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Abstract

We consider a random instance I,,, = I,;, , . of k-SAT with n variables and m clauses,
where k = k(n) satisfies k —logy n — co. Let m = 2¥(n1n 2+ ¢) for an absolute constant
c. We prove that

lim Pr(1,, is satisfiable) = e °

n—oo

1 Introduction

An instance of k-SAT is defined by a set of variables, V' = {x1, xs, ..., x,} and a set of clauses
C1,Cy, ..., Cy,. We will let clause C; be a sequence (A;1, Ai2, . .., A\ix) where each literal \;
is a member of L = V UV where V = {Z1,Z2,...,Zy}. In our random model, each \;,
is chosen independently and uniformly from L.! We denote the resulting random instance by

Im = Imn,k-
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"We are aware that this allows clauses to have repeated literals or instances of z, Z. The focus of the paper is
on k = O(Inn), although the main result is valid for larger k. Thus most clauses will not have repeated clauses or
contain a pair z, .
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Random k-SAT has been well studied, to say the least, see the references in [6]. If £ = 2 then
it is known that there is a satisfiability threshold at around m = n. More precisely, if € > 0 is
fixed and [ is a random instance of 2-SAT then

lim Pr(l,,, is satisfiable) =

n—oo

1 m<(1—-en
0

m > (1+¢€)n

Thus random 2-SAT is now pretty much understood.

For k > 3 the story is very different. It is now known that a threshold for satisfiability exists
in some (not completely satisfactory) sense, Friedgut [S]. There has been considerable work on
trying to find estimates for this threshold in the case k = 3, see the references in [6]. Currently
the best lower bound for the threshold is 3.52, due to Hajiaghayi and Sorkin [7] and Kaporis,
Kirousis, and Lalas [8]. Upper bounds have been pursued with the same vigour. Currently the
best upper bound for the threshold is 4.506 due to Dubois, Boufkhad and Mandler [4].

Building upon Achlioptas and Moore [1], Achlioptas and Peres [3] made a considerable break-
through for £ > 4. Using a sophisticated secnd moment argument, they showed that if m <
(2% In 2—t)n then whp a random instance of k-SAT 1,,, ,, 1. is satifiable, where ¢, = O(k). Since
a simple first moment argument shows that I,,, ,, ; is unsatisfiable if m > (2¥In 2+ o(1))n, they
have obtained an asymptotically tight estimate of the threshold for satisfiability when k is a
large constant.

An earlier paper by Frieze and Wormald [6] showed the following: Suppose w = k — log,n —

oo. Let
nln?2

S In(1—27F)

so that 2" (1 — %)™ = 1 and let e = €(n) > 0 be such that en — oco. Let I,,, be a random
instance of £-SAT with n variables and m clauses. Then

{1 m < (1 —e€)my

0 m>(1+e€)my.

=2"(nIn2+0(27%)). (1)

mop =

lim Pr(,, is satisfiable) =

n—oo

2)

The aim of this short note is to tighten (2) and prove the following.

Theorem 1. Suppose w = k — logyn — 0o but w = o(lnn). Let m = 2*(nIn2 + c) for an
absolute constant c. Then

lim Pr(1,, is satisfiable) = 1 — e~ °

n—oo

Theorems such as this are common in random graphs and usually indicate that the threshold for
a certain property P; depends on the occurrence of some much simpler property Ps, a classic
example being the case where P; is Hamiltonicity and P, is minimum degree at least two. Here
there does not seem to be a good candidate for Ps.

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #N2 2



2 Proof of Theorem 1

Let X,, = X ([,,) denote the number of satisfying assignments for instance I,,,. Suppose that
k = logyn + w. Let mg ~ 2knIn2 be as in (1) and m; = my — 2%+, where v = Inw. The
following results can be deduced from the calculations in [6]: If 01,09 are two assignments
to the variables V/, then h(oy, 02) is the number of indices 7 for which o4 (i) # 02(i) (i.e., the
Hamming distance of o, and o5).

PL X,,, ~ B(X,,) ~ 2'(1 - 27)™ = ¢" whp.

P2 Let Z; denote the number of pairs of satisfying assignments o1, o9 for which h(o1, 09) = t.
Then whp Z; = 0 for 0 < ¢ < 0.49n.

Because these properties are not explicitly spelled out in [6], in Section 3 we indicate briefly
how they can be demonstrated using the arguments in this reference. We defer their verification
until Section 3 and now show how they can be used to prove Theorem 1.

We generate our instance [,, by first generating /,,, and then adding the m — m; random
clauses J = {C1,Cs, ..., Cp_m, }. Suppose that in this case [,,, has satisfying assignments
{01,09,...,0,}, where by P1 we can assume that  ~ ¢?. Now add the random clauses .J and
letY = |{i: oy satisfies J}|. We show that for any fixed positive integer ¢,

E(Yy) ~ e, 3)

where Y, = H;;B(Y — j) signifies the ¢’th falling factorial. Thus by standard results, Y is
asymptotically Poisson with mean e~¢ and Theorem 1 follows.

Proof of (3): Since each of the clauses 1, ..., C,,_,, is chosen independently of all others,
we have
E(Yy) = rwPr(oy, ..., o satisty J) = ryPr(oy, ..., o satisfy Cp)™ ™. 4)
Now
Pr(oy,...,0psatisfy C1) = 1—Pr(31 <i <t: o; does not satisfy C),
and

t
Pr(d1 <i <t: o; does not satisfy C;) < ¢tPr(o; does not satisfy C;) = T

On the other hand, by inclusion/exclusion

Pr(31 <i <t: o; does not satisfy C)
> {Pr(o; does not satisfy C) — Z Pr(c;, 0, do not satisfy C1).

1<i<j<t
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We then write
Pr(o;, 0; do not satisfy C})
= Pr(o;, 0; do not satisfy C; | P2)Pr(P2) + Pr(c;, 0; do not satisfy Cy | -P2)Pr(—P2)

n—7\" 1

— 1) < —

( 2n ) Toll) s 3k
Finally, going back to (4), we obtain

¢ m—mi ¢ t2 m—mi
T(t) 1—? SE(Y’(t))ST(t) 1—?—#? .

Since t2(m —my) = O(m — my) = O(w2k) = o(3%), we get

t e _\ t(m—my) e
E(}/kt)) ~J ’f’(t) (1 — ?) ~ et'Y (1 _ 2 k) 1 ~ € t7

thereby proving (3). a

3 Verification of P1 and P2

P1: Let us first compute the expected number E(X,,,) of satisfying assignments of /,,,,. For
any fixed assignment the probability that a single random clause over k distinct variables is
satisfied equals 1 — 2% (because there are 2* ways to assign values to the k variables occurring
in the clause, out of which 2 — 1 cause the clause to be satisfied). Since the m; clauses are
chosen independently, and as there are 2" assignments in total, we conclude that F(X,,,) ~
2"(1 — 27%)™ _ Furthermore, in [6, Section 2] it is shown that E(X2, ) ~ E(X,,,)? and so P1
follows from the Chebyshev inequality.

P2: If 04, 0, are two assigments at Hamming distance h(oy, 02) = t, then the probability that
either o or oy does not satisfy a random clause C| is 2!=% — 27%(1 — t/n)*. For the probability
that one assignment o; does not satisfy C; is 27% (i = 1, 2). Moreover, if both ¢; and o, violate
C1, then (] is false under oy, which occurs with probability 27%, and in addition ¢ and o
assign the same values to all the variables in C';, which happens with probability (1 — t/n)*.
Consequently, the expected number of satisfying assignment pairs o1, 05 at Hamming distance
tin I, is

F(t)=E(Z,)=2" (72) (1 —2F 42701 — t/n)k)ym™
(cf. [6, eq. (5)]). Setting p = m/n = 2¥(In2—~/n)+O(1/n), T = t/n and taking logarithms,
we obtain
f(r)y=n"'InF(t)
<m2—7ln7—(1-7)In(l —7) + pln(1 — 2%+ 27%(1 — 1)) + O(r/n)
<In2—7lnt—(1—-7)In(1—7)—2"%p(2— (1 —1)%) +O(r/n)
=In2—7ln7—(1—7)In(1 —=7) —(In2—~/n)2 -1 =) +0((r+27%)/n). (&)
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To show that )}, _,( 4, F'(t) = 0(1), we consider three cases:

Casel: n ' <7 <In"'n. Since (1—7)F =1—kr+O(k*r?), —(1—7)In(1 —7) < 7, and
kln2 =1Inn + wln 2, we obtain via (5),

f(r) < 7(1—In7) —krIn2(1 — O(k7)) + 27/n
< 7(14+Inn—(lnn+wln2)+o(1))
< —Tw/2.
Consequently,
S Fn= Y enitm)< Y esp(-wt/2) =o(1). ©)
1<t<nln='ln 1<t<nln=1ln 1<t<nln='ln

Case2: In"''n < 7 <k 'Inlnn. We have, for large n,

N

< (1+Ink)lnlnn

N

—tInT—(1—7)In(1—7) <7(1—1In7) < ? <k 2<In"?n.
On the other hand, for large n,
(1—7)" <exp(—kr) <exp(—kIn™"'n) <1—-In""'n.

Thus, from (5),

1 In2 1
f(r) <In24+In"2n—1In2— 1011 < ——In%'n.
In""n 2

Hence, if nIn "' n < ¢t < nk~!Inlnn, then F(t) < exp(—%n In—1 n), which implies

> F(t) = o(1). (7)

nln~ ! n<t<nk—llnlnn

Case3: k'Inlnn < 7 < 0.49. Since 7 > k™!, we have (1 — 7)¥ = o(1), whence
(In2 —v/n)(2 - (1 —7)%) ~2In2.

Furthermore, as the entropy function 7 +— —71In7 — (1 — 7)In(1 — 7) is increasing on
[0, 2], we have

In2—7ln7—(1—7)In(l —7) <In2—-0.491n(0.49) — 0.511n(0.51) < 1.9998 In 2.
Hence, f(7) < —0.0001. Therefore, F'(t) < exp(—0.0001n), and thus

> F(t) = o(1). (8)

nk—1lnlnn<7<0.49n

Combining (6)—(8), we conclude that >, _,_ 40, F'(t) = o(1). Thus, whp Z, = 0 for all
1<t<0.49. -
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4 Conclusion

It is instructive to compare the k-SAT problem with £ > log, n+w, which we have studied in the
present paper, with the case of constant k. We have shown that for £ > log, n + w in the regime
m/n — 2¥nIn2 = ©(2*) the number of satisfying assignments is asymptotically Poisson. The
basic reason is that the mutual Hamming distance of any two satisfying assignments is about
n/2 (cf. property P2). Hence, the set of all satisfying assignments consists of isolated points
in the Hamming cube, which are mutually far apart. By contrast, in the case of constant & in
the near-threshold regime the set of satisfying assignments seems to consist of larger “cluster
regions” (cf. Achlioptas and Ricci-Tersenghi [2] and Krzakala, Montanari, Ricci-Tersenghi,
G. Semerjian, and L. Zdeborova [9]).

In Theorem 1 we assume that w = k — log,n = o(Inn). While this assumption eases some
of the computations, the result (and the proof technique) can be extended to larger values of k.
Nevertheless, the case k& < log, n appears to us to be a more interesting problem.

References

[1] D. Achlioptas and C. Moore: Random £-SAT: two moments suffice to cross a sharp thresh-
old. SIAM Journal on Computing 36 (2006) 740-762.

[2] D. Achlioptas and F. Ricci-Tersenghi: On the solution-space geometry of random con-
straint satisfaction problems. Proceedings of the 38th Annual ACM Symposium on Theory
of Computing (2006) 130-139.

[3] D. Achlioptas and Y. Peres, The threshold for random £-SAT is 2k log 2 —O(k), Journal
of the American Mathematical Society, 17 (2004), 947-973.

[4] O. Dubois, Y. Bouftkhad and J. Mandler, Typical random 3-SAT formulae and the satisfia-
bility threshold, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms (2000) 126-127.

[5] E. Friedgut, Sharp thresholds of graph properties, and the k-sat problem. With an appendix
by Jean Bourgain. Journal of the American Mathematical Society 12 (1999) 1017-1054.

[6] A.M. Frieze and N. Wormald, Random £-SAT: A tight threshold for moderately growing
k, Combinatorica 25 (2005) 297-305.

[7] M.T. Hajiaghayi and G.B. Sorkin, The satisfiability threshold of random 3-SAT is at least
3.52. IBM Research Report RC22942 (2003)

[8] A.C. Kaporis, L.M. Kirousis, and E.G. Lalas: Selecting complementary pairs of literals.
Electronic Notes in Discrete Mathematics 16 (2003)

[9] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Zdeborova, Gibbs states
and the set of solutions of random constraint satisfaction problems. Preprint (arXiv:cond-
mat/0612365).

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #N2 6



