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Abstract

We introduce a group theoretical tool on which one can derive a family of iden-
tities from sequences that are defined by a recursive relation. As an illustration it
is shown that

n−1
∑

i=1

Fn−iF
2
i =

1

2

n
∑

i=1

(−1)n−i(F2i − Fi) =

(

Fn+1

2

)

−

(

Fn

2

)

,

where {Fn} denotes the sequence of Fibonacci numbers.

1 Preliminaries and Introduction

We start our work with recalling some basic facts about the structural properties of words
in a free group; cf. [1]. Let F be the free group generated by the set X = {x1, . . . , xn}.
Marshall Hall [1] introduced a family of words in F , which are known as basic commutators
and play an essential role. Every basic commutator u has a weight, denoted by ω(u), which
is a natural number. Also, the basic commutators can be ordered generally with respect
to their weight.

Definition. (Basic Commutators)
1) x1, . . . , xn are basic commutators of weight 1 and are ordered with respect to each

other (here x1 < · · · < xn),
2) if the basic commutators of weights less than n are defined, then the basic commu-

tators of weight n are w = [u, v] = u−1v−1uv, where
i) u, v are basic commutators and ω(u) + ω(v) = n,
ii) u > v and if u = [s, t] then t ≤ v.

If ω(u) < n then u < w. The basic commutators of weight n are ordered arbitrarily
with respect to each other.
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The following theorem of Marshall Hall plays a basic role in the study of basic commu-
tators. Recall that the commutator subgroups γk(G) in a group G are defined recursively
by γ1(G) = G and

γi+1(G) = [γi(G), G] = 〈[x, g]; x ∈ γi(G), g ∈ G〉,

for all i ≥ 1. We refer the reader to [1] for some basic properties of γk(G).

Theorem 1.1. (Marshall Hall [1, Theorem 11.2.4]) If F is the free group with free gener-
ators x1, . . . , xn and if c1, . . . , cm is the sequence of basic commutators of weights 1, . . . , k,
then an arbitrary element w of F has a unique representation

w = ca1
1 · · · cam

m (mod γk+1(F )),

where a1, . . . , am are integers. Moreover, the basic commutators of weight k form a basis
for the free abelian group γk(F )/γk+1(F ).

In this paper, we introduce a general strategy on the discovery of almost number
theoretical identities using a word-based combinatorics. As an illustration it is shown
that

n−1
∑

i=1

Fn−iF
2
i =

1

2

n
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i=1

(−1)n−i(F2i − Fi) =

(
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2

)
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Fn

2
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,

where {Fn} denotes the sequence of Fibonacci numbers.

2 Main Results

To explain our method, let F be the free group of finite rank generated by X and {wn}
be a recursively defined sequence of words in F . Also, let k ≥ 1 and c1, . . . , cm be the
sequence of basic commutators of weights 1, . . . , k. Then, by Theorem 1.1, wn has a
unique representation

wn = c
a1,n

1 · · · cam,n

m (mod γk+1(F )), (1)

where a1,n, . . . , am,n are integers. Since {wn} is recursively defined, we may assume that
wn = Wn(w1, . . . , wn−1, X), where Wn is a word on w1, . . . , wn−1 and elements of X.
Suppose that i ≥ 1 and aj,k’s are known for all j such that ω(cj) < ω(ci) and all k ≥ 1.
Feeding the representation (1) of w1, . . . , wn−1 in wn one observes that ai,n can be obtained
recursively by ai,1, . . . , ai,n−1, i.e., {ai,n}

∞

n=1 is also a recursive sequence. Now, by solving
the recursive sequences {wn} and {ai,n}

∞

n=1, we obtain ai,n in two different forms from
which we obtain an identity. An identity which is obtained in this way is called the ci-
identity of {wn}. It is evident that different methods in solving the sequences {wn} and
{ai,n}

∞

n=1 would give different identities. To be more tangible what it means, in Theorem
2.2 we obtain a [y, x]-identity in details.

Throughout this paper, F denotes the free group of rank 2 generated by x and y.
In this case, x < y < [y, x] would denotes the basic commutators of weights 1, 1, 2,
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respectively. In what follows we use frequently the well-known identities yx = xy[y, x],
[xy, z] = [x, z]y[x, z] and [x, yz] = [x, z][x, y]z, where x, y and z are elements of an arbitrary
group G. As a direct consequence of these identities we can prove

Lemma 2.1. For any group G and elements x, y ∈ G
i) ynxm = xmyn[y, x]mn (mod γ3(G));

ii) (xy)n = xnyn[y, x](
n

2) (mod γ3(G)).

Now, we explain the first example in details. Let w1 = xayc, w2 = xbyd and wn+2 =
wu

nwv
n+1, where a, b, c, d, u, v are integers and n ≥ 0. Also, let F̄ = F/γ3(F ) and w̄ =

wγ3(F ), for each w ∈ F . Then, by Theorem 1.1, there are unique integers an, bn and cn

such that
w̄n = x̄an ȳbn[ȳ, x̄]cn,

for all n ≥ 1.
To obtain the [y, x]-identity of {wn} we need some more notations. To do this, let

{Ln}, {L
′

n} be the sequences recursively defined by the rules Ln+2 = uLn + vLn+1 and
L′

n+2 = uL′

n + vL′

n+1, where L0 = 0, L1 = u, L′

0 = 1, L′

1 = v and n ≥ 0. Moreover,
Let {Gn}, {G

′

n} be sequences recursively defined by Gn+2 = uGn + vGn+1 and G′

n+2 =
uG′

n + vG′

n+1, where G1 = a, G2 = b, G′

1 = c, G′

2 = d and n ≥ 1.
Utilising the notations above, we have

Theorem 2.2.

n
∑

i=1

L′

n−i

[(

u

2

)

GiG
′

i +

(

v

2

)

Gi+1G
′

i+1 + uvGi+1G
′

i

]

(2)

= u
n

∑

i=1

(−u)n−i

[

Li−1L
′

i−1 + v

(

L′

i−1

2

)]
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

+ ac

(

Ln

2

)

+ bd

(

L′

n

2

)

+ bcLnL′

n,

for all n ≥ 1

To prove Theorem 2.2, we need the following lemmas.

Lemma 2.3. If n ≥ 0, then Ln+1 = uL′

n and L′

n+1 = Ln + vL′

n.

Proof. By definition L1 = u = uL′

0, L2 = uv = uL′

1, L′

1 = v = L0 +vL′

0 and L′

2 = u+v2 =
L1 + vL′

1. Now, if n > 1 and the result hold for n − 2 and n − 1, then

Ln+2 = uLn + vLn+1 = u(uL′

n−1 + vL′

n) = uL′

n+1,

L′

n+2 = uL′

n + vL′

n+1 = Ln+1 + vL′

n+1,

as required.

Lemma 2.4. Let k and n be nonnegative integers. Then

i) w̄k
n = x̄kan ȳkbn[ȳ, x̄]kcn+(k

2)anbn ;
ii) [w̄n+1, w̄n] = [ȳ, x̄](−u)n−1(ad−bc).

the electronic journal of combinatorics 15 (2008), #N15 3



Proof. i) It is obvious by Lemma 2.1(ii).
ii) If n = 1, then [w̄n+1, w̄n] = [w̄2, w̄1] = [x̄bȳd, x̄aȳc] = [ȳ, x̄]ad−bc. Now, if n > 1, then

[w̄n+1, w̄n] = [w̄u
n−1w̄

v
n, w̄n] = [w̄n, w̄n−1]

−u

and the result follows inductively.

Proof of Theorem 2.2. To prove identity (2), we calculate cn+2 in two different ways.
1) First, we count cn+2 directly by solving {cn}. If n ≥ 1, then by Lemmas 2.1(i) and

2.4(i)

w̄n+2 = w̄u
nw̄

v
n+1

= x̄uan ȳubn[ȳ, x̄]ucn+(u

2)anbn x̄van+1 ȳvbn+1 [ȳ, x̄]vcn+1+(v

2)an+1bn+1

= x̄uan ȳubnx̄van+1 ȳvbn+1 [ȳ, x̄]ucn+vcn+1+(u

2)anbn+(v

2)an+1bn+1

= x̄uan x̄van+1 ȳubn[ȳ, x̄]uvan+1bn ȳvbn+1 [ȳ, x̄]ucn+vcn+1+(u

2)anbn+(v

2)an+1bn+1

= x̄uan+van+1 ȳubn+vbn+1 [ȳ, x̄]ucn+vcn+1+(u

2)anbn+(v

2)an+1bn+1+uvan+1bn .

Hence

an+2 = uan + van+1,

bn+2 = ubn + vbn+1,

cn+2 = ucn + vcn+1 +

(

u

2

)

anbn +

(

v

2

)

an+1bn+1 + uvan+1bn.

It follows from the definitions of {ak}, {bk} and {Gk}, {G
′

k} that ak = Gk and bk = G′

k,
for all k ≥ 1. Let dk+2 =

(

u

2

)

akbk +
(

v

2

)

ak+1bk+1 + uvak+1bk, for all k ≥ 1. Then cn+2 =
ucn + vcn+1 + dn+2 = L1cn + L′

1cn+1 + L′

0dn+2. Now, suppose that 1 ≤ k < n and

cn+2 = Lkcn−k+1 + L′

kcn−k+2 + L′

k−1dn−k+3 + · · ·+ L′

0dn+2.

Then

cn+2 = Lkcn−k+1 + L′

kcn−k+2 + L′

k−1dn−k+3 + · · ·+ L′

0dn+2

= Lkcn−k+1 + L′

k(ucn−k + vcn−k+1 + dn−k+2) + L′

k−1dn−k+3 + · · ·+ L′

0dn+2

= Lk+1cn−k + L′

k+1cn−k+1 + L′

kdn−k+2 + · · ·+ L′

0dn+2

and so by induction we obtain

cn+2 = Lnc1 + L′

nc2 + L′

n−1d3 + · · · + L′

0dn+2

= L′

n−1d3 + · · · + L′

0dn+2 =

n
∑

i=1

L′

n−idi+2,

as c1 = c2 = 0. Therefore

cn+2 =

n
∑

i=1

L′

n−i

[(

u

2

)

GiG
′

i +

(

v

2

)

Gi+1G
′

i+1 + uvGi+1G
′

i

]

. (3)

the electronic journal of combinatorics 15 (2008), #N15 4



2) Now, we count cn+2 in a different way by solving {wn}. Put

αi = (−u)n−i

[

uLi−1L
′

i−1 + uv

(

L′

i−1

2

)]
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

,

for i = 1, . . . , n. Clearly α1 = 0 and so w̄n+2 = w̄u
nw̄v

n+1 = w̄L1
n w̄

L′

1
n+1[ȳ, x̄]α1 . We will show

that for i = 1, . . . , n,

w̄n+2 = w̄Li

n−i+1w̄
L′

i

n−i+2[ȳ, x̄]α1+···+αi . (4)

If (4) holds for i, then using Lemmas 2.1(i,ii) and 2.4(ii)

w̄n+2 = w̄Li

n−i+1w̄
L′

i

n−i+2[ȳ, x̄]α1+···+αi

= w̄Li

n−i+1(w̄
u
n−iw̄

v
n−i+1)

L′

i [ȳ, x̄]α1+···+αi

= w̄Li

n−i+1w̄
uL′

i

n−iw̄
vL′

i

n−i+1[w̄
v
n−i+1, w̄

u
n−i]

(L′

i
2 )[ȳ, x̄]α1+···+αi

= w̄Li

n−i+1w̄
uL′

i

n−iw̄
vL′

i

n−i+1[ȳ, x̄]α1+···+αi+(−u)n−i−1uv(L′

i
2 )(ad−bc)

= w̄
uL′

i

n−iw̄
Li

n−i+1[w̄
Li

n−i+1, w̄
uL′

i

n−i]w̄
vL′

i

n−i+1[ȳ, x̄]α1+···+αi+(−u)n−(i+1)uv(L′

i
2 )(ad−bc)

= w̄
uL′

i

n−iw̄
Li+vL′

i

n−i+1 [ȳ, x̄]
α1+···+αi+(−u)n−(i+1)

“

uLiL
′

i+uv(L′

i
2 )

”

(ad−bc)

= w̄
Li+1

n−i w̄
L′

i+1

n−i+1[ȳ, x̄]α1+···+αi+1 .

By replacing i by n in (4) and using Lemma 2.1(i,ii), we get

w̄n+2 = w̄Ln

1 w̄
L′

n

2 [ȳ, x̄]α1+···+αn

= (xayc)Ln(xbyd)L′

n[ȳ, x̄]α1+···+αn

= xaLnycLnxbL′

nydL′

n[ȳ, x̄]α1+···+αn+ac(Ln
2 )+bd(L′

n
2 )

= xaLn+bL′

nycLn+dL′

n [ȳ, x̄]α1+···+αn+ac(Ln
2 )+bd(L′

n
2 )+bcLnL′

n .

Therefore

cn+2 = α1 + · · ·+ αn + ac

(

Ln

2

)

+ bd

(

L′

n

2

)

+ bcLnL′

n. (5)

Now, the equations (3) and (5) imply the identity (2), which is the [y, x]-identity of
{wn}.

Corollary 2.5. For any n > 0

n−1
∑

i=1

Fn−iF
2
i =

1

2

n
∑

i=1

(−1)n−i(F2i − Fi). (6)

Proof. By putting u = v = a = d = 1 and b = c = 0 in identity (2), we get Ln = Fn,
L′

n = Fn+1, Gn = Fn−2, G′

n = Fn−1 and so

n
∑

i=1

Fn+1−iF
2
i−1 =

n
∑

i=1

(−1)n−i

(

Fi−1Fi +

(

Fi

2

))

.
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Now,
∑n

i=1 Fn+1−iF
2
i−1 =

∑n−1
i=1 Fn−iF

2
i and Fi−1Fi +

(

Fi

2

)

= 1
2
(F2i − Fi), which completes

the proof.

Corollary 2.6. For any n > 0

n−1
∑

i=1

Fn−iFiFi+1 =

(

Fn+1

2

)

. (7)

Proof. Put u = v = a = b = d = 1 and c = 0 in identity (2).

Corollary 2.7. For any n > 0

n−1
∑

i=1

Fn−iF
2
i =

(

Fn+1

2

)

−

(

Fn

2

)

. (8)

Proof. By Corollary 2.6, we have

n−1
∑

i=1

Fn−iF
2
i =

n−1
∑

i=1

Fn−iFi(Fi+1 − Fi−1)

=

n−1
∑

i=1

Fn−iFiFi+1 −

n−1
∑

i=1

Fn−iFiFi−1

=
n−1
∑

i=1

Fn−iFiFi+1 −
n−2
∑

i=1

Fn−1−iFiFi+1

=

(

Fn+1

2

)

−

(

Fn

2

)

.

Similar to Corollary 2.7, one we can prove the following result.

Corollary 2.8. For any n > 0

n−1
∑

i=1

Fn−iF2i =

(

Fn

2

)

+

(

Fn+1

2

)

. (9)

Acknowledgment. The author would like to thank the referee for some useful suggestions
and corrections.

References

[1] M. Hall, The Theory of Groups, Macmillan, New York, 1955.

the electronic journal of combinatorics 15 (2008), #N15 6


