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Abstract

We give a table with all integral trees on at most 50 vertices, and characterize

integral trees with a single eigenvalue 0.

1 Integral trees

A finite graph is called integral if the spectrum of its adjacency matrix has only integral
eigenvalues. A tree is a connected undirected graph without cycles.

In this note we give a table with all integral trees on at most 50 vertices, and a further
table with all known integral trees on at most 100 vertices. (For an on-line version, possibly
with updates, see [1].) In particular, we find the smallest integral trees of diameter 6, and
the smallest known integral tree of diameter 8.

The nicest result about integral trees is that by Watanabe [12] that says that an
integral tree different from K2 does not have a complete matching. Here we give a gener-
alization.

All ‘starlike’ integral trees, that is, all integral trees with at most one vertex of degree
larger than 2, were given by Watanabe and Schwenk [13].

All integral trees of diameter at most 3 were given in [13, 4]. See also [10, 3].
Several people have worked on constructing integral trees with large diameter, and

examples with diameters 0–8 and 10 are known, see [13, 9, 3, 8, 6, 7]. It is unknown
whether integral trees can have arbitrarily large diameter.

The spectral radius of a nonempty graph is the maximum absolute value of an eigen-
value. In [2] all integral trees with spectral radius at most 3 are determined.

1.1 Names of general trees

In the tables below, we need a notation to name trees. Given a tree, pick some vertex and
call it the root. Now walk along the tree (depth-first), starting at the root, and when a
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Figure 1: #17: 01233(1(23)3)2(124)21.

vertex is encountered for the first time, write down its distance to the root. The sequence
of integers obtained is called a level sequence for the tree. A tree is uniquely determined
by any level sequence. The parent of a vertex labeled m is the last vertex encountered
earlier that was labeled m − 1.

For example, the graph K1,4 gets level sequence 01111 if the vertex of degree 4 is
chosen as root, and 01222 otherwise.

We use exponents to indicate repetition: 01111 can be written 014 and 0121212 as
0(12)3.

1.2 Names of special trees

In the below we shall have use for some more or less standard tree names. Some of the
constructions below require a rooted tree as input, and we indicate the root.

A) K1 is a single vertex. K2 is a single edge. (Any of the two vertices can serve as
root.)

B) K1,m is the star on m + 1 vertices. Its root is the central vertex.
C) If G is a tree, then SG is the subdivision of G (with one new vertex in the middle

of each edge of G). If G is rooted, then so is SG, with the same root.
D) If G and H are rooted trees, then G ∼ H is the tree obtained from the disjoint

union of G and H by joining the roots. The resulting tree does not have a designated
root.

E) Consider for rooted trees G1, ..., Gs the rooted tree C(G1, ..., Gs) obtained by adding
a new vertex to the disjoint union of the Gi, joining the new vertex to the root of each
Gi, and taking this new vertex to be the root of C(G1, ..., Gs). For example, C(mK1) is
K1,m and C(mK2) is SK1,m. (Here mH denotes the disjoint union of m copies of H.)

F) Define rooted trees T (nk, ..., n1) by induction on k as follows: T () is K1 and
T (nk, ..., n1) = C(nkT (nk−1, ..., n1)) for k > 0. For example, T (m) is K1,m, and T (m, 1)
is SK1,m.

G) If G and H are rooted trees, then G∗H is the rooted tree obtained from the disjoint
union of G and H by identifying the roots. (The resulting vertex is the new root.) For
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example, T (s) ∗ T (m, t) is C(sK1 + mK1,t). (Here G + H denotes the disjoint union of G
and H.)

Now tree #17 depicted above is T (1) ∗ T (2, 4) ∗ T (1, 1, 3) ∗ T (2, 3, 1).

1.3 Families of integral trees

We give some families of integral trees for later reference. All except the last one occur
in the literature. Spectra are usually given with multiplicities written as exponents.

(i) The spectrum of the complete bipartite graph K1,m (the tree 01m) is ±√
m, 0m−1. It

follows that K1,m is integral when m is a square (Harary & Schwenk [5]).

(ii) The spectrum of SK1,m (the tree 0(12)m), is ±
√

m + 1, ±1m−1, 0. It follows that
SK1,m is integral when m + 1 is a square.

Watanabe & Schwenk [13] showed that the graphs in (i) and (ii) are the only integral
trees with a single vertex of degree more than two.

(iii) The spectrum of K1,m ∼ K1,r (the tree 01m+12r), the result of joining the centers of
K1,m and K1,r, consists of 0m+r−2 together with the four roots of

X4 − (m + r + 1)X2 + mr = 0.

These are integral for example when m = r = a(a + 1) for some positive integer a (and
then the positive roots are a and a + 1). There are also other solutions - the smallest is
K1,50 ∼ K1,98 on 150 vertices. The question which m and r give integral solutions was
settled by Graham [4].

(iv) The spectrum of K1,m ∼ SK1,r (the tree 01m+1(23)r), the result of joining the centers
of K1,m and SK1,r, consists of 0m and ±1r−1 together with the four roots of

X4 − (m + r + 2)X2 + mr + m + 1.

These are integral for example for m + 1 = r = a(a + 1) and for m− 1 = r + 2 = a(a + 1)
(and in both cases the positive roots are a and a + 1). There are also other solutions -
the smallest is K1,287 ∼ SK1,144 on 577 vertices. One can find all solutions by the method
of Graham [4].

Watanabe & Schwenk [13] also studied the situation with two adjacent vertices of degree
more than two, and proved that in that situation one must have one of the examples given
under (iii) and (iv).

(v) The spectrum of T (r, m) is ±
√

r + m, ±√
m

r−1
, 0mr−r+1. Thus, this graph is integral

precisely when both m and r + m are squares (Watanabe & Schwenk [13]).

Many other families have been studied, especially by Chinese mathematicians, but most
have not more than one or two representatives in the tables below, and we refer directly
to the literature. It remains to give a uniform explanation for many of the remaining
graphs.
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Lemma 1 Consider the tree T (a) ∗ T (b, 1) ∗ T (c, 4) ∗ T (d, 1, 3) ∗ T (e, 3, 1), also known
as 01a(12)b(12222)c(12333)d(1232323)e. It is integral when it is 01a with a = t2 (that
is, K1,a, case (i) above), or 0(12)b with b = t2 − 1 (that is, SK1,b, case (ii) above),
or 0(12222)c with c = t2 − 4 (that is, T (c, 4), part of case (v) above), or when b = 0,
c = 3a + 2d − 3, e = t2 − 4a − 3d. In this last case the nonnegative eigenvalues are 0, 1,
2, t, with multiplicities 10a + 9d + e − 10, 2e + 1, 3a + 3d + e − 4, 1, respectively. 2

For example, for t = 3 and (a, d) = (2, 0), (1,1), (0,3), (1,0), (0,2), this yields examples
#12, 17, 18, 22, 23.

1.4 Tables

The first table gives all integral trees on at most 50 vertices. Here n is the number of
vertices and d is the diameter. Since trees are bipartite, the spectrum is symmetric around
0, and it suffices to give the nonnegative half. Multiplicities are written as exponents.
The references (i)-(v) refer to the families described above and due to Harary & Schwenk
[5] (for (i)) and Watanabe & Schwenk [13] (for (ii)–(v)). Graphs #1–8 were already
mentioned in [5]. The reference Wang refers to Wang [11].

The second table gives all further known integral trees on at most 100 vertices.

2 Discussion

There remains the question how one can compute a table of all integral trees on at most
50 vertices. There are 10545233702911509534 nonisomorphic trees on 50 vertices, more
than 1019, so testing them one by one would not work.

Our approach is via interlacing. If x is a vertex of a graph G, and G \ x the result of
deleting x from G, then the eigenvalues of G \ x interlace those of G. It follows that if
G \x has two eigenvalues strictly between two successive integers a and a+1, then G has
an eigenvalue strictly between a and a + 1 and hence is not integral.

Now the spectrum of a disconnected graph is the union of the spectra of the compo-
nents, so one can conclude that G \ x has two eigenvalues strictly between a and a + 1
from the fact that this is true for a component, or for the union of some of its components.
This is what we used: use a recursive procedure (depth first) that constructs all trees.
Each time for some vertex x one or more components of G \ x have been completed,
compute the spectrum of the union of those components, and discard that branch of the
computation when two eigenvalues strictly between two successive integers are found.
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# n d tree spectrum ref
1 1 0 0 0 (i)
2 2 1 01 1 (i)
3 5 2 01111 2, 03 (i)
4 6 3 012211 2, 1, 02 (iii)
5 7 4 0121212 2, 12, 0 (ii)
6 10 2 019 3, 08 (i)
7 14 3 012616 3, 2, 010 (iii)
8 17 2 0116 4, 015 (i)
9 17 4 0(12)8 3, 17, 0 (ii)
10 17 4 0127(12)4 3, 2, 13, 07 (iv)
11 19 4 0125(12)6 3, 2, 15, 05 (iv)
12 25 5 01(23333)322(12)3 3, 23, 13, 011 Wang, p. 58
13 26 2 0125 5, 024 (i)
14 26 4 0(12222)5 3, 24, 016 (v)
15 26 3 01212112 4, 3, 022 (iii)
16 31 4 0(12)15 4, 114, 0 (ii)
17 31 6 01233(1232323)2(12222)21 3, 24, 15, 011 new
18 31 6 0(12333)3(12222)3 3, 25, 1, 017 Wang, p. 68
19 35 4 01213(12)10 4, 3, 19, 013 (iv)
20 37 2 0136 6, 035 (i)
21 37 4 01211(12)12 4, 3, 111, 011 (iv)
22 37 6 0(1232323)51 3, 24, 111, 05 Yao [14]
23 37 6 0(12333)2(1232323)3124 3, 25, 17, 011 new
24 42 3 01220120 5, 4, 038 (iii)
25 46 4 01214(12222)6 4, 3, 25, 032 Yuan [15]
26 49 4 0(12)24 5, 123, 0 (ii)
27 50 2 0149 7, 048 (i)
28 50 4 0(12222)914 4, 28, 1, 030 Watanabe [12]

Table 1: The integral trees on at most 50 vertices.
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n d tree spectrum ref

55 5 01(239)327(12)8 4, 33, 2, 17, 031 Wang, p. 57
56 6 0111(12222)8123331232323 4, 29, 13, 030 new
59 4 01221(12)18 5, 4, 117, 021 (iv)
61 4 01219(12)20 5, 4, 119, 019 (iv)
61 4 0(12222)12 4, 211, 037 (v)
62 3 01230130 6, 5, 058 (iii)
62 4 01210(12222)10 4, 3, 29, 040 Yuan [15]
62 6 0111(12222)6(1232323)4 4, 29, 19, 024 Wang, p. 76
62 6 011(12222)7(12333)2(1232323)2 4, 210, 15, 030 new
62 6 01(12222)8(12333)4 4, 211, 1, 036 Wang, p. 77
65 2 0164 8, 063 (i)
68 6 011(12222)5(12333)(1232323)5 4, 210, 111, 024 new
68 6 01(12222)6(12333)3(1232323)3 4, 211, 17, 030 new
68 6 0(12222)7(12333)5(1232323) 4, 212, 13, 036 new
71 4 0(12)35 6, 134, 0 (ii)
71 4 0(129)7 4, 36, 057 (v)
71 6 016(129)2(1(23)8)21238 4, 34, 2, 114, 031 new
74 6 011(12222)3(1232323)8 4, 210, 117, 018 Wang, p. 76
74 6 01(12222)4(12333)2(1232323)6 4, 211, 113, 024 new
74 6 0(12222)5(12333)4(1232323)4 4, 212, 19, 030 new
78 4 012512181232 6, 5, 4, 072 Wang, p. 44
80 6 01(12222)2(12333)(1232323)9 4, 211, 119, 018 new
80 6 0(12222)3(12333)3(1232323)7 4, 212, 115, 024 new
81 6 0(1238)2(129)6 4, 37, 1, 063 Wang, p. 68
82 2 0181 9, 080 (i)
86 3 01242142 7, 6, 082 (iii)
86 6 01(2343434)12 4, 211, 125, 012 Yao [14]
86 6 012222(12333)2(1232323)10 4, 212, 121, 018 new
87 6 01629(1(23)8)3(1238)2 4, 35, 2, 121, 031 new
89 4 01231(12)28 6, 5, 127, 031 (iv)
89 5 016(12222)151232323 5, 215, 13, 051 Wang, p. 57
91 4 01229(12)30 6, 5, 129, 029 (iv)
91 6 014(129)31(234)5(1238)3 4, 36, 25, 067 new
94 4 01222(12222)14 5, 4, 213, 064 Yuan [15]
95 6 015(12222)14(12333)(1232323)2 5, 216, 15, 051 new
95 6 014(12222)15(12333)3 5, 217, 1, 057 Wang, p. 77
97 4 0(12)48 7, 147, 0 (ii)
98 8 0(12)3(129)4(122(34)7)3 4, 36, 2, 123, 036 new

Table 2: Further integral trees on at most 100 vertices.
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3 Integral trees with few eigenvalues 0

Theorem 2 (Watanabe [12]) An integral tree cannot have a complete matching, that is,
must have an eigenvalue 0, unless it is K2.

Proof Suppose T is a tree with a complete matching. Then that matching is unique,
since the union of two distinct complete matchings contains a cycle. Now the constant
term of the characteristic polynomial is, up to sign, the number of complete matchings. It
is also the product of all eigenvalues. If this constant term is ±1 and the tree is integral,
then all eigenvalues are ±1 and the path of length 2 is not an induced subgraph, so we
have K2. 2

This argument can be extended a little.

Theorem 3 If an integral tree has 0 as eigenvalue with multiplicity 1, then the tree is
SK1,m for some m.

Proof Suppose T is a tree on n vertices with eigenvalue 0 of multiplicity 1. Then it
has almost matchings: coverings by m pairwise disjoint edges and a single point, where
n = 2m + 1. The number of such almost matchings is, up to sign, the product of the
nonzero eigenvalues. On the other hand, the number of such almost matchings is precisely
the number of nonzero entries of the (up to a nonzero constant) unique eigenvector u for
0.

(If we delete a vertex where u is zero, then the resulting graph has eigenvalue 0 and
hence no matchings. Suppose that u is nonzero at a vertex p, and the graph T \ p has
no matching. Then it has eigenvalue 0, and since n − 1 = 2m is even, this eigenvalue
has multiplicity at least 2, so there is an eigenvector v of T \ p for 0 that sums to 0 on
the neighbours of p. But then v extended by a 0 on p is another eigenvector for 0 of T ,
contradiction.)

This number of nonzero entries is at most (n+1)/2 = m+1, since the nonzero entries
form a coclique, and no vertex with zero entry is adjacent to more than two vertices with
nonzero entries.

Let t run over the positive eigenvalues of the adjacency matrix A of T . Considering
the trace of A2 (which equals twice the number of edges) we see that

∑
t2 = 2m. By the

above we have
∏

t2 ≤ m + 1.
Since T is integral these m eigenvalues t are all at least 1, and the extremal situation

is when all except one are 1 and the last one has t2 = m + 1. Since equality holds we
must be in this extremal situation and know the spectrum, it is that of SK1,m.

Now A2−I has rank 3 (eigenvalue m with multiplicity 2 and −1 with multiplicity 1) and
hence has rank 1 on one bipartite half of T. The Perron-Frobenius eigenvector is positive
everywhere, so yields an eigenvector of A2 − I for both components, with eigenvalue m.
The vector u vanishes on one bipartite half. That bipartite half is connected for steps of
size 2, and has a rank 1 matrix, so has diameter 2, where each vertex has a unique path
of length 2 to every other vertex, and has degree 2 itself. This forces the structure, and
T must be SK1,m. 2
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Remark The trees SK1,m are determined by their spectrum as trees, not as graphs.
For example, SK1,3 is cospectral with C6 + K1.
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