Partitions and Edge Colourings of Multigraphs
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Abstract

Erdés and Lovész conjectured in 1968 that for every graph G with x(G) > w(G)
and any two integers s,t > 2 with s+t = x(G) + 1, there is a partition (S, 7T") of the
vertex set V(G) such that x(G[S]) > s and x(G[T]) > t. Except for a few cases,
this conjecture is still unsolved. In this note we prove the conjecture for line graphs
of multigraphs.

1 Introduction

It was conjectured by Erdés and Lovéasz (see Problem 5.12 in [2]) that for every graph G
with x(G) > w(G) and any two integers s,t > 2 with s+t = x(G) + 1, there is a partition
(S,T) of the vertex set V(G) such that x(G[S]) > s and x(G[T]) > t. The only settled
cases of this conjecture that we know are (s,t) € {(2,2),(2,3),(2,4),(3,3),(3,4),(3,5)}
(see [1, 3, 5, 6]). In this note we prove for the line graphs of multigraphs the following
slightly stronger statement.

Theorem 1 Let s and t be arbitrary integers with 2 < s < t. If the line graph L(G) of
some multigraph G has chromatic number s +t — 1 > w(L(Q)), then it contains a clique
Q of size s such that x(L(G) — Q) > t.

It will be convenient to prove the theorem in the language of edge colorings of multi-
graphs. Every multigraph in this note is finite, undirected and has no loops.

The edge set and the vertez set of G is denoted by V(G) and E(G) respectively. For
a vertex v of G, the degree, d(v), of v in G is the number of edges incident with v. The
set IV, of all neighbours of v in G may have much smaller size than d(v).
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The chromatic indez of G, denoted by x’'(G), is the chromatic number of its line graph
L(G); in other words, it is the smallest number of colours with which the edges of G may
be coloured so that no two adjacent edges receive the same colour.

A triangle in G is a set of three mutually adjacent vertices in GG, and the edges of
a triangle are those edges in F(G) joining the vertices of the triangle. The maximum
number of edges in a triangle in G will be denoted by 7(G). Furthermore, let A(G)
denote the mazimum degree of G, and let W'(G) = max{7(G), A(G)}. Clearly, w'(G) is
the clique number of the line graph of G and hence x'(G) > W'(G).

2 Proof of Theorem 1

For given 2 < s < t, suppose that G is a counterexample with the fewest vertices. Then
G is connected. Since X'(G) > W'(G) > 7(G), G contains at least four vertices. By
Shannon’s theorem [4], X'(G) < [2A(G)]. Consequently, s < A(G).

By an s-star of G we mean a pair (E’,v) such that £/ C E(G) is a set of s edges
incident with the vertex v. For an s-star (E’,v), let X(E’, v) denote the set of all vertices
of G joined by an edge of E' with v.

Let (E',v) be an arbitrary s-star of G. The set E’ forms an s-clique in L(G). Since G
is a counterexample to our theorem, we have x'(G — E') <t —1. Let G' = G — E’, and
let : E(G') — {1,...,t—1} be a (t — 1)-edge-colouring of G’. For each vertex z of G,
let

o(z) ={¢(e)| e € E(G") is incident withz} and ¢(z) = {1,...,t — 1} \ p(x).

Since s+t —1=x'(G) > W' (G) > A(G) and all s edges of E’ are incident with v, the
degree of v in G' = G — E' is at most ¢t — 2 and, therefore,

(a) @(v) # 0.
Next, we claim that

(b) for every colour o € @(v) and for any two distinct vertices x,y € X(E',v), there is
an edge e € E(G") joining x and y with p(e) = a. Consequently, | X(E',v)| < 2.

Proof. Suppose to the contrary that no edge joining x and y is colored with a. For
u € {x,y}, there is an edge e, € E’ joining u and v. Colour the s — 1 edges of £’ \ {e,}
with colours t,t+1,...,t+s—2, so that e, is coloured with ¢. If & € ¢(z), we can colour
the edge e, with a. Otherwise, there is an edge e € E(G) \ £’ incident with x colored
with a. Since e is not incident with y, we can recolour e with colour ¢ and then colour
e, with .. In both cases we obtain a (¢ + s — 2)-edge-colouring of G, a contradiction to
s+t—1=x'(G). O

(c) Let w be a vertex of G with d(w) > s. Then, for the neighbourhood N, of w in G,
we have |Ny| > 2, and any two vertices of Ny, are adjacent in G. Furthermore, if
s > 3, then |N,| = 2.
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Proof. 1If N, consists only of a single vertex w’, then d(w') > d(w) > s. Since G is
connected and has at least four vertices, w’ has a neighbour x # w. Hence there is an
s-star (E',w') of G with w,z € X(E’,w’). From (a) and (b) it then follows that x and w
are adjacent in G, a contradiction to |N,| = 1. This proves that |N,| > 2. If x,y are two
distinct neighbours of w, then there is an s-star (E’,w) with z,y € X(F’,w). Then (a)
and (b) imply that x and y are adjacent. If s > 3 and |N,| > 3, then there is an s-star
(E',w) such that | X (£, w)| > 3, a contradiction to (b). Hence (c) is proved. OJ

To complete the proof of Theorem 1, we consider two cases.

Case 1: s > 3. Since s < A(G), there is a vertex u in G with d(u) > s. By (c¢), N,
consists of two vertices, say x and y, and these two vertices are adjacent in GG. Since G
is a connected graph with at least four vertices, either N, or N, contains more than two
vertices, say |N,| > 3. Then (c) implies that d(x) < s. Let £} denote the set of all edges of
G joining z with u or y. Furthermore, let Fy denote the set of all edges of G joining u with
y. Then 2 < |Ey| < s and |Ey|+]|Ey| > s. Hence, there is a nonempty subset EY of Ey such
that £ = F; U E}, contains exactly s edges. Since E' is an s-clique in L(G), by the choice
of G, we have X'(G—E')<t—1. Let G =G — FE',and let ¢ : E(G') — {1,...,t — 1}
be any (t — 1)-edge-colouring of G'. If p(u) = {1,...,t — 1}, then {u,z,y} is a triangle
with at least s + ¢ — 1 edges, a contradiction to 7(G) < x'(G) = s +t — 1. Hence there
is a colour o € @(u). Choose two edges e; € E and ey € Ej. Colour the s — 1 edges of
E’'\ {e1} with colours t,t+1,...,t+ s—2 so that e, is coloured with . If o € @(x), then
we can colour the edge e; with a. Otherwise, there is an edge e € E(G) \ E’ such that
e is incident with x and p(e) = a. Since all edges joining x with y are in E’, the edge e
is not incident with y and we can recolour e with ¢ and then colour e; with a. In both
cases we obtain a (t + s — 2)-edge colouring of G, a contradiction to s +t — 1 = x'(G).

Case 2: s = 2. Since s < A(G), it follows from (c) that G contains a triangle 7' =
{z,y,z}.

For w € {y,z}, there is an edge e, in G joining u and z. The pair (E’, z) with
E' = {e,,e,} is an s-star of G and, therefore, x'(G — E') <t —1. Let G’ =G — E’, and
let p: E(G') — {1,...,t — 1} be any (¢ — 1)-edge-colouring of G".

Since T contains at most 7(G) < x/(G) — 1 =t edges and two of these edges are not
coloured, some colour av € {1,...,t — 1} is not present on edges of T'. By (b), a € p(z).
Hence the following two subcases finish the proof of the theorem.

Case 2.1: a € ¢(y) U @(2). By the symmetry between y and z, we can suppose that
a € ¢(y). By (a) and (b), there is a colour # € @(z) and an edge ¢’ of colour § joining
y and z. Uncolour € and colour e, with . This results in a (¢t — 1)-edge-colouring ¢’ of
G — E”, where E" = {e,,e'}. Then a € ¢'(y) and no edge joining = and z has colour a.
Since (E”,y) is an s-star of G, this is a contradiction to (b).

Case 2.2: o € p(x) N p(y) N p(z). This means that for every u € T, there is an
edge e* € E(G') of colour « joining u and some vertex v, € T. Let § € ¢(x) and
P be the component containing x of the subgraph H, 3 induced by the set of edges
{e € E(G")|¢(e) € {a,5}}. Obviously, P is a path starting at x. By (b), there is an
edge € of colour (3 joining y and z and we eventually consider two cases.
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Subcase A: Edge €’ does not belong to P. If we interchange the colours o and 3 on P,
then we obtain a new (f — 1)-edge-colouring ¢’ of G'. Then ¢’ is a (t — 1)-edge-colouring
of G’ with a € ¢'(z) and ¢'(e¥) = ¢'(e*) = . In particular, no edge of G' = G — F’
joining y and z has colour «, a contradiction to (b).

Subcase B: Edge ¢ belongs to P. In this case, eV and e* also belong to P. By
symmetry, we may assume that the subpath P’ of P joining y with x does not contain
z. Uncolour €’ and colour e, € E’ with 5. This results in a (¢ — 1)-edge-colouring ¢’ of
G — {e., '} for which Subcase A with z in place of x and e, in place of €’ holds. Since
Subcase A is settled, this finishes the whole proof. [ ]
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