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Abstract

We introduce a group theoretical tool on which one can derive a family of iden-
tities from sequences that are defined by a recursive relation. As an illustration it
is shown that

n—1 n
1 . Foi1 F,
S P iFP =) ()" (FE-Fy =) = (),

i=1

where {F},} denotes the sequence of Fibonacci numbers.

1 Preliminaries and Introduction

We start our work with recalling some basic facts about the structural properties of words
in a free group; cf. [1]. Let F' be the free group generated by the set X = {z1,...,z,}.
Marshall Hall [1] introduced a family of words in F’, which are known as basic commutators
and play an essential role. Every basic commutator u has a weight, denoted by w(u), which
is a natural number. Also, the basic commutators can be ordered generally with respect
to their weight.

Definition. (Basic Commutators)
1) x1,...,x, are basic commutators of weight 1 and are ordered with respect to each
other (here x; < --- < x,),
2) if the basic commutators of weights less than n are defined, then the basic commu-
tators of weight n are w = [u, v] = v~ 'v ™ uv, where
1) u, v are basic commutators and w(u) + w(v) = n,
ii) u > v and if u = [s,¢] then t < wv.
If w(u) < n then v < w. The basic commutators of weight n are ordered arbitrarily
with respect to each other.
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The following theorem of Marshall Hall plays a basic role in the study of basic commu-

tators. Recall that the commutator subgroups vx(G) in a group G are defined recursively
by v1(G) = G and

7i41(G) = (@), G = ([2, gl; 2 € 7:(G), g € G),
for all i > 1. We refer the reader to [1] for some basic properties of 74 (G).

Theorem 1.1. (Marshall Hall [1, Theorem 11.2.4]) If F' is the free group with free gener-
ators x1,..., T, and if ¢y, ..., ¢y 1S the sequence of basic commutators of weights 1,. ..k,
then an arbitrary element w of F has a unique representation

w=ct" - (mod Yy (F)),
where ay, . .., a, are integers. Moreover, the basic commutators of weight k form a basis
for the free abelian group ~yi(F)/Yk+1(F).

In this paper, we introduce a general strategy on the discovery of almost number
theoretical identities using a word-based combinatorics. As an illustration it is shown

that .
— 1 < . Fri F,
FosiF2 =) ()" (Fy—F) = "7 )= ()
Yt =3 = () - (5)

i=1

where {F,} denotes the sequence of Fibonacci numbers.

2 Main Results

To explain our method, let F' be the free group of finite rank generated by X and {w,}
be a recursively defined sequence of words in F'. Also, let £ > 1 and ¢y, ..., ¢, be the
sequence of basic commutators of weights 1,..., k. Then, by Theorem 1.1, w, has a
unique representation

wy =" e (mod g (), (1)

where aj p, ..., an, are integers. Since {w,} is recursively defined, we may assume that
w, = Wy(wy,...,w,_1,X), where W,, is a word on wy,...,w,_1 and elements of X.
Suppose that ¢ > 1 and a;;’s are known for all j such that w(c;) < w(¢;) and all £ > 1.
Feeding the representation (1) of wy, . .., w,_; in w, one observes that a; , can be obtained
recursively by a1, ..., ain_1, .., {a;n}r>, is also a recursive sequence. Now, by solving
the recursive sequences {w,} and {a;,}>,, we obtain a;, in two different forms from
which we obtain an identity. An identity which is obtained in this way is called the ¢;-
identity of {w,}. It is evident that different methods in solving the sequences {w,} and
{ain}o, would give different identities. To be more tangible what it means, in Theorem
2.2 we obtain a [y, z|-identity in details.

Throughout this paper, F' denotes the free group of rank 2 generated by z and y.
In this case, x < y < [y,z] would denotes the basic commutators of weights 1,1,2,
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respectively. In what follows we use frequently the well-known identities yz = zyly, z],
[y, 2] = [z, 2]Y[x, 2] and [z, yz] = [z, z][z, y]?, where x, y and z are elements of an arbitrary
group G. As a direct consequence of these identities we can prove

Lemma 2.1. For any group G and elements x,y € G
i) yra™ = amy"y, 2™ (mod 3(G));
ii) (wy) = 2"y"ly,2]3) (mod 7(@)).

Now, we explain the first example in details. Let w; = 2%¢, wy = 2%y? and wy40 =
wlw?,,, where a,b,c,d,u,v are integers and n > 0. Also, let F' = F/v3(F) and @ =
wy3(F), for each w € F. Then, by Theorem 1.1, there are unique integers a,, b, and ¢,
such that

Wy, = 2" [, 7],
for all n > 1.

To obtain the [y, z|-identity of {w,} we need some more notations. To do this, let
{L,},{L} be the sequences recursively defined by the rules L, o = uL, + vL,;; and
L., =ul,+vL,,, where Ly =0, Ly = u, Lj = 1, L} = v and n > 0. Moreover,
Let {G,},{G}} be sequences recursively defined by G,42 = uG, + vGny1 and G, =
uG,, +vG) , where Gy = a, Gy =0, G} = ¢, Gy =d and n > 1.

Utilising the notations above, we have

Theorem 2.2.

L, sz) GG+ (g) GGy + uuGHng] (2)
=1

- ~ L Ly, L
= uZ(—u)"_’ {Li—lL;_l + ’U( ’2_1)] CCL Z ‘ + ac( 5 ) + bd( 2") + bel, L,
i=1

foralln > 1

To prove Theorem 2.2, we need the following lemmas.
Lemma 2.3. Ifn >0, then L,y =ulL, and L), , = L, +vL,,.

Proof. By definition Ly = u = uL{,, Ly = uwv = ul}, [y = v = Ly+vL})and L) = u+v? =
Ly +vLi. Now, if n > 1 and the result hold for n — 2 and n — 1, then

Lo =ul, +vLyy =u(ull,_ +vL;,) =ul;_,,
Ly o =uly +vLi = Loy + 0L,

as required. O

Lemma 2.4. Let k and n be nonnegative integers. Then

Z) wrki‘ — j}ka"gkb" [g’ j]kcn‘i‘(];)anbn;
=1 (ad—bc)

i) [W1, 0] = [7, 7)Y :
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Proof. 1) It is obvious by Lemma 2.1(ii).

i) If n = 1, then [0, 11, w,] = [Wa, w1] = [2°7%, 2°7°] = [y, 2]**~%. Now, if n > 1, then
[U_}n—klvwn] = [’J)Z—lw:}wwn] = [wnvu_}n—l]_u
and the result follows inductively. O

Proof of Theorem 2.2. To prove identity (2), we calculate ¢, 19 in two different ways.
1) First, we count ¢, directly by solving {¢,}. If n > 1, then by Lemmas 2.1(i) and
2.4(i)

Wnyy = Wy
I i\uanguz’n [y ,I]UCn+( )anbnxva7l+1yvbn+l [y ]vc7l+1+( )an+lbn+l

— :Z.uangUbn 7Uan+1gvbn+1|:g f]ucn+vcn+1+( )anbn ( )an+lbn+l
7VAn 41 57 Ubp ]uvan+1bnyvbn+1[y x]ucn-l-vcnﬂ-i-( )anb7l+(;)an+1bn+1

A TR 78

Uan+van41 ;5ubn+vbny1 —] UCn+VCn+1 +(2)an bn+ (g)an+1bn+1 +uvan4+1bn

=z i [y, T

— i,uan
Hence

Qpi2 = UGp + Vapgq,

bn+2 = Ubn_l'vbn-‘rla

U v
Cnt2 = UCH + VCppq + <2) anby, + (2) Apy1bpg1 + uvAy11by.

It follows from the definitions of {ax}, {bx} and {Gi},{G}} that ax = Gy and b, = G},
for all £ > 1. Let djyo = ( )akbk + ( )ak+1bk+1 + uvagy1by, for all £ > 1. Then ¢, =
UCy + VCpi1 + dpgo = Licy + Licpi1 + Lidnyo. Now, suppose that 1 < k < n and

Cny2 = LiCo_ps1 + LiCppio + Liy_1dn_gis + -+ - + Lydpto.
Then

Cot2 = LiCppir + LiCopio + Ly ydppis + -+ + Lodyio
= Lyo—ps1 + Ly (ucn—g + vCppi1 + dn—pi2) + Ly _1dp—trs + -+ + Lodyio
= Lk—l—lcn—k + L;H.lcn—k—i-l + L;gdn—k+2 + -+ Lé)dn+2

and so by induction we obtain

Cn+2 - LnC1 _'_ L;LCQ + L/ 1d3 + A + L/ dn+2

= L;L—ld3+ +LO n+2 — ZLn zd2+27

n+ 2 (A 7 2 Z+ Z+ Z+ 7
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2) Now, we count ¢,4» in a different way by solving {w,}. Put
) L
a; = (—u)"" [uLi_lL;_l + uv( 12_1)} a b

c d
fori=1,...,n. Clearly a; = 0 and 80 Wy 12 = WEwWY,; = WM wL+ [y, z]**. We will show
that fort=1,...,n

s L . plertta (4)
wn+2 wn 2+1wn 2+2[y7 ]

If (4) holds for 4, then using Lemmas 2.1(i,ii) and 2.4(ii)

Tnso = " ,+1w5 ol T T
= wﬁ_i+1(’lﬂx ZU_}Z i+1)L;[§, j]al—i-'”—i-ai
= 'U_JTLL% i+1W _ZL;wZLz.kl[w;}L—i—i-lvU_J ](L,)[y x]aH— Fay
= IU_JT[L/Z—Z—HZDZE;ZTDZEQZ_‘J[@ j]al-i--~~+ai+(—u)n7171uv(L2;)(ad_bc)
- wﬁ;@'wﬁiiﬂ[wﬁ Z+17wULZ]wnLZ+1[g, z)t ot () <"+1>uv(g%)(ad_bc)
= ﬁfﬁijﬁ [y, z] et ) (ul Lrun(') ) (ad—be)
Liv1 =Lit1

- _ jon g
= w,w, L[, 7] B

By replacing i by n in (4) and using Lemma 2.1(i,ii), we get
Wpyo = u_)lL [g) ]al+ +an
= (x“yc)L"( 2ty e[, Z) ot en
aLn CLn bL, dL/ ]al+"'+an+aC(L2")+bd(L2'ln)

= "y ",
= gLty clatdll [y gloat can+ac( ') +bd( U +beLn Ll
Therefore
L, L ,
Cnyz =01t Fan +ac| +bd 5 + beL, L), (5)
Now, the equations (3) and (5) imply the identity (2), which is the [y, x]-identity of
{wn}. U

Corollary 2.5. For anyn > 0

n

3 FuiF? =33 (-1 (B - F). ©)

i=1

Proof. By putting u =v =a =d =1 and b = ¢ = 0 in identity (2), we get L, = F),,
L =F,,G,=F, G =F,and so

ZFH—H F2 = i(—l)"—i (Fi_lFiJr (g)) .

=1
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Now, >0 Fop1if ) = Z?:_ll FoiF? and Fi 1 F; + (I;Z) =
the proof.

1
2

Corollary 2.6. For anyn >0

n—1
F,
> FuiFiFin =( 2“).
=1

Proof. Put u=v=a=>b=d =1 and ¢ =0 in identity (2).

Corollary 2.7. For anyn >0
n—1
> FiF?= Fner) _ (Fn
: n—+ g 2 2 N
=1
Proof. By Corollary 2.6, we have

n—1 n—1
Y FuiF? = ) FoiFi(Fin — Fy)
i=1 i=1

n—1 n—1

= Z Fn—iFiE+1 - Z Fn—iFiE—l
i=1 =1
n—1 n—2

= Z F,_ FiFi — Z Fo-iFiFi

i=1 i=1
o P%+l P%
= 9 9 )

Similar to Corollary 2.7, one we can prove the following result.

Corollary 2.8. For anyn > 0

n—1
z : P% F%+1
}1%417i3: .

(Fy; — F;), which completes

O

(9)
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