Rainbow H-factors of complete s-uniform r-partite hypergraphs *

Ailian Chen

School of Mathematical Sciences Xiamen University, Xiamen, Fujian361005, P. R. China elian1425@sina.com

Fuji Zhang

School of Mathematical Sciences
Xiamen University, Xiamen, Fujian361005, P. R. China
fjzhang@xmu.edu.cn

Hao Li

Laboratoire de Recherche en Informatique UMR 8623, C. N. R. S. -Université de Paris-sud, 91405-Orsay Cedex, France li@lri.fr

Submitted: Jan 19, 2008; Accepted: Jul 2, 2008; Published: Jul 14, 2008 Mathematics Subject Classifications: 05C35, 05C70, 05C15

Abstract

We say a s-uniform r-partite hypergraph is complete, if it has a vertex partition $\{V_1, V_2, \ldots, V_r\}$ of r classes and its hyperedge set consists of all the s-subsets of its vertex set which have at most one vertex in each vertex class. We denote the complete s-uniform r-partite hypergraph with k vertices in each vertex class by $\mathcal{T}_{s,r}(k)$. In this paper we prove that if h, r and s are positive integers with $2 \le s \le r \le h$ then there exists a constant k = k(h,r,s) so that if H is an s-uniform hypergraph with h vertices and chromatic number $\chi(H) = r$ then any proper edge coloring of $\mathcal{T}_{s,r}(k)$ has a rainbow H-factor.

Keywords: *H*-factors, Rainbow, uniform hypergraphs.

1 Introduction

A hypergraph is a pair (V, E) where V is a set of elements, called vertices, and E is a set of non-empty subsets of V called hyperedges or edges. A hypergraph H is called

^{*}The work was partially supported by NSFC grant (10671162) and NNSF of china (60373012).

s-uniform or an s-hypergraph if every edge has cardinality s. A graph is just a 2-uniform hypergraph. We say a hypergraph is r-partite if it has a vertex partition $\{V_1, V_2, \ldots, V_r\}$ of r classes such that each hyperedge has at most one vertex in each vertex class, and a s-uniform r-partite hypergraph is complete, if it has a vertex partition $\{V_1, V_2, \ldots, V_r\}$ of r classes and its hyperedge set consists of all the s-subsets of its vertex set which have at most one vertex in each vertex class. We denote the complete s-uniform r-partite hypergraph with k vertices in each vertex class by $\mathcal{T}_{s,r}(k)$.

If H is a hypergraph with h vertices and G is hypergraph with hn vertices, we say that G has an H-factor if it contains n vertex disjoint copies of H. For example, a K_2 -factor of a graph is simply a perfect matching. We say an edge coloring of a hypergraph is proper if any two edges sharing a vertex receive distinct colors. We say a subhypergraph of an edge-colored hypergraph is rainbow if all of its edges have distinct colors, and a rainbow H-factor is an H-factor whose components are rainbow H-subhypergraphs.

Many graph theoretic parameters have corresponding rainbow variants. Erdős and Rado[4] were among the first to consider the problems of this type. For graphs, Jamison, Jiang and Ling[3], and Chen, Schelp and Wei[2] considered Ramsey type variants where an arbitrary number of colors can be used; Alon et. al.[1] studied the function f(H) which is the minimum integer n such that any proper edge coloring of K_n has a rainbow copy of H; and Keevash et. al.[5] considered the rainbow Turán number $ex^*(n; H)$ which is the largest integer m such that there exists a properly edge-colored graph with n vertices and m edges but containing no rainbow copy of H. Recently, Yuster[6] proved that for every fixed graph H with h vertices and chromatic number $\chi(H)$, there exists a constant K = K(H) such that every proper edge coloring of a graph with hn vertices and with minimum degree at least $hn(1 - 1/\chi(H)) + K$ has a rainbow H-factor.

For hypergraphs, El-Zanati et al[7] discussed the existence of a rainbow 1-factor in 1-factorizations of r-uniform hypergraph; in[8], Bollobás et al considered the edge colorings with local restriction of the complete r-uniform hypergraphs. In this paper, we discuss the rainbow H-factor in hypergraphs and extend the main result in [6] to uniform hypergraphs. The main idea of our proof also comes from [6], although the details are more complex. The main result in this paper is:

Theorem 1 If h, r and s are positive integers with $2 \le s \le r \le h$ then there exists a constant k = k(h, r, s) so that if H is an s-uniform hypergraph with h vertices and chromatic number $\chi(H) = r$ then any proper edge coloring of $\mathcal{T}_{s,r}(k)$ has a rainbow H-factor.

2 Proof of Theorem 1

Let H be a s-uniform hypergraph with h vertices and $\chi(H) = r$. It is not difficult to check that $\mathcal{T}_{s,r}(h)$ has an H-factor for $\mathcal{T}_{s,r}(h)$ and H have the same chromatic number. So it suffices to show that there exists k = k(h, r, s) such that any proper edge-colored $\mathcal{T}_{s,r}(k)$ has a rainbow $\mathcal{T}_{s,r}(h)$ -factor. We shall prove a slightly stronger statement. For $0 , Let <math>\mathcal{T}_{s,r}(h, p)$ be the complete s-uniform r-partite hypergraph with h vertices in each

vertex class, except the last vertex class which has only p vertices. Define $\mathcal{T}_{s,r}(h;0) = \mathcal{T}_{s,r-1}(h;h)$. We prove that there exists k = k(h,r,s,p) such that any proper edge-colored $\mathcal{T}_{s,r}(kh;kp)$ has a rainbow $\mathcal{T}_{s,r}(h;p)$ - factor.

Let h be fixed, we prove the result by induction on r, and for each r, by induction on $p \geq 1$. The base case r = s and p = 1 is trivial since every subhypergraph of a proper edge-colored hypergraph $\mathcal{T}_{s,s}(h;1)$ is rainbow. Given $r \geq s$, assuming the result holds for r and $p-1 \geq 1$, we prove it for r and p (if p=1 then p-1=0 so we use the induction on $\mathcal{T}_{s,r-1}(h;h)$). Let k=k(h,r,s,p-1) and let t be sufficiently large (t will be chosen later). Consider a proper edge-coloring of $\mathcal{T} = \mathcal{T}_{s,r}(kth;ktp)$. We let $c(x_1, x_2, \ldots, x_s)$ denote the color of the edge $\{x_1, x_2, \ldots, x_s\}$. Denote the first r-1 vertex classes of \mathcal{T} by V_1, \ldots, V_{r-1} and the last vertex class by U_r . Let V_r be an arbitrary subset of size k(p-1)t and $W=U_r\setminus V_r$ the remaining set with |W|=kt. For $i=1,\ldots,r$, we randomly partition V_i into t subsets $V_i(1), \ldots, V_i(t)$, each of the same size. Each of the r random partitions is performed independently, and each partition is equally likely. Let S(j) be the subhypergraph of \mathcal{T} induced by $V_1(j) \cup V_2(j) \cup \cdots \cup V_r(j)$, for $j = 1, \ldots, t$. Notice that S(j) is a properly edge-colored $\mathcal{T}_{s,r}(kh;k(p-1))$ and hence, by the induction hypothesis S(j) has a rainbow $\mathcal{T}_{s,r}(h;p-1)$ -factor. Let $B=(X\cup W;F)$ be a bipartite graph where $X = \{S(j) : j = 1, ..., t\}$ and there exists an edge $(S(j), w) \in F$ if for all $1 \leq i_1 < i_2 < \cdots < i_{s-1} \leq r$ and for all $x_{i_k} \in V_{i_k}(j)$ $(k = 1, 2, \ldots, s-1)$, the color $c(x_{i_1}, x_{i_2}, \dots, x_{i_{s-1}}, w)$ does not appear at all in S(j).

If we can show that, with positive probability, B has a 1-to-k assignment in which each $S(j) \in X$ is assigned to precisely k elements of W and each $w \in W$ is assigned to a unique S(j) then we can show that \mathcal{T} has a rainbow $\mathcal{T}_{s,r}(h;p)$ -factor. Indeed, consider S(j) and the unique set X_j of k elements of W that are matched to S(j). Since S(j) has a rainbow $\mathcal{T}_{s,r}(h;p-1)$ -factor, we can arbitrarily assign a unique element of X_j to each element of this factor and obtain a $\mathcal{T}_{s,r}(h;p)$ which is also rainbow because all the edges of this $\mathcal{T}_{s,r}(h;p)$ incident with the assigned vertex have colors that do not appear at all in other edges of this $\mathcal{T}_{s,r}(h;p)$. Now we use the 1-to-k extension of Hall's Theorem to prove that B has the required 1-to-k assignment. Namely, we will show that, with positive probability, $|N(Y)| \geq k|Y|$ for each $Y \subseteq X$. (Hall's Theorem is simply the case k = 1.) To guarantee this condition, it suffices to prove that, with positive probability, each vertex of X has degree greater than (k-1/2)t in B and each vertex of W has degree greater than t/2 in B. Because, if $|Y| \leq t/2$, then $|N(Y)| \geq (k-\frac{1}{2})t \geq k|Y|$; if |Y| > t/2, then that each vertex of W has degree greater than t/2 in B implies that N(Y) = W, so $|N(Y)| \geq k|Y|$.

We first prove that each vertex of X has degree greater than (k-1/2)t in B. Consider $S(j) \in X$. Let C(j) be the set of all colors appearing in S(j). As S(j) is a $\mathcal{T}_{s,r}(kh;k(p-1))$ we have that $|C(j)| < |E(\mathcal{T}_{s,r}(kh,kh))| = {r \choose s}(kh)^s$. For each vertex x of S(j), let $W_x \subset W$ be the set of vertices $w \in W$ such that there exists an edge in \mathcal{T} incident to both x and w with color in C(j). Obviously, $|W_x| \leq (s-1)|C(j)|$ since \mathcal{T} is s-uniform and no color appears more than once in edges incident with x for the coloring is proper. Let W(j) be the union of all W_x taken over all vertices of S(j). Then, $|W(j)| < (khr)(s-1){r \choose s}(kh)^s \leq \frac{1}{s}(khr)^{s+1}$. Because each $v \in W \setminus W(j)$ is a neighbor of S(j) in B, thus, if we take

 $t \geq (khr)^{s+1}$, we have that each S(j) has more than (k-1/2)t neighbors in B.

Now we prove the second part: each vertex of W has degree greater than t/2 in B. Fix some $w \in W$ and let $d_B(w)$ denote the degree of w in B. As $d_B(w)$ is a random variable, and since |W| = kt, it suffices to prove that $Pr\{d_B(w) \le t/2\} < 1/kt$ which implies that $Pr\{\exists w : d_B(w) \le t/2\} < 1$. To simplify notation we let l_i be the size of the i'th vertex class of each S(j). Thus $l_i = kh$ for $i = 1, \ldots, r-1$ and $l_r = k(p-1)$. Recall that the i'th vertex class of S(j) is formed by taking the j'th block of a random partition of V_i into t blocks of equal size l_i . Alternatively, one can view the i'th vertex class of S(j) as the elements $l_i(j-1)+1,\ldots,l_ij$ of a random permutation of V_i for $i=1,\ldots,r$. Therefore, Let π_i be a random permutation of V_i . Thus, for $i=1,\ldots,r$, $\pi_i(l) \in V_i$ for $l=1,\ldots,l_it$. We define the a'th vertex of i'th vertex class of S(j) to be $\pi_i(l_i(j-1)+a)$ for $i=1,\ldots,r$ and $a=1,\ldots,l_i$.

We define the following events. For 2s-1 vertex classes $V_{\alpha_1}, \ldots, V_{\alpha_s}, V_{\beta_1}, \ldots, V_{\beta_{s-1}}$ with $1 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_s \leq r$ and $1 \leq \beta_1 < \beta_2 < \cdots < \beta_{s-1} \leq r-1$ for a block S(j) where $1 \leq j \leq t$, and positive indices $a_{\alpha_i} \leq l_{\alpha_i}, b_{\beta_i} \leq l_{\beta_i}$, let x_{j,α_i} be the a_{α_i} 'th vertex of vertex class V_{α_i} in S(j) $(1 \leq i \leq s)$, let y_{j,β_k} be the b_{β_k} 'th vertex of vertex class V_{β_k} in S(j) $(1 \leq k \leq s-1)$. Denote by $A(V_{\alpha_1}, \ldots, V_{\alpha_s}, V_{\beta_1}, \ldots, V_{\beta_{s-1}}, j, a_{\alpha_1}, \ldots, a_{\alpha_s}, b_{\beta_1}, \ldots, b_{\beta_{s-1}})$ the event that $c(x_{j,\alpha_i}, \ldots, x_{j,\alpha_s}) = c(y_{j,\beta_1}, \ldots, y_{j,\beta_{s-1}}, w)$. We now prove the following claim.

Claim 1 If $d_B(w) \leq t/2$ then there exist $V_{\alpha_1}, \ldots, V_{\alpha_s}, V_{\beta_1}, \ldots, V_{\beta_{s-1}}, a_{\alpha_1}, \ldots, a_{\alpha_s}, b_{\beta_1}, \ldots, b_{\beta_{s-1}}$ and there exists $J \subset \{1, 2, \ldots, t\}$ with $|J| > t/(khr)^{2s-1}$ such that for each $j \in J$ the event $A(V_{\alpha_1}, \ldots, V_{\alpha_s}, V_{\beta_1}, \ldots, V_{\beta_{s-1}}, j, a_{\alpha_1}, \ldots, a_{\alpha_s}, b_{\beta_1}, \ldots, b_{\beta_{s-1}})$ holds.

Proof of Claim 1. If $d_B(w) \leq t/2$ then there exists $J' \subset \{1, 2, ..., t\}$ with |J'| > t/2 such that for each $j \in J'$ some event $A(\ldots, j, \ldots)$ holds. There are $\binom{r}{s}$ choices for $V_{\alpha_1}, \ldots, V_{\alpha_s}, \binom{r-1}{s-1}$ choices for $V_{\beta_1}, \ldots, V_{\beta_{s-1}}$, and at most kh choices for each of $a_{\alpha_i}, b_{\beta_i}$. Hence there exist $V_{\alpha_1}, \ldots, V_{\alpha_s}, V_{\beta_1}, \ldots, V_{\beta_{s-1}}, a_{\alpha_1}, \ldots, a_{\alpha_s}, b_{\beta_1}, \ldots, b_{\beta_{s-1}}$ and some $J \subset J'$ with

$$|J| \ge \frac{|J'|}{\binom{r}{s}\binom{r-1}{s-1}(kh)^{2s-1}} > \frac{t}{(khr)^{2s-1}},$$

such that for each $j \in J$ the event

$$A(V_{\alpha_1},\ldots,V_{\alpha_s},\ V_{\beta_1},\ldots,V_{\beta_{s-1}},\ j,\ a_{\alpha_1},\ldots,a_{\alpha_s},\ b_{\beta_1},\ldots,b_{\beta_{s-1}})$$

holds. So we complete the proof of Claim 1.

For each subset $J \subset \{1, 2, ..., t\}$ of cardinality $|J| = \lceil t/(khr)^{2s-1} \rceil$, let

$$A(J, V_{\alpha_1}, \dots, V_{\alpha_s}, V_{\beta_1}, \dots, V_{\beta_{s-1}}, a_{\alpha_1}, \dots, a_{\alpha_s}, b_{\beta_1}, \dots, b_{\beta_{s-1}})$$

$$= \bigcap_{j \in J} A(V_{\alpha_1}, \dots, V_{\alpha_s}, V_{\beta_1}, \dots, V_{\beta_{s-1}}, j, a_{\alpha_1}, \dots, a_{\alpha_s}, b_{\beta_1}, \dots, b_{\beta_{s-1}}).$$

Claim 2 If the probability of each of the events

$$A(J, V_{\alpha_1}, \dots, V_{\alpha_s}, V_{\beta_1}, \dots, V_{\beta_{s-1}}, a_{\alpha_1}, \dots, a_{\alpha_s}, b_{\beta_1}, \dots, b_{\beta_{s-1}})$$

is smaller than $k^{-2s}h^{-2s+1}r^{-2s+1}2^{-t}t^{-1}$ for each subset $J \subset \{1, 2, ..., t\}$ of cardinality $|J| = \lceil t/(khr)^{2s-1} \rceil$, then $Pr\{d_B(v) \le t/2\} < 1/kt$.

Proof of Claim 2. From Claim 1 and the fact that there are less than 2^t possible choices for J and less than $(khr)^{2s-1}$ possible choices for $V_{\alpha_1}, \ldots, V_{\alpha_s}, V_{\beta_1}, \ldots, V_{\beta_{s-1}}, a_{\alpha_1}, \ldots, a_{\alpha_s}, b_{\beta_1}, \ldots, b_{\beta_{s-1}}$ where $a_{\alpha_i} \leq l_{\alpha_i}$ $(1 \leq i \leq s)$ and $b_{\beta_i} \leq l_{\beta_i}$ $(1 \leq i \leq s-1)$, we have

$$Pr\{d_B(v) \le t/2\} \le \sum_{J} Pr\{A(J, V_{\alpha_1}, \dots, V_{\alpha_s}, V_{\beta_1}, \dots, V_{\beta_{s-1}}, a_{\alpha_1}, \dots, a_{\alpha_s}, b_{\beta_1}, \dots, b_{\beta_{s-1}})\}$$

$$< 2^t (khr)^{2s-1} k^{-2s} h^{-2s+1} r^{-2s+1} 2^{-t} t^{-1} = 1/kt,$$

where the sum is taken over all the events

$$A(J, V_{\alpha_1}, \dots, V_{\alpha_s}, V_{\beta_1}, \dots, V_{\beta_{s-1}}, a_{\alpha_1}, \dots, a_{\alpha_s}, b_{\beta_1}, \dots, b_{\beta_{s-1}})$$

with $J \subset \{1, 2, ..., t\}$ of cardinality $\lceil t/(khr)^{2s-1} \rceil$.

By Claim 2, in order to complete the proof of Theorem 1 it suffices to prove the following claim.

Claim 3 Let $1 \le \alpha_1 < \alpha_2 < \dots < \alpha_s \le r$, $1 \le \beta_1 < \beta_2 < \dots < \beta_{s-1} \le r-1$, $a_{\alpha_i} \le l_{\alpha_i} \ (1 \le i \le s)$ and $b_{\beta_i} \le l_{\beta_i} \ (1 \le i \le s-1)$. If $J \subset \{1, 2, \dots, t\}$ of cardinality $|J| = \lceil t/(khr)^{2s-1} \rceil$, then

$$Pr\left\{A(J, V_{\alpha_1}, \dots, V_{\alpha_s}, V_{\beta_1}, \dots, V_{\beta_{s-1}}, a_{\alpha_1}, \dots, a_{\alpha_s}, b_{\beta_1}, \dots, b_{\beta_{s-1}})\right\} < \frac{1}{k^{2s}h^{2s-1}r^{2s-1}2^{t}t}.$$

Proof of Claim 3. For convenience, let

$$A = A(J, V_{\alpha_1}, \dots, V_{\alpha_s}, V_{\beta_1}, \dots, V_{\beta_{s-1}}, a_{\alpha_1}, \dots, a_{\alpha_s}, b_{\beta_1}, \dots, b_{\beta_{s-1}})$$

and $\Delta = \lceil t/(khr)^{2s-1} \rceil$. We may assume, without loss of generality, that $J = \{1, \ldots, \Delta\}$. For $j \in J$, let x_{j,α_i} be the a_{α_i} 'th vertex of vertex class V_{α_i} in S(j), let y_{j,α_i} be the b_{β_i} 'th vertex of vertex class V_{β_i} in S(j). Suppose that we are given the identity of the (2s-1)(j-1)+s-1 vertices

$$x_{1,\alpha_1},\ldots,x_{1,\alpha_s},\ y_{1,\alpha_1},\ldots,y_{1,\beta_{s-1}},\ldots,x_{j-1,\alpha_1},\ldots,x_{j-1,\alpha_s},\ y_{j-1,\alpha_1},\ldots,y_{j-1,\beta_{s-1}}$$

and $y_{j,\alpha_1}, \ldots, y_{j,\beta_{s-1}}$ (we assume here that all vertices are distinct otherwise $Pr\{A\} = 0$ for our edge coloring is proper). If we can show that given this information, the probability that $c(x_{j,\alpha_1}, \ldots, x_{j,\alpha_s}) = c(y_{j,\alpha_1}, \ldots, y_{j,\beta_{s-1}}, w)$ is less than q where q only depends on t, h, r, s, p, then, by the product formula of conditional probabilities we have $Pr\{A\} < q^{\Delta}$. Thus, assume that we are given the identity of the (2s-1)(j-1) + s - 1 vertices

$$x_{1,\alpha_1},\ldots,x_{1,\alpha_s},\ y_{1,\alpha_1},\ldots,y_{1,\beta_{s-1}},\ldots,x_{j-1,\alpha_1},\ldots,x_{j-1,\alpha_s},\ y_{j-1,\alpha_1},\ldots,y_{j-1,\beta_{s-1}}$$

and $y_{j,\alpha_1}, \ldots, y_{j,\beta_{s-1}}$. In particular, we know the color $c(y_{j,\alpha_1}, \ldots, y_{j,\beta_{s-1}}, v) = c$. Now we evaluate the probability that $c(x_{j,\alpha_1}, \ldots, x_{j,\alpha_s}) = c$. For $1 \le i \le s$, let

$$V'_{j,\alpha_i} = V_{\alpha_i} \setminus \{x_{1,\alpha_1}, \dots, x_{1,\alpha_s}, y_{1,\alpha_1}, \dots, y_{1,\beta_{s-1}}, \dots, x_{j-1,\alpha_1}, \dots, x_{j-1,\alpha_s}, y_{j-1,\alpha_1}, \dots, y_{j-1,\beta_{s-1}}, y_{j,\alpha_1}, \dots, y_{j,\beta_{s-1}}\}.$$

Each vertex of V'_{j,α_i} has an equal chance of being x_{j,α_i} . Thus, each edge of $V'_{j,\alpha_1} \times V'_{j,\alpha_1} \times \cdots \times V'_{j,\alpha_s}$ has an equal chance of being the edge $\{x_{j,\alpha_1},\ldots,x_{j,\alpha_s}\}$. Obviously, $|V'_{j,\alpha_i}| \geq tkh-2\Delta$. Since our coloring is proper, the color c appears at most tkh times in $V'_{j,\alpha_1} \times V'_{j,\alpha_1} \times \cdots \times V'_{j,\alpha_s}$. Hence,

$$Pr\left\{c(x_{j,\alpha_1},\dots,x_{j,\alpha_s})=c\right\} \le \frac{tkh}{|V'_{j,\alpha_1}||V'_{j,\alpha_2}|\dots|V'_{j,\alpha_s}|}$$
$$\le \frac{tkh}{(tkh-2\Delta)^s} < \frac{tkh}{(tkh-tkh/2)^2} = \frac{tkh}{(tkh/2)^s}.$$

It is not difficult to check that

$$\left(\frac{tkh}{(tkh/2)^s}\right)^{\frac{t}{(khr)^{2s-1}}} < \frac{1}{k^{2s}h^{2s-1}r^{2s-1}2^tt}$$

holds for sufficiently large t, an integer-valued function on k, h, r, s, by taking log both sides. It implies that for sufficiently large t, an integer-valued function on k, h, r, s, we have

$$Pr\{A\} < \left(\frac{tkh}{(tkh/2)^s}\right)^{\Delta} \le \left(\frac{tkh}{(tkh/2)^s}\right)^{\frac{t}{(khr)^{2s-1}}} < \frac{1}{k^{2s}h^{2s-1}r^{2s-1}2^tt}.$$

This completes the proof of Claim 3.

So we have completed the induction step and the proof of Theorem 1.

References

- [1] N. Alon, T. Jiang, Z. Miller and D. Pritikin, Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints, Random Structures Algorithms 23 (2003), 409-433.
- [2] G. Chen, R. Schelp and B. Wei, Monochromatic-rainbow Ramsey numbers, presented at 14th Cumberland Conference, Memphis, May 2001.
- [3] R. E. Jamison, T. Jiang and A. C. H. Ling, Constrained Ramsey numbers of graphs, J. Graph Theory 42 (2002), 1-16.
- [4] Erdős and R. Rado, A combinatorial theorem, J. London Math. Soc. 25 (1950), 249-255.
- [5] P. Keevash, D. Mubayi, B. Sudakov and J. Verstraëte, Rainbow Turán Problems, Combin., Probab. Comput. 16 (2007), 109-126.
- [6] R. Yuster, Rainbow H-factors, Electron. J. Combin. 13 (2006), R13.
- [7] S. I. El-Zanati, M. J. Plantholt, P. A. Sissokho and L. E. Spence, On the existence of a rainbow 1-factor in 1-factorizations of $K_{rn}^{(r)}$, J. Combin. Des. 15 (2007), 487-490.
- [8] B. Bollobás, Y. Kohayakawa, V. Rödl, M. Schacht and A. Taraz, Essentially infinite colourings of hypergraph, Proc. London Math. Soc. 95 (2007), 709-734.