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Abstract

We use Janson’s dependency criterion to prove that the distribution of d-descents

of permutations of length n converge to a normal distribution as n goes to infinity.

We show that this remains true even if d is allowed to grow with n.

1 Introduction

Let p = p1p2 · · · pn be a permutation. We say that the pair (i, j) is a d-descent in p if i <
j ≤ i + d, and pi > pj. In particular, 1-descents correspond to descents in the traditional
sense, and (n − 1)-descents correspond to inversions. This concept was introduced in [2]
by De Mari and Shayman, whose motivation came from algebraic geometry. They have
proved that if n and d are fixed, and ck denotes the number of permutations of length n
with exactly k d-descents, then the sequence c0, c1, · · · is unimodal, that is, it increases
steadily, then it decreases steadily. It is not known in general if the sequence c0, c1, · · ·
is log-concave or not, that is, whether ck−1ck+1 ≤ c2

k holds for all k. We point out that
in general, the polynomial

∑

k ckx
k does not have real roots only. Indeed, in the special

case of d = n − 1, we get the well-known [1] identity

∑

k

ckx
k = (1 + x) · (1 + x + x2) · · · · · (1 + x + · · · + xn−1),

which has all nth roots of unity as roots. Indeed, in this case, a d-descent is just an
inversion, as we said above.

In this paper, we prove a related property of generalized descents by showing that
their distribution converges to a normal distribution as the length n of our permutations
goes to infinity. Our main tool is Janson’s dependency criterion, which is a tool to prove
normality for sums of bounded random variables with a sparse dependency graph. While
the proof itself is reasonably straightforward, we find the very fact that Janson’s criterion
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is being applied to objects usually studied by algebraic, not probabilistic combinatorial-
ists, interesting. For results of similar flavor, the reader is encouraged to consult Jason
Fulman’s papers [5] and [6].

2 The Proof of Asymptotic Normality

2.1 Background and Definitions

We need to introduce some notation for transforms of the random variable Z. Let Z̄ =
Z − E(Z), let Z̃ = Z̄/

√

Var(Z), and let Zn → N(0, 1) mean that Zn converges in
distribution to the standard normal variable.

For the rest of this section, let d ≥ 1 be a fixed positive integer. Let Xn = X
(d)
n

denote the random variable counting the d-descents of a randomly selected permutation
of length n. We want to prove that Xn converges to a normal distribution as n goes to
infinity, in other words, that X̃n → N(0, 1) as n → ∞. Our main tool in doing so is a
theorem called Janson’s dependency criterion. In order to state that theorem, we need
the following definition.

Definition 1 Let {Yn,k|k = 1, 2 · · · } be an array of random variables. We say that a
graph G is a dependency graph for {Yn,k|k = 1, 2 · · · } if the following two conditions are
satisfied:

1. There exists a bijection between the random variables Yn,k and the vertices of G, and

2. If V1 and V2 are two disjoint sets of vertices of G so that no edge of G has one end-
point in V1 and another one in V2, then the corresponding sets of random variables
are independent.

Note that the dependency graph of a family of variables is not unique. Indeed if G is
a dependency graph for a family and G is not a complete graph, then we can get other
dependency graphs for the family by simply adding new edges to G.

Now we are in position to state Janson’s dependency criterion.

Theorem 1 [7] Let Yn,k be an array of random variables such that for all n, and for all
k = 1, 2, · · · , Nn, the inequality |Yn,k| ≤ An holds for some real number An, and that the
maximum degree of a dependency graph of {Yn,k|k = 1, 2, · · · , Nn} is ∆n.

Set Yn =
∑Nn

k=1 Yn,k and σ2
n = Var(Yn). If there is a natural number m so that

Nn∆m−1
n

(

An

σn

)m

→ 0, (1)

then
Ỹn → N(0, 1).
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2.2 Applying Janson’s Criterion

Recall that in this section, d is a fixed positive integer. We are going to prove that the
distribution of d-descents of permutations of length n converges to a normal distribution
as n goes to infinity.

We will apply Janson’s theorem with the Yn,k being the indicator random variables
Xn,k of the event that a given ordered pair of indices (indexed by k in some way) forms a
d-descent in the randomly selected permutation p = p1p2 · · ·pn. So Nn is the number of
pairs (i, j) of indices so that 1 ≤ i < j ≤ i + d ≤ n. Then by definition,

Yn =

Nn
∑

k=1

Yn,k =

Nn
∑

k=1

Xn,k = Xn.

There remains the task of verifying that the variables Yn,k satisfy all conditions of
Theorem 1.

First, it is clear that Nn ≤ nd, and we will compute the exact value of Nn later. By
the definition of indicator random variables, we have |Yn,k| ≤ 1, so we can set An = 1 for
all n.

Next we consider the numbers ∆n in the following dependency graph of the family
of the Yn,k. Clearly, the indicator random variables that belong to two pairs (i, j) and
(r, s) of indices are independent if and only if the sets {i, j} and {r, s} are disjoint. So
fixing (i, j), we need one of i = r, i = s, j = r or j = s to be true for the two distinct
variables to be dependent. So let the vertices of G be the Nn pairs of indices (i, j) so
that i < j ≤ i + d, and connect (i, j) to (r, s) if one of i = r, i = s, j = r or j = s
holds. The graph defined in this way is a dependency graph for the family of the Yn,k.
Indeed, if V1 and V2 are two disjoint sets of vertices of this graph, and there is no edge
connecting a vertex in V1 to a vertex in V2, then there is no index i that is present in at
least one pair of indices belonging to V1 and at least one pair of indices belonging V2. So
the set of indices present in pairs corresponding to vertices in V1 and the set of indices
present in pairs corresponding to vertices in V2 are disjoint, and therefore, set of variables
corresponding to V1 and the set of variables corresponding to V2 are independent.

For a fixed pair (i, j), each of the four equalities i = r, i = s, j = r or j = s occurs
at most d times. (For instance, if i = s, then r has to be one of i − 1, i − 2, · · · , i − d.)
Therefore, ∆n ≤ 4d.

If we take a new look at (1), we see that the Janson criterion will be satisfied if we
can show that σn is large. This is the content of the next lemma.

Lemma 1 If n ≥ 2d, then

Var(Xn) =
6dn + 10d3 − 3d2 − d

72
. (2)

In particular, Var(Xn) is a linear function of n.

Note that in particular, for d = 1, we get the well-known fact [1] that the variance of
Eulerian numbers in permutations of length n is (n + 1)/12.
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Proof: By linearity of expectation, we have

Var(Xn) = E(X2
n) − (E(Xn))2 (3)

= E





(

Nn
∑

k=1

Xn,k

)2


−

(

E

(

Nn
∑

k=1

Xn,k

))2

(4)

= E





(

Nn
∑

k=1

Xn,k

)2


−

(

Nn
∑

k=1

E(Xn,k)

)2

(5)

=
∑

k1,k2

E(Xn,k1
Xn,k2

) −
∑

k1,k2

E(Xn,k1
)E(Xn,k2

) (6)

Clearly, E(Xn,k) = 1/2, so the N 2
n summands that appear in the last line of the above

chain of equations with a negative sign are each equal to 1/4. As far as the N 2
n summands

that appear with a positive sign, most of them are equal to 1/4. More precisely, if Xn,k1

and Xn,k2
are independent, then

E(Xn,k1
Xn,k2

) = E(Xn,k1
)E(Xn,k2

) =
1

4
.

If k1 = k2, then E(Xn,k1
Xn,k2

) = E(X2
k1

) = E(Xk1
) = 1/2. Otherwise, if Xn,k1

and Xn,k2

are dependent, then either E(Xn,k1
Xn,k2

) = 1/3, or E(Xn,k1
Xn,k2

) = 1/6. Indeed, if Xk1
is

the indicator variable of the pair (i, j) being a d-descent and Xk2
is the indicator variable

of the pair (r, s) being a d-descent, then as we said above, Xn,k1
and Xn,k2

are dependent
if and only if one of i = r, i = s, j = r or j = s holds. If i = r or j = s holds, then
E(Xn,k1

Xn,k2
) = 1/3, and if i = s or j = r holds, then E(Xn,k1

Xn,k2
) = 1/6. Indeed,

for instance, with i = r, we have Xn,k1
= Xn,k2

= 1 if and only if pi is the largest of the
entries pi, pj, and ps. Similarly, with i = s, we have Xn,k1

= Xn,k2
= 1 if and only if

pr > pi > pj.
We will now count how many summands E(Xn,k1

Xn,k2
) are equal to 1/2, to 1/3, and

to 1/6.

1. First, E(Xn,k1
Xn,k2

) = 1/2 if and only if k1 = k2. This happens Nn times, once for
each pair (i, j) so that i < j ≤ i+d. For a given i, there are d such pairs if i ≤ n−d,
and d − t such pairs if i = n − d + t, so

Nn = (n − d)d + (d − 1) + (d − 2) + · · ·+ 1 = (n − d)d +

(

d

2

)

.

2. Second, E(Xn,k1
Xn,k2

) = 1/3 if i = r, or j = s. By symmetry, we can consider the
first case, then multiply by two. If i ≤ n − d, then we have d(d − 1) choices for j
and s, and if i = n − d + t, then we have (d − t)(d − t − 1) choices. So the number
of pairs (k1, k2) so that E(Xn,k1

Xn,k2
) = 1/3 is

2(n − d)d(d − 1) + 2(d − 1)(d − 2) + 2(d − 2)(d − 3) + · · ·+ 2 · 2 · 1 =
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2(n − d)d(d − 1) + 4

(

d

3

)

.

3. Finally, E(Xn,k1
Xn,k2

) = 1/6 if i = s, or j = r. By symmetry, we can again consider
the first case, then multiply by two. If d ≤ i ≤ n − d, then there are d2 choices for
(j, r). If i ≤ d, then there are d choices for j, and i − 1 choices for r. If n − d < i,
then there are n− i choices for j, and d choices for r, assuming that n ≥ 2d. So the
number of pairs (k1, k2) so that E(Xn,k1

Xn,k2
) = 1/6 is

2(n − 2d)d2 + 2(d − 1)d + 2(d − 2)d + · · ·+ 2d = 2(n − 2d)d2 + d2(d − 1).

For all remaining pairs (k1, k2), the variables Xn,k1
and Xn,k2

are independent, and
so E(Xn,k1

Xn,k2
) = 1/4.

Comparing our results from cases 1-3 above with (3), and recalling that in all other
cases, E(Xn,k1

Xn,k2
) = 1/4, we obtain the formula that was to be proved. 3

The proof of the main result of this section is now immediate.

Theorem 2 Let d be a fixed positive integer. Let Xn be the random variable counting
d-descents of a randomly selected n-permutation. Then X̃n → N(0, 1).

Proof: Use Theorem 1 with Yn = Xn, ∆n = 4d, Nn = (n − d)d +
(

d
2

)

, and σn =
√

6dn+10d3
−3d2

−d
72

. All we need to show is that there exists a positive integer m so that

(

(n − d)d +

(

d

2

))

· (4d)m−1 ·

(

72

6dn + 10d3 − 3d2 − d

)m/2

→ 0,

for which it suffices to find a positive integer m so that

(dn) · (4d)m−1 ·

(

12

dn

)m/2

→ 0. (7)

Clearly, any m ≥ 3 suffices, since for any such m, the left-hand side is of the form C/nα,
for positive constants C and α. 3

3 When d grows with n

We see from (7) that the statement of Theorem 2 can be strengthened, from a constant
d to a d that is a function of n. Indeed, (7) is equivalent to saying that

cn

(

d

n

)m/2

→ 0.

This convergence holds as long as d ≤ n1−ε for some fixed positive ε, we can choose m
so that (m/2) · ε > 1, and then condition (7) will be satisfied. So we have proved the
following.
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Proposition 1 Let n → ∞, and let us assume that there exists a positive constant ε so
that for n sufficiently large, d = d(n) ≤ n1−ε. Let Xn be defined as before. Then

X̃n → N(0, 1).

Now let d be such that n0.5 < d ≤ n/2 holds. Then we can revisit Lemma 1 for another
application. Note that as n ≥ 2, formula (2) implies that

VarXn >
d3

8
. (8)

Using this estimate for σn =
√

V ar(Xn) in (1), we see that it suffices to show that there
exists a natural number m so that

(

nd +

(

d

2

))

· (4d)m−1

(

8

d3/2

)m

<
2d3 · 32m

dm/2
→ 0.

This is clearly true, since any m > 6 will suffice. Therefore, we have improved our result
as follows.

Proposition 2 Let n → ∞, and let us assume that d ≤ n/2. Let Xn be defined as before.
Then

X̃n → N(0, 1).

This leaves the case of d > n/2. In that case, Lemma 1 has to be modified since we
cannot enumerate pairs (k1, k2) such that E(Xn,k1

Xn,k2
) = 1/6 in the same way as we

have done in case 3 of the proof of that lemma. Indeed, no matter what i is, it will never
happen that both of i − d and i + d are valid indices.

So assume that d > n/2, and let us count all pairs (k1, k2) such that E(Xn,k1
Xn,k2

) =
1/6. For symmetry reasons, we can count pairs of indices (i, j) and (r, s) such that i = s,
and then multiply their number by 2. The are three subcases to consider

(a) If 1 ≤ i ≤ n − d, then we have i − 1 choices for r and d choices for j.

(b) If n − d + 1 ≤ i ≤ d, then we have (i − 1) choices for r, and n − i choices for j.

(c) If d + 1 ≤ i ≤ n, then we have d choices for r and n − i choices for j.

This implies that the number of pairs (k1, k2) so that E(Xn,k1
Xn,k2

) = 1/6 is

2

(

n−d
∑

i=1

(i − 1)d +
∑

i=n−d+1

d(i − 1)(n − i) +

n
∑

i=d+1

d(n − i)

)

=

−n3 + 3n2 − 2n + 2d3 + 6d2 + 4d + 6n2d − 6nd2 − 12nd

3
.

The other cases of the proof of Lemma 1 are unchanged. So comparing the new,
modified Case 3 to Cases 1 and 2 of Lemma 1 leads to the following lemma.

the electronic journal of combinatorics 15 (2008), #N21 6



Lemma 2 Let n/2 < d ≤ n − 1. Then

Var(Xn) =
2n3 − 6n2 + 4n − 12d3 − 21d2 − 9d − 12n2d + 24nd2 + 30nd + 18

72
. (9)

In particular, we claim that this implies that there exists a positive constant c so that
Var(Xn) > cn3 for n sufficiently large. Indeed, let d = an, where 0.5 ≤ a ≤ 1. Then the
terms of degree three of (9) are

2n3 − 12d3 − 12n2d + 24nd2 = n3
(

2 − 12(a(a − 1)2)
)

.

Set f(a) = 12(a(a− 1)2), and note that f ′(a) = 36a2 − 48a+12 is negative in a ∈ [0.5, 1).
So on that interval, f is decreasing, and so its maximal value is f(0.5) = 1.5. Therefore,
the last displayed equation implies that

2n3 − 12d3 − 12n2d + 24nd2 = n3(2 − f(a)) ≥ 0.5n3.

As all other terms on the right-hand side of (9) are of smaller degree, the claim that
Var(Xn) > cn3 is proved.

We can now state our comprehensive result.

Theorem 3 Let n and d be positive integers so that d ≤ n holds. Let Xn count the
d-descents of a randomly selected permutation of length n. Then

X̃n → N(0, 1).

Proof: We have previously handled the cases of d ≤ n/2, so now we only have to prove
the statement for n/2 < d ≤ n. Apply the Janson Dependency Criterion (Theorem 1)
with the estimates σn ≥ cn3/2, ∆n ≤ 4n, An = 1, and Nn ≤ 2n2. Then the criterion will
be satisfied if we find a natural number m so that

2n2 · (4n)m−1

n1.5m
→ 0

as n goes to infinity. Clearly, any m ≥ 3 will suffice. 3

4 Further Directions

A possible direction for generalizations, suggested by Richard Stanley, is the following.
Let d = (d1, d2 · · · , dn−1), where the di are positive integers. If p = p1...pn is in an
n-permutation, let fd(p) be the number of pairs (i, j) such that 0 < j − i ≤ di and
pi > pj. For instance, if d = (1, 1, ..., 1) then fd(p) is the number of descents of p. If
d = (n− 1, n− 2, ..., 1) then fd(p) is the number of inversions of p. It is known [2], by an
argument from algebraic geometry, that if

ck = |{p ∈ Sn : fd(p) = k}|,
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then the sequence c0, c1, · · · is unimodal. Log-concavity and normality are not known.
Note that in this paper, we have treated the special case of d = (d, d, · · · , d).
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