge joining f and g

provided f(x) and g(y) are adjacent in H whenever x, y are adjacent in G. The survey

[20] by Sauer, and the references therein, give further details.

In the language of category theory, the category Dgph is said to be cartesian closed,

since all finite products exist and the functor (−)×C is defined for every digraph C. There

are a number of useful properties of cartesian closed categories which we can exploit, and

which can be interpreted in terms of our explicit description of the morphism digraph.

First, there is an evaluation morphism

εC,D : DGPH(C,D) × C → D, (ψ′, a) 7→ ψ′(ι, a) = ψa . (11)

Second, there is a composition morphism of digraphs

γB,C,D : DGPH(C,D) × DGPH(B,C) → DGPH(B,D)

under which

γB,C,D(ψ′, φ′) : I ×B
δ×1
−→ I × I ×B

1×φ′

−→ I × C
ψ′

−→ D , (12)

where δ : I → I × I is the diagonal morphism. When there is no need to refer to B,C,D

explicitly, we simply write γ(ψ′, φ′). In terms of the diagram form we have

(ψ : ν1 −→ ν2) ◦ (φ : µ1 −→ µ2) = (ψ ◦ φ : ν1 ◦ µ1 −→ ν2 ◦ µ2) : U(B) → U(D). (13)

Note that γB,C,D is adjoint to the composite

DGPH(C,D) × DGPH(B,C) ×B
1×εB,C

−→ DGPH(C,D) × C
εC,D

−→ D .

For a given digraph D, the digraph DGPH(D,D) with composition γD,D,D forms the

monoid digraph END(D), which has the structure of both a digraph and a monoid. That
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is, the monoid structure END(D)×END(D) → END(D) is a morphism of digraphs. Any

monoid in Set has a maximal subgroup. This is equally true in the category Dgph, where

the maximal subgroup of END(D) is written AUT(D) and called the group digraph of

D. In terms of the diagram form, AUT(D) consists of those (ψ : ν1 −→ ν2)), such that

each of ψ, ν1, ν2 is a bijection. It is this group digraph which is studied by Shrimpton

in [22, 23]. We now give some examples of morphism digraphs, and later examine an

analogue for undirected graphs.

The subcategory Sdgph of strict digraphs is closed under products and, since there

is at most one choice of ψ in equation (10), closed under internal homs. Since it is not

possible in END(D) to have arrows (ψ : ν1 −→ ν2), (φ : µ1 −→ µ2) with ψ = φ but not

ν1 = µ1 and ν2 = µ2, the monoid has a faithful representation as a transformation monoid

on U(D).

4 Examples

We now include a collection of examples which illustrate the main features of morphism

digraphs.

Example 4.1 For any digraph D there is a canonical isomorphism D → DGPH(T,D)

given by

(a : u −→ v) 7→

{

ψ′
a : I × T → D, (ι, •) 7→ a ,

ψa : U(T ) → U(D), • 7→ a .

Example 4.2 For any digraph D, the vertices of DGPH(I,D) are bijective with the loops

and arcs of D. Suppose (c : u −→ v), (d : x −→ y) in D. Then an arc (ψ ′ : c −→ d) of

DGPH(I,D) is a morphism ψ′ : I × I −→ D such that ψ′(1, ι) = c, ψ′(2, ι) = d, and so is

specified by a diagram in D of the type

u

c

�� ��?
??

??
??

??
??

??
??

?
// x

d

��
v // y

Hence the number of loops and arcs in DGPH(I,D)(c, d) is the product of the cardinalities

of D(u, x), D(u, y) and D(v, y). In particular, DGPH(I, I) is the digraph

1̄ = (1
1

−→ 1)
ῑ=(ι

ι
−→ι) //

ηι=(1
ι

−→ι) ((PPPPPPPPPPPP
2̄ = (2

2
−→ 2)

ι̂ = (1
ι

−→ 2)

ξι=(ι
ι

−→2)

66nnnnnnnnnnnn
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(see Lawvere ([15], p.276) for an interpretation using processes).

Notice that DGPH(I,D) contains a set of constant functions ē, forming an isomorphic

copy D̄ of D, where

U(D̄) = {ē : U(I) → U(D) | e ∈ U(D), ē(1) = ē(2) = ē(ι) = e} .

Also, for each loop or arc (e : u −→ v) in D, the digraph DGPH(I,D) contains arcs

ê = (u
e

−→ v), ηe = (u
e

−→ e), ξe = (e
e

−→ v), and the path

ū
ηe
−→ ê

ξe
−→ v̄ .

The evaluation morphism εI,I , defined by (11), restricts to

ε1 = εI,I(−, 1), ε2 = εI,I(−, 2) : DGPH(I, I) → I,

both of which map ῑ to ι, while ε1(ηι) = 1, ε1(ξι) = ι, and ε2(ηι) = ι, ε2(ξι) = 2.

Under the composition defined in (12), (13) the monoid digraph END(I) has identity

ι̂ and multiplication table
ι̂ 1̄ 2̄ ῑ ηι ξι

ι̂ ι̂ 1̄ 2̄ ῑ ηι ξι

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄

2̄ 2̄ 2̄ 2̄ 2̄ 2̄ 2̄

ῑ ῑ ῑ ῑ ῑ ῑ ῑ

ηι ηι 1̄ ῑ ῑ ηι ῑ

ξι ξι ῑ 2̄ ῑ ῑ ξι

Example 4.3 Let P2 be the path digraph u0
a1−→ u1

a2−→ u2. Since there is no arc from

u0 to u2 in P2, there is no arc from â1 to â2 in DGPH(I, P2):

ū0
ā1 //

ηa1   @
@@

@@
@@

ū1
ā2 //

ηa2   @
@@

@@
@@

ū2

â1

ξa1

>>~~~~~~~
â2

ξa2

>>~~~~~~~

Similarly, if Pn is the path digraph with vertices {ui | 0 6 i 6 n} and arcs {aj = (uj−1 −→

uj) | 1 6 j 6 n} then DGPH(I, Pn) has (2n+1) vertices {ūi, âj} and 3n arcs {āj, ηaj
, ξaj

}.

The digraph DGPH(Pn, I) has (n + 2) vertices: 1̄, 2̄ and, for 1 6 i 6 n, µi : Pn → I

such that µiai = ι. In this digraph there is a unique arc (µj −→ µi) for each j > i. The

following diagram exhibits an arc (µ5 −→ µ2) ∈ DGPH(P7, I) :

• 1 //

1

��?
??

??
??

??
??

1

��

• 1 //

ι

��?
??

??
??

??
??

1

��

• 1 //

ι

��?
??

??
??

??
??

ι

��

• 1 //

ι

��?
??

??
??

??
??

ι

��

• ι //

ι

��?
??

??
??

??
??

ι

��

• 2 //

2

��?
??

??
??

??
??

2

��

• 2 //

2

��?
??

??
??

??
??

2

��

•

2

��
•

1
// •

ι
// •

2
// •

2
// •

2
// •

2
// •

2
// •
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There is a unique arc from 1̄ to every vertex and also from every vertex to 2̄, giving a

total of
(

n+3
2

)

elements in DGPH(Pn, I), including
(

n+2
2

)

arcs.

Example 4.4 Suppose now that C3 is the circular digraph

u1

a1 !!B
BB

BB
BB

B
u3

a3oo

u2

a2

==||||||||

Then DGPH(I, C3) is a digraph with six vertices, one for each element of C3, having the

form:

â3
ξa3

~~}}
}}

}}
}

ū1
ηa1

~~~~
~~

~~
~

ā1

  A
AA

AA
AA

A
ū3

ā3oo

ηa3

``AAAAAAA

â1

ξa1 // ū2

ηa2 //

ā2

>>}}}}}}}}
â2

ξa2

``@@@@@@@

It is easy to see that, when Cn is the circular digraph with n > 4 vertices ui, and n arcs

(ai : ui −→ ui+1), (an : un −→ u1), then DGPH(I, Cn) has 5n elements {ūi, āi, âi, ηai
, ξai

}.

The automorphisms of C3 form the permutation group

{ ( ), π = (u1u2u3)(a1a2a3), π
2 = (u1u3u2)(a1a3a2) }

and there are three constant endomorphisms. There is no arrow (ψ : () −→ π) since, in

particular, there is no arrow in C3(u1, u3) to take as ψ(a1). So AUT(C3) is discrete, and

END(C3) is the digraph

ū1

ā1   A
AA

AA
AA

A
ū3

ā3oo

ū2

ā2

>>}}}}}}}}
• () • π • π2 ,

the monoid comprising three permutations and six left zeroes. Similarly END(Cn) con-

tains the 2n constant functions in C̄n and n isolated automorphisms.

Example 4.5 Suppose now that S2 is the simplicial digraph

u1
a3 //

a1 !!B
BB

BB
BB

B
u3

u2

a2

==||||||||
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Then DGPH(I, S2) has one more arc than DGPH(I, C3):

â3
ξa3

  A
AA

AA
AA

ū1

ηa3

>>}}}}}}} ā3 //

ā1

  A
AA

AA
AA

A
ηa1

~~~~
~~

~~
~

ū3

â1

ξa1 //

ψ′

33ū2

ā2
>>}}}}}}}} ηa2 // â2

ξa2

``@@@@@@@

where ψ′ : I × I → S2 and ψ : U(I) → U(S2) may be pictured as:

u1

a1

��

a3

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

a1 // u2

a2

��

and (u1
a1−→ u2)

(a1
a3−→a2) // (u2

a2−→ u3) .

u2
a2 // u3

Example 4.6 Denote by Kk
n the k-complete digraph with n vertices, k − 1 additional

loops at each vertex and, for each pair of distinct vertices u and v, exactly k arcs with

source u and target v. By previous results, DGPH(I,Kk
n) has as vertices the arcs of Kk

n

and there are k3 arcs between any two of these vertices. Thus DGPH(I,Kk
n) is isomorphic

to Kk3

kn2.

Example 4.7 An important example is the digraph

Ω : 0
a

** 1
b

jj cee .

For any digraph D the morphisms χ ∈ Dgph(D,Ω) may be identified with the subdigraphs

of D by χ 7→ χ−1(1). The reason is that a subdigraph C of D has a characteristic

morphism χC : D → Ω which maps all the vertices in C to 1; the remaining vertices

to 0; all the loops and arcs in C to c; and the remaining elements to the only possible

choice from {0, 1, a, b}. Because of this property, the digraph Ω is a subobject classifier

for directed digraphs. The lattice Dgph(Ω,Ω) of subdigraphs of Ω is not boolean since, in

particular, the complement of the complement of {1} is {1, c}. This lattice is an example

of a Heyting algebra ([18], I.8). The existence of this subobject classifier is one of the

reasons why digraphs may be considered as analogous to sets.

Taking D = Ω, we summarise the 12 subgraphs and the corresponding endomorphisms

of Ω in the following table:

the electronic journal of combinatorics 15 (2008), #A1 16



subgraph C morphism χC χC(0) χC(1) χC(a) χC(b) χC(c)

∅ χ1 0 0 0 0 0

{0} χ2 1 0 b a 0

{1}, {1, c} χ3, χ4 0 1 a b 1 | c

{0, 1}, . . . ,Ω χ5, . . . , χ12 1 1 1 | c 1 | c 1 | c

The digraph END(Ω) has a total of 2417 arcs since the number of arcs from χi to χj is

2mi,j where mi,j is the number of arcs e in U(Ω) such that sχie = tχje = 1.

Since Ω has a loop c it is not strict, so Sdgph has no subobject classifier and is not a

topos.

Remark 4.8 One can use known properties of cartesian closed categories to analyse other

constructions. For example, there is a natural isomorphism

(D1 ×D2)
C ∼= DC

1 ×DC
2 .

More generally, if D is given as a limit D = limλDλ, then DGPH(C,D) is isomorphic to

the limit limλ(D
C
λ ). In the other direction, if C is given as a colimit, C = colimλCλ, then

B × C is isomorphic to colimλ(B × Cλ), and DGPH(C,D) is isomorphic to limλ(D
Cλ).

These results can be practical tools for computation of examples of product and morphism

digraphs.

5 Undirected, reflexive graphs

We now investigate analogues of the results in Section 3 for reflexive, undirected graphs.

Recall that, for X a set, we denote by S2(X) the quotient of X ×X by the twist action

(x, y) 7→ (y, x). A graph G has an underlying set of elements U(G). The source and

target maps of directed graphs are replaced by a single boundary or end-points map

∂ : U(G) → S2(U(G)) satisfying ∂∗ ◦ ∂ = ∂. Then V (G) = {v ∈ G | ∂v = {v}} is the set

of vertices of G.

We denote an element e by (e : ∂e) when we wish to display its vertices. An edge of G

which is not a vertex but whose boundary is a singleton is a loop (we shall introduce bands

in a moment). The remaining elements of G are called edges. We denote the category of

reflexive graphs with vertices, loops, and edges by Gph. A morphism µ : G → G′ in Gph

is a function µ : U(G) → U(G′) such that

∂′ ◦ µ = µ∗ ◦ ∂ : U(G) → S2(V (G′)) . (14)

As discussed in Section 1, we need a larger category of undirected graphs containing

bands. A band in G is an element b ∈ U(G), with singleton boundary u, pictured as
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u • b

The set of bands is written B(G). We denote the category of reflexive graphs with vertices,

loops, bands, and edges by Ugph. A morphism µ in Ugph is again defined by (14), but

now the image of an edge may be an edge, a band, a loop, or a vertex. Similarly the

image of a band may be a band, a loop or a vertex, but a loop may not be mapped to a

band.

The product in Gph and in Ugph is defined by the universal property (5). We prove

its existence, first in Gph and then in Ugph, by a direct construction. For G1, G2 ∈ Gph,

the product graph G1 ×G2 has vertex set V (G1 ×G2) = V (G1)× V (G2) while the loops

and edges of the product consist of all pairs

((e1, e2), {(u1, u2), (v1, v2)}) (15)

where

∂e1 = {u1, v1}, ∂e2 = {u2, v2}, ∂((e1, e2), {(u1, u2), (v1, v2)}) = {(u1, u2), (v1, v2)}.

For example,

(u1, u2)

(e1,e2)

DDD
DD

DDD
DD

DDD
DD

DD
DD

D

(u1,e2)

(e1,u2)
(v1, u2)

(v1 ,e2) (`,e2)

(`,u2)

u1
e1 v1 ` × u2

e2 v2 =

(u1, v2)

(e1,e2)

zzzzzzzzzzzzzzzzzzzz

(e1,v2)
(v1, v2)

(`,v2)

(16)

The projections p1, p2 from the product to G1 and G2 send ((e1, e2), {(u1, u2), (v1, v2)})

to e1 and e2 respectively. This implies that if e1 and e2 are both edges, then the product

contains a second edge ((e1, e2), {(u1, v2), (v1, u2)}) which also projects to e1 and e2. The

universal property follows from the construction because, if µ1 : G1 → G′
1, µ2 : G2 → G′

2

are morphisms, then the morphism µ : G1 ×G2 → G′
1 ×G′

2, with components µ1 and µ2,

acts as µ1 × µ2 on vertices, and sends an edge e with boundary {u, v} to the edge

((µ1e, µ2e), {(µ1u, µ2u), (µ1v, µ2v)}) .

This is the only definition consistent with µ being a morphism with the required projec-

tions. Of course, a second edge of the product

((µ1e, µ2e), {(µ1u, µ2v), (µ1v, µ2u)})
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also projects to µ1e and µ2e, but it is not in general the value of a morphism on e.

The category Gph is not cartesian closed, and hence cannot be expressed in the form

CAT(Bop, Set). To demonstrate this, we show in the following counterexample that prod-

ucts do not preserve coequalisers, ([22, p.44]). The identification of vertices referred to in

the introduction may be achieved using a coequaliser. For the categorical background of

this example, we refer to [17, IV.3].

Counterexample 5.1 Let A be the graph with a single vertex x and let B be the graph

with two vertices u, v and a single edge e joining them. Define α, β : A → B by αx = u

and βx = v. The coequaliser of α, β in Gph is a pair (C, γ) where γ is a morphism

γ : B → C such that αγ = βγ, satisfying the universal property shown in the following

diagram:

C

∃!φ

���
�

�

�

A
β

//
α //

B

γ
77ooooooooo

δ ''OOOOOOOOO

D

We may take C to be the graph shown below, and γ(e) = ` :

A : x • B : u • e • v C : z • `

Consider now the two graphs:

A× B : (x, u)
(x,e)

(x, v) ,

(u, u)

(e,u)

(u,e)

(e,e)

AA
AA

AA
AA

AA
AA

AA
AA

AA
A

(u, v)

(e,v)
(e,e)

}}
}}

}}
}}

}}
}}

}}
}}

}}
}

B ×B :

(v, u)
(v,e)

(v, v)

The graph C×B and the coequaliser of α×1B, β×1B : A×B → B×B are pictured

as follows, and are not isomorphic:

(z, u)

(`,e)(`,u)

(z, v)(z,e)

(`,v)

zu

`u,v

ze

`u

zv

`v,u

`v

The construction of a product B1×B2 in Ugph is the same as the construction in Gph,

but now we must specify what happens with a band:
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• a loop or vertex in B1 and a band in B2 give rise to a band in the product;

• a band in B1 and a band in B2 give rise to two bands in the product;

• an edge in B1 and a band in B2 give rise to two edges in the product.

Then, in Ugph, the coequaliser C ′ of α, β and the product C ′ ×B are pictured as:

C ′ : z

b

C ′ × B : (z, u)

(b+,e)

(b−,e)

(b,u)

(z, v)

(z,e)

(b,v)

containing one and two bands respectively. Now C ′ ×B is isomorphic to the coequaliser

of α× 1B and β × 1B in Ugph.

6 Reversible Digraphs

One advantage of the cartesian closedness of Dgph = CAT(Cop, Set), as in (8), is that the

monoid digraph END(D) is an object in Dgph, and so is a digraph and also a monoid.

This construction is not available for graphs. One solution to this difficulty is to embed

Gph as a subcategory Rdgph of reversible digraphs in Dgph. Alternatively, we may choose

to work with Ugph which is isomorphic to Rdgph. In either case, we wish to associate to a

graph G a reversible digraph D (called a symmetric digraph in [20]) having endomorphism

monoid isomorphic to that of G, calculate the monoid digraph of D, and derive from this

an undirected graph as a candidate for the monoid graph of G.

We now give the formal definition of Rdgph. A reversal of a reflexive digraph D is a

direction-reversing, involutive endofunction r on U(D) satisfying:

r2 = id, s ◦ r = t, t ◦ r = s, r ◦ s = s, r ◦ t = t.

We call ra the reverse of a. Note that rv = v for every vertex v. A loop ` in D is

called self-reverse if r` = `, otherwise (`, r`) is a loop pair. A reversible digraph is a pair

(D, r) where r is a reversal of D, and is pair-free if all loops are self-reverse. A morphism

µ : (D, r) → (D′, r′) of reversible digraphs is a digraph morphism µ : D → D′ such that

µ ◦ r = r′ ◦ µ. This gives a category Rdgph of reversible digraphs and their morphisms.

We need to consider how the categorical constructions for Dgph of Sections 3 and 4

transfer to Rdgph. The product of (D1, r1)× (D2, r2) is (D1×D2, r1×r2). The subobject

classifier Ω of Example 4.7 has just one reversal, with rΩa = b and rΩc = c, and (Ω, rΩ)
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is a subobject classifier in Rdgph. Further, Rdgph has the form CAT(Fop, Set) where F is

the four-loop category with composition table shown below:

F : 0

10

��
σee

τ

FF
ρ

%%
,

◦ 10 σ τ ρ

10 10 σ τ ρ

σ σ σ σ σ

τ τ τ τ τ

ρ ρ τ σ 10

.

As explained in Section 1, the category Rdgph is a category of actions of the monoid F,

and so is a topos and, in particular, is cartesian closed.

Proposition 6.1 The reversible digraph corresponding to F(−, 0) under the isomorphism

Rdgph ∼= CAT(Fop, Set) is

(F, rF ) : σ
10

** τ
ρ

jj

and is a generator for Rdgph.

Proof: The functor F(−, 0) : Fop → Set takes the single object 0 of F to the set

U(F ) = {10, σ, τ, ρ}, and the arcs of F to the following functions:

10 7→ 1F : (10, σ, τ, ρ) 7→ (10, σ, τ, ρ),

σ 7→ sF : (10, σ, τ, ρ) 7→ (σ, σ, τ, τ),

τ 7→ tF : (10, σ, τ, ρ) 7→ (τ, σ, τ, σ),

ρ 7→ rF : (10, σ, τ, ρ) 7→ (ρ, σ, τ, 10).

These functions determine the source, target and reverse of the arcs in F .

The arcs of a reversible digraph (D, r) are bijective with the morphisms (F, rF ) →

(D, r) with a ∈ U(D) corresponding to the reversal-preserving morphism which maps 10

to a, so (F, rF ) is a generator for Rdgph. 2

The internal hom RDGPH in Rdgph is described by the following result.

Proposition 6.2 The reversible morphism digraph (R, r̄) = RDGPH((D1, r1), (D2, r2))

is the full subdigraph of DGPH(D1, D2) on the vertices corresponding to reversal-preserving

morphisms. The reversal r̄ on R is given by:

r̄ (ψ : µ −→ ν) = (χ : ν −→ µ) where χ(a) = r2ψr1(a) for all a ∈ U(D1).

Proof: By the Yoneda lemma, and the fact that (−)D1 is right adjoint to (−)×D1, the

functor D = DGPH(D1, D2) : Fop → Set acts on x ∈ Obj(F) by

Dx ∼= Nat(F(−, x) ×D1, D2),
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and on an arc α ∈ F(−, x) by

Dα(f) = f ◦ (F(−, α) × 1) where f ∈ DGPH(D1, D2)(x).

Taking F(−, 0) = (F, rF ) as above, the arcs of F ×D1 are given by

{ (10, a), (σ, a), (τ, a), (ρ, a) | a ∈ U(D1)} ,

with the vertices being

{ (σ, u), (τ, u) | u ∈ V (D1) } .

Thus a morphism Ψ ∈ Dgph(F × D1, D2) is a 4-tuple of functions (ψ, µ, ν, θ) :

U(D1) → U(D2) where

Ψ(10, a) = ψ(a), Ψ(σ, a) = µ(a), Ψ(τ, a) = ν(a), Ψ(ρ, a) = θ(a).

Then for any a ∈ U(D1), and q ∈ {s, t, r},

q2(µa) = q2(Ψ(σ, a)) = Ψ(σ, q1a) = µ(q1a),

and similarly for ν. Hence µ, ν are both morphisms (D1, r1) → (D2, r2).

On the other hand,

s2(ψa) = s2(Ψ(10, a)) = Ψ(σ, s1a) = µ(s1a),

t2(ψa) = t2(Ψ(10, a)) = Ψ(τ, t1a) = ν(t1a),

r2(ψa) = r2(Ψ(10, a)) = Ψ(ρ, r1a) = θ(r1a),

which implies

s2 ◦ ψ = µ ◦ s1, t2 ◦ ψ = ν ◦ t1, θ = r2 ◦ ψ ◦ r1.

Thus θ is completely determined by ψ.

Also, for any β ∈ F(0, 0), a ∈ U(D1),

s2(Ψ(β, a)) = DGPH(D1, D2)(σ).Ψ(β, a) = Ψ ◦ (F(0, σ) × 1)(β, a) = Ψ(σβ, a) = µa

since σ10 = σ2 = στ = σ. So s(ψ : µ −→ ν) = µ and similarly t(ψ : µ −→ ν) = ν

and r(ψ : µ −→ ν) = (rψr : ν −→ µ). This means that RDGPH(D1, D2) is simply

the full subgraph of DGPH(D1, D2) on the vertices corresponding to reversal-preserving

morphisms. 2

Corollary 6.3 The reversal r̄ on the monoid digraph END(D, r) preserves the monoid

multiplication.

Proof: Given (ψ : ν1 −→ ν2), (φ : µ1 −→ µ2) ∈ End(D, r),

r̄(ψ ◦ φ) = r(ψ ◦ φ)r = (rψr) ◦ (rφr) = (r̄ψ) ◦ (r̄φ) : ν2 ◦ µ2 → ν1 ◦ µ1 .
2
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7 Undirected endomorphism graphs

In this section we construct functors from Gph and Ugph to Rdgph. In the first case

the subcategory Pdgph of pair-free digraphs in Rdgph will be significant. Recall that a

subcategory B of C is reflective in C when the inclusion functor K : B → C has a left

adjoint F : C → B. There is then a bijection of hom-sets B(Fc, b) ∼= C(c,K b), natural in

c ∈ C and b ∈ B (see [17, IV.3]).

Proposition 7.1 The category Pdgph of pair-free, reversible digraphs is a reflective sub-

category of Rdgph.

Proof: Let F : Rdgph → Pdgph be the functor which, when applied to a reversible

digraph D, has as image a digraph with the same vertices and arcs as D but with loops

of the form ({`, r`} : u −→ u) for each loop pair (`, r`) at u ∈ V (D). This functor F is

the required left-adjoint to the inclusion functor K : Pdgph → Rdgph. 2

The product of pair-free, reversible digraphs is pair-free. Further, (Ω, rΩ) is pair-free,

and so is a subobject classifier for Pdgph. However Pdgph is not closed under internal

homs, as the following example shows.

Example 7.2 Let (K2
2 , r) ∈ Pdgph have two vertices, two loops, and four arcs, as shown

in the diagram:

u

b

  a
&&

k 99 v

rb

``
ra

ff `ee

Forgetting the reversal, the automorphism group of K2
2 is dihedral of order 8 with gen-

erating set {(a, b), (ra, rb), (u, v)(k, `)(a, ra)(b, rb)}, and AUT(K2
2)

∼= K16
8 . However, the

reversal preserving automorphisms form a subgroup of index 2, and AUT(K2
2 , r)

∼= K16
4 .

Now consider loops in AUT(K2
2 , r) at the identity automorphism. There is a loop ψ

with reverse θ where

c u v k ` a b ra rb

ψ(c) u v k ` a b rb ra

θ(c) u v k ` b a ra rb

So neither AUT(K2
2 , r) nor END(K2

2 , r) are pair-free.

We now define a pair of adjoint functors R : Ugph → Rdgph and U : Rdgph → Ugph,

which will enable us to construct a candidate for the endomorphism graph of an undirected

graph.
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Definition 7.3 The directing functor R : Ugph → Rdgph constructs a reversible digraph

(D, r) from a graph G, where

• the vertices of (D, r) are the same as those of G ;

• there is a directed loop (` : u −→ u) for each loop (` : {u}) ∈ L(G) ;

• there are loops (b+ : u −→ u), (b− : u −→ u) for each band (b : {u}) ∈ B(G) ;

• there are arcs ((e, u, v) : u −→ v) and ((e, v, u) : v −→ u) for each edge (e : {u, v}) ∈

E(G) .

The reversal r fixes the vertices and the first set of loops; is given on loops coming from

bands by r(b±) = b∓; and on arcs by r(e, u, v) = (e, v, u). If µ : G→ G′ is a morphism of

graphs, then the definition of R(µ) : R(G) → R(G′) is clear. For example,

R(µ)((b+ : u −→ u)) = ((µb)+ : µu −→ µu) .

Definition 7.4 The undirecting functor U : Rdgph → Ugph constructs a graph G from a

digraph with reversal (D, r), where

• the vertices of G are the same as those of (D, r) ;

• there is a loop (` : {v}) for each self-reverse loop (` : v −→ v) ;

• there is a band ({`, r`} : {u}) for each reverse pair of loops {`, r`} at u ;

• there is a single edge ({(a, u, v), (ra, v, u)} : {u, v}) for each pair of arcs (a : u −→ v)

and (ra : v −→ u) .

The definition of U(µ) is again clear.

Proposition 7.5 The functors

R : Ugph → Rdgph, U : Rdgph → Ugph

yield an equivalence of categories.

Proof: If G is a graph, then an isomorphism G→ U R(G) is given by the identity map

on vertices and loops, and is given on bands and edges by

(b : {u}) 7→ {(b+ : u→ u), (b− : u→ u)} 7→ ({b+, b−} : {u}) .

(e : {u, v}) 7→ ( {((e, u, v), u, v), ((e, v, u), v, u)} : {u, v} ) .

Similarly, it is straightforward to verify that the map (D, r) → RU(D, r) is an isomor-

phism. 2
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We are now able to construct a morphism graph UGPH(G,G′). First construct the

involutary digraphs (D, r) = R(G), (D′, r′) = R(G′); then form the morphism digraph

RDGPH((D, r), (D′, r′)); finally, apply U to obtain the required graph. We have defined a

binary operation

UGPH(G,G′) = U (RDGPH(R(G),R(G′))).

The resulting graph has Ugph(G,G′) as vertex set. When G,G′ are strict, R(G) and

R(G′) are both strict and so pair-free, and UGPH(G,G′) is pair-free.

The endomorphism graph END(G) is then UGPH(G,G), and the full subgraph of

END(G) having the automorphisms of G as vertices is the symmetry graph AUT(G).

However, END(G) and AUT(G) are not in general an internal monoid or group in Ugph.

In particular, the ‘product’ of two edges

{ (ψ, ν1, ν2), (rψr, ν2, ν1) } × { (φ, µ1, µ2), (rφr, µ2, µ1) }

consists of the two edges

{(ψφ, ν1µ1, ν2µ2), ((rψr)(rφr), ν2µ2, ν1µ1)}, {(ψ(rφr), ν1µ2, ν2µ1), ((rψr)φ, ν2µ1, ν1µ2)} .

Example 7.6 When G is the single edge graph and R(G) = (D, r) ,

G : 0
e

1 (D, r) : 0
a=(e,0,1)

,, 1
b=(e,1,0)

ll

then, as in Example 3.1,

AUT((D, r)) : 1D

ψ
** ρ

φ

kk

where ρ = (0, 1)(a, b), ψ = (0, a)(1, b) and φ = (0, b)(1, a). So the symmetry graph of G

is:

AUT(G) : 1D
c = {(ψ,1D ,ρ}), (φ,1D ,ρ})} ρ

and the “multiplication table” is

1D ρ c

1D 1D ρ c

ρ ρ 1D c

c c c {1D, ρ}

Finally, we make some definitions for graphs equivalent to those in [23] for digraphs. For

H a subgraph of G, let G \H denote the full subgraph of G with vertex set V (G) \V (H).

Then H is said to be symmetrically embedded in G if every automorphism of H extends
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to an automorphism of G which fixes every edge in G \H. An inner subgraph of a graph

G is a maximal symmetrically embedded complete subgraph of G. The vertex sets of the

inner subgraphs form a partition of V (G). An automorphism of a graph G is inner if it

restricts to an automorphism of each inner subgraph of G.

Proposition 7.7

(i) If H is an inner subgraph of a graph G then R(H) is an inner subdigraph of R(G).

(ii) If C is an inner subdigraph of a reversible digraph D then U(C) is an inner subgraph

of U(D).

The following result is the equivalent of Theorem 3.3 in [23] for graphs.

Proposition 7.8 The vertices of AUT(G) which belong to the connected component of

the identity automorphism are precisely the inner automorphisms of G.
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