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Abstract

Fakhruddin has proved that for two lattice polygons P and Q any lattice point
in their Minkowski sum can be written as a sum of a lattice point in P and one in
Q, provided P is smooth and the normal fan of P is a subdivision of the normal fan
of Q.

We give a shorter combinatorial proof of this fact that does not need the smooth-
ness assumption on P .

1 Introduction

It is one of those problems. Everyone can understand it immediately. Yet, to this day we
do not have any satisfactory solution.

A lattice polygon P ⊂ R2 is the convex hull of finitely many points in the lattice Z2.
Given two lattice polygons P and Q, we consider the addition map

s : (P ∩ Z2) × (Q ∩ Z2) −→ (P + Q) ∩ Z2.

( x, y ) 7−→ x + y

We want to understand when s is surjective. Equivalently, when is

(P ∩ Z2) + (Q ∩ Z2) = (P + Q) ∩ Z2 ?
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This very basic question in discrete geometry (and its higher dimensional analogue)
appears in different guises in algebraic geometry, commutative algebra, and integer pro-
gramming. Specific cases also arise in additive number theory, representation theory,
and statistics. Motivation for a conjectured sufficient condition comes from algebraic
geometry.

Conjecture (Oda). Let X be a smooth projective toric variety, let D be an ample divisor

on X, and let D′ be nef. Then, the following homomorphism is surjective:

H0(X,O(D)) ⊗ H0(X,O(D′)) → H0(X,O(D + D′)).

The toric dictionary translates this into discrete geometry as follows:

Conjecture (Oda’). Let P and Q be lattice polytopes. If P is smooth and the normal

fan of Q coarsens that of P , then the map s is surjective.

Here, a lattice polytope P is called smooth if it is simple and at every vertex the
primitive facet normals generate the dual lattice. This condition is equivalent to P corre-
sponding to an ample divisor on a smooth toric variety. The case Q = nP , n ∈ N of this
conjecture is the conjecture that all smooth lattice polytopes are projectively normal.

The two-dimensional case of Oda’s conjecture is now Fakhruddin’s Theorem [Fak02],
with an independent proof by Ogata [Oga06]. In this note, we generalize Fakhruddin’s
Theorem to the non-smooth case.

Theorem 1.1. Let P and Q be lattice polygons such that the normal fan of Q coarsens

that of P . Then the map s is surjective.

Our proof originated in a discussion about normality of polytopes during a mini-
workshop at Oberwolfach [HHM07].

The assumption on the normal fan is necessary. See Figure 1 for an example of
two lattice polygons that do not satisfy the condition on the normal fan. The point
(0, 0) ∈ P + Q cannot be written as a sum of a lattice point in P and one in Q.
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Figure 1: Theorem 1.1 fails without the assumption on the normal fan.

Theorem 1.1 remains true if Q is a segment. Embarrassingly, the conjecture is open
even if dim(P ) = 3 and dim(Q) = 2, or if P = Q and dim(P ) = 3. Observe that in
dimension three and higher the smoothness hypothesis cannot be removed. For example,
if P = Q is the simplex of lattice volume two in R3 having the four vertices as its only
lattice points, then the centroid of P + P is a lattice point but it is not in the image of
the map s.
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2 Lattice point free intersections are 4-gons

As an intermediate step we prove the following curious result.

Proposition 2.1. Let P and Q be lattice polygons and let Z = P ∩Q. If Z is not empty

but does not contain a lattice point, then Z is a 4-gon with two opposite edges coming

from P and the other two coming from Q.

Examples of the stated 4-gons appear in Figures 1 and 2.

Proof. Let Z := P ∩ Q. If some vertex of Z is a vertex of P or of Q, then it is a lattice
point in Z. So, let us assume that all vertices of Z arise from an edge of P and an edge of
Q intersecting in their relative interiors. This implies that Z is two-dimensional, and that
edges of Z are alternatingly edges of P and of Q. In particular, Z has an even number
n ≥ 4 of edges.

We prove the theorem by contradiction. For this, assume n ≥ 6 and let L(P ) denote
the set of lattice points in P that are not vertices of P . We may assume that P minimizes
|L(P )| among the polygons for which Z = P ∩ Q has more than four edges and contains
no lattice point.

If L(P ) = ∅, then P is contained in a (closed) strip R of lattice width one. The interior
of R intersects precisely two edges of Q, since the strip contains no lattice point in its
interior. Those two are the only edges of Q that can contribute to edges of Z. Hence, Z

is in fact a 4-gon. See Figure 2.
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Figure 2: All lattice points of P are
vertices
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Figure 3: m ∈ P ∩ Z2 is not a vertex of
P

Now assume |L(P )| > 0. We will construct a subpolytope P ′ ⊂ P with |L(P ′)| <

|L(P )| and such that the intersection Z ′ = P ′ ∩ Q has the same number of edges as Z, a
contradiction.

For this, let m ∈ L(P ). By assumption, m 6∈ Z. Hence, there is an edge q of Z with
m in its outer half-space H+. As q comes from an edge of Q, both Q and Z are contained
in the closed half-space H−. See Figure 3.

Let pl, pr be the edges of Z adjacent to q. Then pl (respectively, pr) is part of an edge
pl (respectively, pr) of P . Let vl (respectively, vr) be the vertex of pl (respectively, pr)
contained in H−. Since Z is not a 4-gon we have vl 6= vr.
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We define P ′ as the convex hull of m and all vertices of P that are contained in H−.
By construction, Z ′ := P ′∩Q is a 2-dimensional polygon with the same number of vertices
as Z. As m is a vertex of P ′, L(P ′) ( L(P )

3 Proof of Theorem 1.1

We first translate Theorem 1.1 into a statement that does not involve the map s anymore.
The following necessary and sufficient condition for s to be surjective is due to Benjamin
Howard [How07].

Lemma 3.1. s is surjective if and only if for all z ∈ Z2

P ∩ (z − Q) 6= ∅ ⇐⇒ (P ∩ (z − Q)) ∩ Z2 6= ∅

Proof. The left-hand side is equivalent to z ∈ P + Q. The right-hand side to z ∈ (P ∩
Z2) + (Q ∩ Z2).

For example, in Figure 1 the point (0, 0) is not in the image of s because the intersection
of P and −Q does not contain a lattice point. Using this lemma, Theorem 1.1 is equivalent
to the following.

Theorem 3.2. Let P and Q be lattice polygons. If P ∩Q 6= ∅ and the normal fan of −Q

coarsens that of P , then P ∩ Q contains a lattice point.

Proof. Let Z = P ∩ Q and suppose that Z ∩ Z2 was empty. Then, by Proposition 2.1, Z

is a 4-gon with two opposite edges coming from P and the other two coming from Q.
Let e1 and e2 be the edges of Z originating from P and f1, f2 those from Q. Let f 1 and

f 2 be the edges of P with exterior normals opposite to those of f1 and f2, respectively.
They exist by the condition on the normal fans.

By construction, f 2, f1, f2 and f1 are all contained, and appear in this order, in the
(possibly degenerate) wedge defined by the lines supporting e1 and e2. See Figure 4.

In particular, at least one of the f
i

is shorter than or equal to its corresponding fi.
But since f i is a lattice segment, and since fi is parallel to it, contained in a lattice line,
and equal to or longer than it, fi must contain a lattice point. This contradiction finishes
the proof.
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Figure 4: A lattice point on f1.
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Note: Lev Borisov (unpublished) as well as Daiki Kondo and Shoetsu Ogata (unpublished)
alerted us that they also proved Theorem 1.1 independently. Borisov’s proof proceeds
along the same lines as ours. His treatment of Proposition 2.1 is different. Kondo/Ogata
generalize Fakhruddin’s argument. Vladimir Danilov and Gleb Koshevoy discuss cases in
which s is surjective [DK04].
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