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Abstract

We say a s-uniform r-partite hypergraph is complete, if it has a vertex partition
{V1, V2, . . . , Vr} of r classes and its hyperedge set consists of all the s-subsets of
its vertex set which have at most one vertex in each vertex class. We denote the
complete s-uniform r-partite hypergraph with k vertices in each vertex class by
Ts,r(k). In this paper we prove that if h, r and s are positive integers with 2 ≤
s ≤ r ≤ h then there exists a constant k = k(h, r, s) so that if H is an s-uniform
hypergraph with h vertices and chromatic number χ(H) = r then any proper edge
coloring of Ts,r(k) has a rainbow H-factor.

Keywords: H-factors, Rainbow, uniform hypergraphs.

1 Introduction

A hypergraph is a pair (V, E) where V is a set of elements, called vertices, and E is
a set of non-empty subsets of V called hyperedges or edges. A hypergraph H is called
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s-uniform or an s-hypergraph if every edge has cardinality s. A graph is just a 2-uniform
hypergraph. We say a hypergraph is r-partite if it has a vertex partition {V1, V2, . . . , Vr}
of r classes such that each hyperedge has at most one vertex in each vertex class, and a
s-uniform r-partite hypergraph is complete, if it has a vertex partition {V1, V2, . . . , Vr} of
r classes and its hyperedge set consists of all the s-subsets of its vertex set which have
at most one vertex in each vertex class. We denote the complete s-uniform r-partite
hypergraph with k vertices in each vertex class by Ts,r(k).

If H is a hypergraph with h vertices and G is hypergraph with hn vertices, we say that
G has an H-factor if it contains n vertex disjoint copies of H. For example, a K2-factor of
a graph is simply a perfect matching. We say an edge coloring of a hypergraph is proper
if any two edges sharing a vertex receive distinct colors. We say a subhypergraph of an
edge-colored hypergraph is rainbow if all of its edges have distinct colors, and a rainbow
H-factor is an H-factor whose components are rainbow H-subhypergraphs.

Many graph theoretic parameters have corresponding rainbow variants. Erdős and
Rado[4] were among the first to consider the problems of this type. For graphs, Jamison,
Jiang and Ling[3], and Chen, Schelp and Wei[2] considered Ramsey type variants where
an arbitrary number of colors can be used; Alon et. al.[1] studied the function f(H) which
is the minimum integer n such that any proper edge coloring of Kn has a rainbow copy
of H; and Keevash et. al.[5] considered the rainbow Turán number ex∗(n; H) which is
the largest integer m such that there exists a properly edge-colored graph with n vertices
and m edges but containing no rainbow copy of H. Recently, Yuster[6] proved that for
every fixed graph H with h vertices and chromatic number χ(H), there exists a constant
K = K(H) such that every proper edge coloring of a graph with hn vertices and with
minimum degree at least hn(1 − 1/χ(H)) + K has a rainbow H-factor.

For hypergraphs, El-Zanati et al[7] discussed the existence of a rainbow 1-factor in 1-
factorizations of r-uniform hypergraph; in[8], Bollobás et al considered the edge colorings
with local restriction of the complete r-uniform hypergraphs. In this paper, we discuss the
rainbow H-factor in hypergraphs and extend the main result in [6] to uniform hypergraphs.
The main idea of our proof also comes from [6], although the details are more complex.
The main result in this paper is:

Theorem 1 If h, r and s are positive integers with 2 ≤ s ≤ r ≤ h then there exists

a constant k = k(h, r, s) so that if H is an s-uniform hypergraph with h vertices and

chromatic number χ(H) = r then any proper edge coloring of Ts,r(k) has a rainbow H-

factor.

2 Proof of Theorem 1

Let H be a s-uniform hypergraph with h vertices and χ(H) = r. It is not difficult to check
that Ts,r(h) has an H-factor for Ts,r(h) and H have the same chromatic number. So it
suffices to show that there exists k = k(h, r, s) such that any proper edge-colored Ts,r(k)
has a rainbow Ts,r(h)-factor. We shall prove a slightly stronger statement. For 0 < p ≤ h,
Let Ts,r(h, p) be the complete s-uniform r-partite hypergraph with h vertices in each
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vertex class, except the last vertex class which has only p vertices. Define Ts,r(h; 0) =
Ts,r−1(h; h). We prove that there exists k = k(h, r, s, p) such that any proper edge-colored
Ts,r(kh; kp) has a rainbow Ts,r(h; p)- factor.

Let h be fixed, we prove the result by induction on r, and for each r, by induction
on p ≥ 1. The base case r = s and p = 1 is trivial since every subhypergraph of a
proper edge-colored hypergraph Ts,s(h; 1) is rainbow. Given r ≥ s, assuming the result
holds for r and p − 1 ≥ 1, we prove it for r and p (if p = 1 then p − 1 = 0 so we
use the induction on Ts,r−1(h; h)). Let k = k(h, r, s, p − 1) and let t be sufficiently large
(t will be chosen later). Consider a proper edge-coloring of T = Ts,r(kth; ktp). We let
c(x1, x2, . . . , xs) denote the color of the edge {x1, x2, . . . , xs}. Denote the first r−1 vertex
classes of T by V1, . . . , Vr−1 and the last vertex class by Ur. Let Vr be an arbitrary subset
of size k(p − 1)t and W = Ur \ Vr the remaining set with |W | = kt. For i = 1, . . . , r, we
randomly partition Vi into t subsets Vi(1), . . . , Vi(t), each of the same size. Each of the
r random partitions is performed independently, and each partition is equally likely. Let
S(j) be the subhypergraph of T induced by V1(j) ∪ V2(j) ∪ · · · ∪ Vr(j), for j = 1, . . . , t.
Notice that S(j) is a properly edge-colored Ts,r(kh; k(p− 1)) and hence, by the induction
hypothesis S(j) has a rainbow Ts,r(h; p − 1)-factor. Let B = (X ∪ W ; F ) be a bipartite
graph where X = {S(j) : j = 1, . . . , t} and there exists an edge (S(j), w) ∈ F if for all
1 ≤ i1 < i2 < · · · < is−1 ≤ r and for all xik ∈ Vik(j) (k = 1, 2, . . . , s − 1), the color
c(xi1 , xi2 , . . . , xis−1 , w) does not appear at all in S(j).

If we can show that, with positive probability, B has a 1-to-k assignment in which
each S(j) ∈ X is assigned to precisely k elements of W and each w ∈ W is assigned to
a unique S(j) then we can show that T has a rainbow Ts,r(h; p)-factor. Indeed, consider
S(j) and the unique set Xj of k elements of W that are matched to S(j). Since S(j)
has a rainbow Ts,r(h; p − 1)-factor, we can arbitrarily assign a unique element of Xj to
each element of this factor and obtain a Ts,r(h; p) which is also rainbow because all the
edges of this Ts,r(h; p) incident with the assigned vertex have colors that do not appear
at all in other edges of this Ts,r(h; p). Now we use the 1-to-k extension of Hall’s Theorem
to prove that B has the required 1-to-k assignment. Namely, we will show that, with
positive probability, |N(Y )| ≥ k|Y | for each Y ⊆ X. (Hall’s Theorem is simply the case
k = 1.) To guarantee this condition, it suffices to prove that, with positive probability,
each vertex of X has degree greater than (k−1/2)t in B and each vertex of W has degree
greater than t/2 in B. Because, if |Y | ≤ t/2, then |N(Y )| ≥ (k− 1

2
)t ≥ k|Y |; if |Y | > t/2,

then that each vertex of W has degree greater than t/2 in B implies that N(Y ) = W , so
|N(Y )| ≥ k|Y |.

We first prove that each vertex of X has degree greater than (k−1/2)t in B. Consider
S(j) ∈ X. Let C(j) be the set of all colors appearing in S(j). As S(j) is a Ts,r(kh; k(p−1))
we have that |C(j)| < |E(Ts,r(kh, kh))| =

(

r

s

)

(kh)s. For each vertex x of S(j), let Wx ⊂ W
be the set of vertices w ∈ W such that there exists an edge in T incident to both x and
w with color in C(j). Obviously, |Wx| ≤ (s − 1)|C(j)| since T is s-uniform and no color
appears more than once in edges incident with x for the coloring is proper. Let W (j) be
the union of all Wx taken over all vertices of S(j). Then, |W (j)| < (khr)(s−1)

(

r

s

)

(kh)s ≤
1
s
(khr)s+1. Because each v ∈ W \ W (j) is a neighbor of S(j) in B, thus, if we take
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t ≥ (khr)s+1, we have that each S(j) has more than (k − 1/2)t neighbors in B.
Now we prove the second part: each vertex of W has degree greater than t/2 in B. Fix

some w ∈ W and let dB(w) denote the degree of w in B. As dB(w) is a random variable,
and since |W | = kt, it suffices to prove that Pr{dB(w) ≤ t/2} < 1/kt which implies that
Pr{∃w : dB(w) ≤ t/2} < 1. To simplify notation we let li be the size of the i’th vertex
class of each S(j). Thus li = kh for i = 1, . . . , r−1 and lr = k(p−1). Recall that the i’th
vertex class of S(j) is formed by taking the j’th block of a random partition of Vi into
t blocks of equal size li. Alternatively, one can view the i’th vertex class of S(j) as the
elements li(j − 1) + 1, . . . , lij of a random permutation of Vi for i = 1, . . . , r. Therefore,
Let πi be a random permutation of Vi. Thus, for i = 1, . . . , r, πi(l) ∈ Vi for l = 1, . . . , lit.
We define the a’th vertex of i’th vertex class of S(j) to be πi(li(j − 1)+a) for i = 1, . . . , r
and a = 1, . . . , li.

We define the following events. For 2s − 1 vertex classes Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1

with 1 ≤ α1 < α2 < · · · < αs ≤ r and 1 ≤ β1 < β2 < · · · < βs−1 ≤ r − 1 for a block S(j)
where 1 ≤ j ≤ t, and positive indices aαi

≤ lαi
, bβi

≤ lβi
, let xj,αi

be the aαi
’th vertex of

vertex class Vαi
in S(j) (1 ≤ i ≤ s), let yj,βk

be the bβk
’th vertex of vertex class Vβk

in S(j)
(1 ≤ k ≤ s−1). Denote by A(Vα1 , . . . , Vαs

, Vβ1, . . . , Vβs−1, j, aα1 , . . . , aαs
, bβ1, . . . , bβs−1) the

event that c(xj,αi
, . . . , xj,αs

) = c(yj,β1, . . . , yj,βs−1, w). We now prove the following claim.

Claim 1 If dB(w) ≤ t/2 then there exist Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs

, bβ1 , . . . ,
bβs−1 and there exists J ⊂ {1, 2, . . . , t} with |J | > t/(khr)2s−1 such that for each j ∈ J
the event A(Vα1 , . . . , Vαs

, Vβ1, . . . , Vβs−1, j, aα1 , . . . , aαs
, bβ1 , . . . , bβs−1) holds.

Proof of Claim 1. If dB(w) ≤ t/2 then there exists J ′ ⊂ {1, 2, . . . , t} with |J ′| > t/2
such that for each j ∈ J ′ some event A(. . . , j, . . . ) holds. There are

(

r

s

)

choices for

Vα1 , . . . , Vαs
,
(

r−1
s−1

)

choices for Vβ1, . . . , Vβs−1, and at most kh choices for each of aαi
, bβi

.
Hence there exist Vα1 , . . . , Vαs

, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs
, bβ1 , . . . , bβs−1 and some J ⊂ J ′

with

|J | ≥
|J ′|

(

r

s

)(

r−1
s−1

)

(kh)2s−1
>

t

(khr)2s−1
,

such that for each j ∈ J the event

A(Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, j, aα1 , . . . , aαs

, bβ1 , . . . , bβs−1)

holds. So we complete the proof of Claim 1.
For each subset J ⊂ {1, 2, . . . , t} of cardinality |J | = dt/(khr)2s−1e, let

A(J, Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs

, bβ1 , . . . , bβs−1)

= ∩j∈JA(Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, j, aα1 , . . . , aαs

, bβ1 , . . . , bβs−1).

Claim 2 If the probability of each of the events

A(J, Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs

, bβ1, . . . , bβs−1)

is smaller than k−2sh−2s+1r−2s+12−tt−1 for each subset J ⊂ {1, 2, . . . , t} of cardinality

|J | = dt/(khr)2s−1e, then Pr{dB(v) ≤ t/2} < 1/kt.
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Proof of Claim 2. From Claim 1 and the fact that there are less than 2t possible choices
for J and less than (khr)2s−1 possible choices for Vα1 , . . . , Vαs

, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs
,

bβ1 , . . . , bβs−1 where aαi
≤ lαi

(1 ≤ i ≤ s) and bβi
≤ lβi

(1 ≤ i ≤ s − 1), we have

Pr{dB(v) ≤ t/2} ≤
∑

J

Pr
{

A(J, Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs

, bβ1, . . . , bβs−1)
}

< 2t(khr)2s−1k−2sh−2s+1r−2s+12−tt−1 = 1/kt,

where the sum is taken over all the events

A(J, Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs

, bβ1 , . . . , bβs−1)

with J ⊂ {1, 2, . . . , t} of cardinality dt/(khr)2s−1e.
By Claim 2, in order to complete the proof of Theorem 1 it suffices to prove the

following claim.

Claim 3 Let 1 ≤ α1 < α2 < · · · < αs ≤ r, 1 ≤ β1 < β2 < · · · < βs−1 ≤ r − 1,
aαi

≤ lαi
(1 ≤ i ≤ s) and bβi

≤ lβi
(1 ≤ i ≤ s − 1). If J ⊂ {1, 2, . . . , t} of cardinality

|J | = dt/(khr)2s−1e, then

Pr
{

A(J, Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs

, bβ1 , . . . , bβs−1)
}

<
1

k2sh2s−1r2s−12tt
.

Proof of Claim 3. For convenience, let

A = A(J, Vα1 , . . . , Vαs
, Vβ1, . . . , Vβs−1, aα1 , . . . , aαs

, bβ1 , . . . , bβs−1)

and ∆ = dt/(khr)2s−1e. We may assume, without loss of generality, that J = {1, . . . , ∆}.
For j ∈ J , let xj,αi

be the aαi
’th vertex of vertex class Vαi

in S(j), let yj,αi
be the

bβi
’th vertex of vertex class Vβi

in S(j). Suppose that we are given the identity of the
(2s − 1)(j − 1) + s − 1 vertices

x1,α1 , . . . , x1,αs
, y1,α1 , . . . , y1,βs−1, . . . , xj−1,α1, . . . , xj−1,αs

, yj−1,α1, . . . , yj−1,βs−1

and yj,α1, . . . , yj,βs−1 (we assume here that all vertices are distinct otherwise Pr{A} = 0 for
our edge coloring is proper). If we can show that given this information, the probability
that c(xj,α1, . . . , xj,αs

) = c(yj,α1, . . . , yj,βs−1, w) is less than q where q only depends on
t, h, r, s, p, then, by the product formula of conditional probabilities we have Pr{A} <
q∆. Thus, assume that we are given the identity of the (2s − 1)(j − 1) + s − 1 vertices

x1,α1 , . . . , x1,αs
, y1,α1 , . . . , y1,βs−1, . . . , xj−1,α1, . . . , xj−1,αs

, yj−1,α1, . . . , yj−1,βs−1

and yj,α1, . . . , yj,βs−1. In particular, we know the color c(yj,α1, . . . , yj,βs−1, v) = c. Now we
evaluate the probability that c(xj,α1, . . . , xj,αs

) = c. For 1 ≤ i ≤ s, let

V ′

j,αi
= Vαi

\ {x1,α1 , . . . , x1,αs
, y1,α1, . . . , y1,βs−1, . . . , xj−1,α1 , . . . , xj−1,αs

,

yj−1,α1, . . . , yj−1,βs−1, yj,α1, . . . , yj,βs−1}.
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Each vertex of V ′

j,αi
has an equal chance of being xj,αi

. Thus, each edge of V ′

j,α1
×V ′

j,α1
×· · ·×

V ′

j,αs
has an equal chance of being the edge {xj,α1 , . . . , xj,αs

}. Obviously, |V ′

j,αi
| ≥ tkh−2∆.

Since our coloring is proper, the color c appears at most tkh times in V ′

j,α1
×V ′

j,α1
×· · ·×V ′

j,αs
.

Hence,

Pr {c(xj,α1 , . . . , xj,αs
) = c} ≤

tkh

|V ′

j,α1
||V ′

j,α2
| · · · |V ′

j,αs
|

≤
tkh

(tkh − 2∆)s
<

tkh

(tkh − tkh/2)2
=

tkh

(tkh/2)s
.

It is not difficult to check that

(

tkh

(tkh/2)s

)
t

(khr)2s−1

<
1

k2sh2s−1r2s−12tt

holds for sufficiently large t, an integer-valued function on k, h, r, s, by taking log both
sides. It implies that for sufficiently large t, an integer-valued function on k, h, r, s, we
have

Pr{A} <

(

tkh

(tkh/2)s

)∆

≤

(

tkh

(tkh/2)s

)
t

(khr)2s−1

<
1

k2sh2s−1r2s−12tt
.

This completes the proof of Claim 3.
So we have completed the induction step and the proof of Theorem 1.

References

[1] N. Alon, T. Jiang, Z. Miller and D. Pritikin, Properly colored subgraphs and rainbow
subgraphs in edge-colorings with local constraints, Random Structures Algorithms 23
(2003), 409-433.

[2] G. Chen, R. Schelp and B. Wei, Monochromatic-rainbow Ramsey numbers, presented
at 14th Cumberland Conference, Memphis, May 2001.

[3] R. E. Jamison , T. Jiang and A. C. H. Ling, Constrained Ramsey numbers of graphs,
J. Graph Theory 42 (2002), 1-16.
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