Unextendible Sequences in Finite Abelian Groups

Jujuan Zhuang
Department of Mathematics
Dalian Maritime University, Dalian, P. R. China
jjzhuang1979@yahoo.com.cn

Submitted: Oct 25, 2007; Accepted: Jun 21, 2008; Published: Jun 30, 2008
Mathematics Subject Classifications (2000): 11B75, 11P21, 11B50.

Abstract

Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ be a finite abelian group with $r=1$ or $1<n_{1}|\ldots| n_{r}$, and let $S=\left(a_{1}, \ldots, a_{t}\right)$ be a sequence of elements in G. We say S is an unextendible sequence if S is a zero-sum free sequence and for any element $g \in G$, the sequence $S g$ is not zero-sum free any longer. Let $L(G)=\left\lceil\log _{2} n_{1}\right\rceil+\ldots+\left\lceil\log _{2} n_{r}\right\rceil$ and $d^{*}(G)=\sum_{i=1}^{r}\left(n_{i}-1\right)$, in this paper we prove, among other results, that the minimal length of an unextendible sequence in G is not bigger than $L(G)$, and for any integer k, where $L(G) \leq k \leq d^{*}(G)$, there exists at least one unextendible sequence of length k.

1 Introduction

Let G be an additively written finite abelian group, $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ its direct decomposition into cyclic groups, where $r=1$ or $1<n_{1}|\ldots| n_{r}$. Set $e_{i}=(0, \ldots, 0, \underbrace{1}_{i-t h}, 0, \ldots, 0)$ for all $i \in[1, r]$, then $\left(e_{1}, \ldots, e_{r}\right)$ is a basis of G. We set

$$
L(G)=\left\lceil\log _{2} n_{1}\right\rceil+\ldots+\left\lceil\log _{2} n_{r}\right\rceil \text {, }
$$

and

$$
d^{*}(G)=\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

Let $\mathcal{F}(G)$ denote the free abelian monoid over G with monoid operation written multiplicatively and given by concatenation, i.e., $\mathcal{F}(G)$ consists of all multi-sets over G, and an element $S \in \mathcal{F}(G)$, which we refer to as a sequence, is written in the form

$$
S=\prod_{i=1}^{k} g_{i}=\prod_{g \in G} g^{v_{g}(S)},
$$

with $g_{i} \in G$, where $v_{g}(S) \in \mathbb{N}_{0}$ is the multiplicity of g in S and k is the length of S, denoted by $|S|=k$. A sequence T is a subsequence of S if $v_{g}(T) \leq v_{g}(S)$ for every $g \in G$, denoted by $T \mid S$, and $S T^{-1}$ denote the sequence obtained by deleting the terms of T from S. By $\sigma(S)$ we denote the sum of S, that is $\sigma(S)=\sum_{i=1}^{k} g_{i}=\sum_{g \in G} v_{g}(S) g \in G$. For every $l \in\{1, \ldots, k\}$, let $\sum_{l}(S)=\left\{g_{i_{1}}+\ldots+g_{i_{l}} \mid 1 \leq i_{1}<\ldots<i_{l} \leq k\right\}$, and $\sum(S)=\cup_{i=1}^{k} \sum_{i}(S)$.

Let S be a sequence in G, we call S a zero-sum sequence if $\sigma(S)=0$; a zero-sum free sequence if for any subsequence W of $S, \sigma(W) \neq 0$.

In inverse zero-sum problems, for example, when we study the structure of the zerosum free sequences in C_{n}, set S be a zero-sum sequence of length $D(G)-k$, where $D(G)$ is the well-known Davenport constant of G, that is the smallest integer $l \in \mathbb{N}$ such that every sequence S over G of length $|S| \geq l$ has a zero-sum subsequence. If $k=1$, then $S=g^{n-1}$; if $k=2$, then $S=g^{n-2}$ or $S=g^{n-3} \cdot(2 g)$, where $g \in S$ and $(g, n)=1$ (see [1],[3] and [2] etc.). The sequences g^{n-1} and $g^{n-3} \cdot(2 g)$ have the same character as pointed out as follows.

Definition 1.1 Let S be a zero-sum free sequence of elements in an abelian group G, we say S is an unextendible sequence if for any element $g \in G$, the sequence $S g$ is not zero-sum free any longer.

In other words, S is an unextendible sequence if and only if $\sum(S)=G \backslash\{0\}$. In fact, if $\sum(S)=G \backslash\{0\}$, then for any element $g \in G$, we get $0 \in \sum(S g)$ and S is an unextendible sequence; conversely, if S is unextendible, then for any $g \in G$ and $g \neq 0,0 \in \sum(S g)$ but $0 \notin \sum(S)$, and thus $-g \in \sum(S)$, that is $\sum(S)=G \backslash\{0\}$.

For any finite abelian group G, it is obvious that the maximal size of an unextendible sequence is $D(G)-1$.

Definition 1.2 For a finite abelian group G, we define $u(G)$ to be the minimal size of an unextendible sequence S in G.

2 On Unextendible Sequences

We begin by describing $u(G)$ for cyclic group C_{n} and for any finite abelian group.
For some real number $x \in \mathbb{R}$, let $\lceil x\rceil=\min \{m \in \mathbb{Z} \mid m \geq x\}$.
Lemma 2.1 Let G be a finite abelian group of order n, then $u(G) \geq\left\lceil\log _{2} n\right\rceil$.
Proof. Let $S \in \mathcal{F}(G)$ be an unextendible sequence of length $u(G)$, then $\left|\sum(S)\right|=n-1$, and note that S contains at most $2^{u(G)}-1$ nonempty subsequences, therefore we get $u(G) \geq\left\lceil\log _{2} n\right\rceil$.

Theorem 2.2 For any cyclic group $C_{n}, u\left(C_{n}\right)=L\left(C_{n}\right)=\left\lceil\log _{2} n\right\rceil$.

Proof. By Lemma 2.1, it is sufficient to prove $u\left(C_{n}\right) \leq\left\lceil\log _{2} n\right\rceil$.
If $n=2^{m}$, where m is a positive integer. Note that the sequence $S=\prod_{i=0}^{m-1} 2^{i}$ is an unextendible sequence of length $|S|=m=\log _{2} n$, since each integer which is smaller than 2^{m} can be expressed as the sum of some subsequence of S.

Now we assume $2^{t}<n<2^{t+1}$ for some positive integer t, consider the sequence $S=$ $\prod_{i=0}^{t-1} 2^{i} \cdot\left(n-2^{t}\right)$. Using the same method as above, it is easy to check that $\sum(S)=C_{n} \backslash\{0\}$ and thus S is an unextendible sequence of length $|S|=t+1=\left\lceil\log _{2} n\right\rceil$.

Therefore $u\left(C_{n}\right) \leq\left\lceil\log _{2} n\right\rceil$, and thus $u\left(C_{n}\right)=\left\lceil\log _{2} n\right\rceil$.
Corollary 2.3 For any finite abelian group $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $1<n_{1}|\ldots| n_{r}$, $u(G) \leq L(G)$.

Proof. Consider the sequence

$$
S=\prod_{i=1}^{r}\left(\left(n_{i}-2^{\left\lceil\log _{2} n_{i}\right\rceil-1}\right) e_{i} \prod_{j=0}^{\left\lceil\log _{2} n_{i}\right\rceil-2} 2^{j} e_{i}\right),
$$

according to the proof of Theorem 2.2, S is an unextendible sequence of length $|S|=$ $L(G)=\left\lceil\log _{2} n_{1}\right\rceil+\ldots+\left\lceil\log _{2} n_{r}\right\rceil$. Therefore $u(G) \leq|S|=L(G)$.

Now we discuss the existence of an unextendible sequence with certain length.
Theorem 2.4 Let k be an integer satisfying $\left\lceil\log _{2} n\right\rceil \leq k \leq n-1$, then there exists an unextendible sequence $S \in \mathcal{F}\left(C_{n}\right)$ such that $|S|=k$.

Proof. We distinguish two cases:
Case 1. $\left\lceil\frac{n}{2}\right\rceil \leq k \leq n-1$. Consider the sequence

$$
S=1^{k-1} \cdot(n-1-(k-1)),
$$

clearly, $\sum(S)=C_{n} \backslash\{0\}$, and therefore S is an unextendible sequence of length $|S|=k$.
Case 2. $\left\lceil\log _{2} n\right\rceil \leq k<\left\lceil\frac{n}{2}\right\rceil$. In this case, $n \geq 7$. Set $t=k-\left\lceil\log _{2} n\right\rceil$, then $0 \leq t<$ $\left\lceil\frac{n}{2}\right\rceil-\left\lceil\log _{2} n\right\rceil$. If $t=0$, by Theorem 2.2 we are done. Now suppose $0<t<\left\lceil\frac{n}{2}\right\rceil-\left\lceil\log _{2} n\right\rceil$, set $2^{i} \leq t<2^{i+1}$ where $i \in \mathbb{N}_{0}$, we consider the following subcases:
Subcase 1. $2^{i} \leq t<2^{i+1}$, and $i+1 \leq\left\lceil\log _{2} n\right\rceil-2$, then

$$
S=\prod_{j=0}^{\left\lceil\log _{2} n\right\rceil-2} 2^{j} \cdot 2^{-(i+1)} \cdot\left(n-2^{\left\lceil\log _{2} n\right\rceil-1}\right) \cdot 1^{t} \cdot\left(2^{i+1}-t\right)
$$

is an unextendible sequence of length $|S|=t+\left\lceil\log _{2} n\right\rceil=k$.
Subcase 2. $2^{\left\lceil\log _{2} n\right\rceil-2} \leq t<\left\lceil\frac{n}{2}\right\rceil-\left\lceil\log _{2} n\right\rceil$. If $t<n-2^{\left\lceil\log _{2} n\right\rceil-1}$, we consider

$$
S=\prod_{j=0}^{\left\lceil\log _{2} n\right\rceil-2} 2^{j} \cdot 1^{t} \cdot\left(n-2^{\left\lceil\log _{2} n\right\rceil-1}-t\right)
$$

otherwise, $t \geq n-2^{\left\lceil\log _{2} n\right\rceil-1}$. Noting that

$$
2^{\left\lceil\log _{2} n\right\rceil-2}+n-2^{\left\lceil\log _{2} n\right\rceil-1}=n-2^{\left\lceil\log _{2} n\right\rceil-2}>\left\lceil\frac{n}{2}\right\rceil-\left\lceil\log _{2} n\right\rceil>t
$$

we take

$$
S=\prod_{j=0}^{\left\lceil\log _{2} n\right\rceil-3} 2^{j} \cdot 1^{t+1} \cdot\left(2^{\left\lceil\log _{2} n\right\rceil-2}+n-2^{\left\lceil\log _{2} n\right\rceil-1}-t-1\right)
$$

Then S is an unextendible sequence of length $|S|=t+\left\lceil\log _{2} n\right\rceil=k$. This completes the proof.

For any finite abelian group G, we have the following theorem.
Theorem 2.5 Let G be a finite abelian group. Then for every $k \in\left[L(G), d^{*}(G)\right]$, there exists an unextendible sequence $S \in \mathcal{F}(G)$ of length $|S|=k$.

Theorem 2.5 comes from the following observation.
Lemma 2.6 Let $G=G_{1} \oplus G_{2}$, and $S_{i} \in \mathcal{F}\left(G_{i}\right)$ for $i \in\{1,2\}$. Then $S_{1} S_{2} \in \mathcal{F}(G)$ is unextendible if and only if both S_{1} and S_{2} are unextendible.

Proof. It is obvious.
Proof of Theorem 2.5. Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ be its direct decomposition into cyclic groups. Write k in the form $k=k_{1}+\ldots+k_{r}$, where $\left\lceil\log _{2} n_{i}\right\rceil \leq k_{i} \leq n_{i}-1$. By Theorem 2.4, there exist unextendible sequences $S_{i} \in \mathcal{F}\left(C_{n_{i}}\right)$ of length k_{i}, and put $S=S_{1} \cdot \ldots \cdot S_{r}$, then by Lemma 2.6, $S \in \mathcal{F}(G)$ is an unextendible sequence of lengt $|S|=k$.

It is evident that any zero-sum free sequence S in G can be extended into an unextendible sequence. We can extend S by choosing a series elements g_{1}, \ldots, g_{r} in a natural process such that $\left|\sum\left(S g_{1}\right)\right|=\max \left\{\left|\sum(S g)\right| \mid g \in G\right\}$, and $\left|\sum\left(S g_{1} \ldots g_{i} g_{i+1}\right)\right|=$ $\max \left\{\left|\sum\left(S g_{1} \ldots g_{i} g\right)\right| \mid g \in G\right\}$ for any $i=2, \ldots, r$.

Acknowledgements

I would like to thank Professor Weidong Gao for bringing this problem to my attention. Many thanks belong to the referee for several very helpful comments and suggestions.

References

[1] J. D. Bovey, P. Erdős and I. Niven, Conditions for zero sum modulo n, Canad. Math. Bull., 18(1975), 27-29.
[2] W. D. Gao and A. Geroldinger, On Long minimal zero sequences in finite abelian groups, Periodica Math. Hungarica, 38(3)(1999), 179-211.
[3] W. D. Gao, An addition theorem for finite cyclic groups, Discrete Math., 163(1997), 257-265.

