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Abstract

We use Janson’s dependency criterion to prove that the distribution of d-descents
of permutations of length n converge to a normal distribution as n goes to infinity.
We show that this remains true even if d is allowed to grow with n.

1 Introduction

Let p = pips - - - p, be a permutation. We say that the pair (i, ) is a d-descent in p if i <
Jj <i+d, and p; > p;. In particular, 1-descents correspond to descents in the traditional
sense, and (n — 1)-descents correspond to inversions. This concept was introduced in [2]
by De Mari and Shayman, whose motivation came from algebraic geometry. They have
proved that if n and d are fixed, and ¢, denotes the number of permutations of length n
with exactly £ d-descents, then the sequence cg, cy, -+ is unimodal, that is, it increases
steadily, then it decreases steadily. It is not known in general if the sequence cg,cq, - - -
is log-concave or not, that is, whether c;_icpi1 < ci holds for all k. We point out that
in general, the polynomial }_, cxz* does not have real roots only. Indeed, in the special
case of d =n — 1, we get the well-known [1] identity

chzrk:(1+$)-(1+x+x2) ----- (14+z+---+2™h),
k

which has all nth roots of unity as roots. Indeed, in this case, a d-descent is just an
inversion, as we said above.

In this paper, we prove a related property of generalized descents by showing that
their distribution converges to a normal distribution as the length n of our permutations
goes to infinity. Our main tool is Janson’s dependency criterion, which is a tool to prove
normality for sums of bounded random variables with a sparse dependency graph. While
the proof itself is reasonably straightforward, we find the very fact that Janson’s criterion
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is being applied to objects usually studied by algebraic, not probabilistic combinatorial-
ists, interesting. For results of similar flavor, the reader is encouraged to consult Jason
Fulman’s papers [5] and [6].

2 The Proof of Asymptotic Normality

2.1 Background and Definitions

We need to introduce some notation for transforms of the random variable Z. Let Z =
Z — E(Z), let Z = Z/\/Var(Z), and let Z, — N(0,1) mean that Z, converges in
distribution to the standard normal variable.

For the rest of this section, let d > 1 be a fixed positive integer. Let X, = X
denote the random variable counting the d-descents of a randomly selected permutation
of length n. We want to prove that X,, converges to a normal distribution as n goes to
infinity, in other words, that X, — N(0,1) as n — oo. Our main tool in doing so is a
theorem called Janson’s dependency criterion. In order to state that theorem, we need
the following definition.

Definition 1 Let {Y, x|k = 1,2---} be an array of random variables. We say that a
graph G is a dependency graph for {Y,, x|k =1,2---} if the following two conditions are
satisfied:

1. There exists a bijection between the random variables Y, j and the vertices of G, and

2. If Vi and Vy are two disjoint sets of vertices of G so that no edge of G has one end-
point in Vi and another one in Vs, then the corresponding sets of random variables
are independent.

Note that the dependency graph of a family of variables is not unique. Indeed if G is
a dependency graph for a family and G is not a complete graph, then we can get other
dependency graphs for the family by simply adding new edges to G.

Now we are in position to state Janson’s dependency criterion.

Theorem 1 [7] Let Y, be an array of random variables such that for all n, and for all
k=1,2,--- Ny, the inequality |Y, x| < A, holds for some real number A,, and that the
mazimum degree of a dependency graph of {Y, x|k =1,2,--- N, } is A,,.

Set Y, = ZkN;’l Yor and o2 = Var(Y,). If there is a natural number m so that

NHAZ"L_l (ﬁ) — 0, (1

On

~—

then )
Y, — N(0,1).
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2.2 Applying Janson’s Criterion

Recall that in this section, d is a fized positive integer. We are going to prove that the
distribution of d-descents of permutations of length n converges to a normal distribution
as n goes to infinity.

We will apply Janson’s theorem with the Y, ; being the indicator random variables
X, of the event that a given ordered pair of indices (indexed by k in some way) forms a
d-descent in the randomly selected permutation p = pips---p,. So N, is the number of
pairs (4, j) of indices so that 1 <i < j <i+d <n. Then by definition,

Ny, Ny,
Yn = ZYn,k = ZXn,k = Xn
k=1 k=1

There remains the task of verifying that the variables Y, ; satisfy all conditions of
Theorem 1.

First, it is clear that N,, < nd, and we will compute the exact value of N,, later. By
the definition of indicator random variables, we have |Y,, x| < 1, so we can set A,, =1 for
all n.

Next we consider the numbers A, in the following dependency graph of the family
of the Y, ;. Clearly, the indicator random variables that belong to two pairs (4,j) and
(r,s) of indices are independent if and only if the sets {i,j} and {r, s} are disjoint. So
fixing (i,7), we need one of i = 1,4 =35, j =r or j = s to be true for the two distinct
variables to be dependent. So let the vertices of G be the N, pairs of indices (i, ) so
that i < j < i+ d, and connect (i,7) to (r,s) if oneof i = r, i = s, j=rorj=s
holds. The graph defined in this way is a dependency graph for the family of the Y, .
Indeed, if V7 and V5, are two disjoint sets of vertices of this graph, and there is no edge
connecting a vertex in V; to a vertex in V5, then there is no index i that is present in at
least one pair of indices belonging to V; and at least one pair of indices belonging V5. So
the set of indices present in pairs corresponding to vertices in V; and the set of indices
present in pairs corresponding to vertices in V5 are disjoint, and therefore, set of variables
corresponding to V; and the set of variables corresponding to V5 are independent.

For a fixed pair (1, j), each of the four equalities i = r, i = s, j = r or j = s occurs
at most d times. (For instance, if i = s, then r has to be one of 1 — 1,4 —2,--- i —d.)
Therefore, A,, < 4d.

If we take a new look at (1), we see that the Janson criterion will be satisfied if we
can show that o, is large. This is the content of the next lemma.

Lemma 1 Ifn > 2d, then

dn + 10d* — 3¢ — d
Var(X,) = 24t 072 s d. @)

In particular, Var(X,) is a linear function of n.

Note that in particular, for d = 1, we get the well-known fact [1] that the variance of
Eulerian numbers in permutations of length n is (n + 1)/12.
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Proof: By linearity of expectation, we have

Var(Xy) = E( )2 (3)

D)
|

" B(X >> (5)

k=1

= E ZXM )
) —

= Z E n len ko Z E n k1)E(Xn7k2) (6)

k1,ko k1,k2

Clearly, F(X, 1) = 1/2, so the N? summands that appear in the last line of the above
chain of equations with a negative sign are each equal to 1/4. As far as the N2 summands
that appear with a positive sign, most of them are equal to 1/4. More precisely, if X, j,
and X, 1, are independent, then

B X)) = B(X) (X)) = 7

If ky = ko, then E(X,, 3, Xy p,) = E(X})) = E(Xy,) = 1/2. Otherwise, if X,,;, and X, x,
are dependent, then either E(X,, j, Xn,) = 1/3, or E(X,, x, Xy k,) = 1/6. Indeed, if X, is
the indicator variable of the pair (i, j) being a d-descent and Xy, is the indicator variable
of the pair (r, s) being a d-descent, then as we said above, X, x, and X, x, are dependent
if and only if one of ¢t = r, 71 =35, 7 =r or j = s holds. If i = r or j = s holds, then
E(Xy g Xnk) = 1/3, and if i = s or j = r holds, then E(X, x, X, k) = 1/6. Indeed,
for instance, with ¢ = r, we have X,, 5, = X, 1, = 1 if and only if p; is the largest of the
entries p;, p;, and ps. Similarly, with ¢ = s, we have X, = X, , = 1 if and only if
pr > pi > Dj-

We will now count how many summands E(X,, s, X, ,) are equal to 1/2, to 1/3, and
to 1/6.

1. First, E(X, k Xnk) = 1/2 if and only if k; = k. This happens NN, times, once for
each pair (4, 7) so that ¢ < j < i+d. For a given 7, there are d such pairsif i < n—d,
and d — t such pairs if i =n —d+1t, so

Nn:(n—d)d+(d—1)+(d—2)+---+1:(n—d)d+(;l).

2. Second, E(X,x,Xnk,) = 1/3if i =7, or j = s. By symmetry, we can consider the
first case, then multiply by two. If i < n — d, then we have d(d — 1) choices for j
and s, and if i = n — d 4+ t, then we have (d — t)(d —t — 1) choices. So the number
of pairs (ky, k2) so that E(X,, k, Xnk,) = 1/3 s

2(n—dyd(d—1)+2(d—1)(d—2) +2(d—2)(d—3) + - +2-2-1 =
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2n — dyd(d — 1) + 4@) |

3. Finally, E(X, x, Xnk,) = 1/6if i = s, or j = r. By symmetry, we can again consider
the first case, then multiply by two. If d < i < n — d, then there are d? choices for
(7,7). If i < d, then there are d choices for j, and i — 1 choices for r. If n —d < i,
then there are n — ¢ choices for 7, and d choices for r, assuming that n > 2d. So the
number of pairs (kq, k2) so that E(X,, x, Xnk,) = 1/6 is

2(n — 2d)d*> +2(d — 1)d + 2(d — 2)d + - - - + 2d = 2(n — 2d)d* + d*(d — 1).

For all remaining pairs (kq, ko), the variables X, s, and X,, j, are independent, and
SO E(Xn,len,kg) = 1/4

Comparing our results from cases 1-3 above with (3), and recalling that in all other
cases, E(Xpx, Xnk,) = 1/4, we obtain the formula that was to be proved. &
The proof of the main result of this section is now immediate.

Theorem 2 Let d be a fized positive integer. Let X, be the random variable counting
d-descents of a randomly selected n-permutation. Then X, — N(0,1).

Proof: Use Theorem 1 with Y, = X, A, = 4d, N, = (n — d)d + (g), and o, =
\/ w#. All we need to show is that there exists a positive integer m so that

(n —d)d + d (4d)™ 1 & " 0
— . . —
2 6dn + 10d3 — 3d2 — d ’

for which it suffices to find a positive integer m so that

(dn) - (4d)™" - (%)m/z —0. (1)

Clearly, any m > 3 suffices, since for any such m, the left-hand side is of the form C'/n®,
for positive constants C' and a. <

3 When d grows with n

We see from (7) that the statement of Theorem 2 can be strengthened, from a constant
d to a d that is a function of n. Indeed, (7) is equivalent to saying that

d m/2
cn (—) — 0.
n

This convergence holds as long as d < n'~¢ for some fixed positive €, we can choose m
so that (m/2) - € > 1, and then condition (7) will be satisfied. So we have proved the
following.
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Proposition 1 Let n — oo, and let us assume that there exists a positive constant € so
that for n sufficiently large, d = d(n) < n'~¢. Let X,, be defined as before. Then

X, — N(0,1).

Now let d be such that n%® < d <n /2 holds. Then we can revisit Lemma 1 for another
application. Note that as n > 2, formula (2) implies that

3
Vaan > g (8)

Using this estimate for o, = \/Var(X,) in (1), we see that it suffices to show that there
exists a natural number m so that

d 8\ 2d%-32m

This is clearly true, since any m > 6 will suffice. Therefore, we have improved our result
as follows.

Proposition 2 Let n — oo, and let us assume that d < n/2. Let X,, be defined as before.
Then .
X, — N(0,1).

This leaves the case of d > n/2. In that case, Lemma 1 has to be modified since we
cannot enumerate pairs (ki, k2) such that E(X, X, k) = 1/6 in the same way as we
have done in case 3 of the proof of that lemma. Indeed, no matter what i is, it will never
happen that both of i — d and ¢ 4+ d are valid indices.

So assume that d > n/2, and let us count all pairs (ki, k) such that E(X,, 5, X x,) =
1/6. For symmetry reasons, we can count pairs of indices (7, j) and (7, s) such that i = s,
and then multiply their number by 2. The are three subcases to consider

(a) If 1 <i < n—d, then we have ¢ — 1 choices for r and d choices for j.
(b) If n —d+1 < i <d, then we have (i — 1) choices for r, and n — ¢ choices for j.
(c¢) If d+ 1 <i < n, then we have d choices for r and n — i choices for j.

This implies that the number of pairs (k1, k2) so that E(X, x, Xnk,) = 1/6 is

n—d
2(2(1—1(1—1— Z d(i—1)(n —1) Zdn—z):
=1 i=n—d+1 i=d+1
—n? 4+ 3n% — 2n + 2d® + 6d* + 4d + 6n%d — 6nd* — 12nd
3 )

The other cases of the proof of Lemma 1 are unchanged. So comparing the new,
modified Case 3 to Cases 1 and 2 of Lemma 1 leads to the following lemma.
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Lemma 2 Letn/2 <d <n—1. Then

2n% — 6n% +4n — 12d°® — 21d? — 9d — 12n%d + 24nd? + 30nd + 18
72 ‘

Var(X,) = 9)

In particular, we claim that this implies that there exists a positive constant ¢ so that
Var(X,,) > cn® for n sufficiently large. Indeed, let d = an, where 0.5 < a < 1. Then the
terms of degree three of (9) are

2n® — 12d° — 12n*d + 24nd® = n* (2 — 12(a(a — 1)?)) .

Set f(a) = 12(a(a—1)?), and note that f'(a) = 36a* —48a + 12 is negative in a € [0.5,1).
So on that interval, f is decreasing, and so its maximal value is f(0.5) = 1.5. Therefore,
the last displayed equation implies that

2n® — 12d° — 12n°d + 24nd* = n*(2 — f(a)) > 0.5n3.

As all other terms on the right-hand side of (9) are of smaller degree, the claim that
Var(X,,) > cn? is proved.
We can now state our comprehensive result.

Theorem 3 Let n and d be positive integers so that d < n holds. Let X, count the
d-descents of a randomly selected permutation of length n. Then

X, — N(0,1).

Proof: We have previously handled the cases of d < n/2, so now we only have to prove
the statement for n/2 < d < n. Apply the Janson Dependency Criterion (Theorem 1)
with the estimates o, > en®?, A, < 4n, A, =1, and N,, < 2n?. Then the criterion will
be satisfied if we find a natural number m so that
2n? - (4n)m™!
n1.5m

— 0

as n goes to infinity. Clearly, any m > 3 will suffice. &

4 Further Directions

A possible direction for generalizations, suggested by Richard Stanley, is the following.
Let d = (dy,dy--- ,d,_1), where the d; are positive integers. If p = p;...p, is in an
n-permutation, let f;(p) be the number of pairs (7,7) such that 0 < j —i < d; and
p; > p;. For instance, if d = (1,1,...,1) then f,(p) is the number of descents of p. If
d=(n—-1,n—2,...,1) then f4(p) is the number of inversions of p. It is known [2], by an
argument from algebraic geometry, that if

cr = |{p € Sn: falp) = Kk},
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then the sequence cg, ¢y, -+ is unimodal. Log-concavity and normality are not known.
Note that in this paper, we have treated the special case of d = (d,d, - -, d).
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