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Abstract

If Tn(x, y) is the Tutte polynomial of the complete graph Kn, we have the equal-
ity Tn+1(1, 0) = Tn(2, 0). This has an almost trivial proof with the right combinato-
rial interpretation of Tn(1, 0) and Tn(2, 0). We present an algebraic proof of a result
with the same flavour as the latter: Tn+2(1,−1) = Tn(2,−1), where Tn(1,−1) has
the combinatorial interpretation of being the number of 0–1–2 increasing trees on
n vertices.

1 Introduction

Given a graph G = (V, E), we define the rank function of G, r : P(E) → Z as r(A) =
|V | − k(A) for A ⊆ E, where k(A) is the number of connected components in the graph
(V, A). The 2-variable graph polynomial T (G; x, y), known as the Tutte polynomial of G,
is defined as

T (G; x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A). (1)

The Tutte polynomial of G has many interesting combinatorial interpretations when
evaluated on different points (x, y) and along several algebraic curves. One that is par-
ticularly interesting is along the line x = 1 which can be interpreted as the generating
function of critical configuration of the sandpile model, see [8], or as the generating func-
tion of the G-parking functions, see [9]. When the graph G is the complete graph on
n vertices, Kn, the latter is the classical generating function of parking functions or the
inversion enumerator of labelled trees on n vertices, see [10].

In the following section we prove the main theorem of the paper:
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Theorem 1. T (Kn; 2,−1) = T (Kn+2; 1,−1).

The last section shows how this result is related to the number of 0-1-2 increasing
trees on n vertices.

2 T (Kn; 2,−1) and T (Kn+2; 1,−1)

Let us assume that the vertices of Kn are labelled 1, 2, . . . , n. For a spanning tree A of
Kn, an inversion in A is a pair of vertices labelled i,j such that i > j and i is on the
unique path from 1 to j in A. Let invA be the number of inversions in A. The inversion

enumerator Jn(y) is then defined as the generating function of spanning trees arranged
by number of inversions, that is,

Jn(y) =
∑

A

yinvA ,

where the sum is taken over all spanning trees of Kn. Now, from [10], we obtain the
exponential generating function of the inversion enumerators,

∑

n≥0

Jn+1(y)(y − 1)n tn

n!
=

∑

n≥0 y(n+1

2 ) tn

n!
∑

n≥0 y(n

2) tn

n!

. (2)

Note that our notation differs from [10], as Stanley uses In(y) for Jn+1(y).
Let Tn(x, y) be the Tutte polynomial of Kn. Welsh in [11] gives the following expo-

nential generating function for Tn(x, y)

1 + (x − 1)
∑

n≥1

(y − 1)nTn(x, y)
tn

n!
=

(

∑

n≥0

y(n

2) tn

n!

)(x−1)(y−1)

(3)

With these two general results it is easy to prove the following:

Theorem 2. For n ≥ 0, Jn+2(−1) = Tn(2,−1).

Proof. By taking y = −1 in Equation (2) we get

∑

n≥0

Jn+1(−1)(−2)n tn

n!
=

∑

n≥0 (−1)(
n+1

2 ) tn

n!
∑

n≥0 (−1)(
n

2) tn

n!

=
F (t)

H(t)
.

Clearly, F (t) = H ′(t), where H ′(t) is the derivative of H(t). Then, by integrating both
sides of the previous expression and multiplying through by -2 we arrive at the equality

∑

n≥1

Jn(−1)(−2)n tn

n!
= (−2) ln |H(t)|.
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The function H(t) is the exponential generating function of the sequence 1, 1, -1, -1,
1, 1, -1, -1,. . ., so H(t) = cos(t) + sin(t). Substituting this value on the above identity we
obtain

∑

n≥1

Jn(−1)(−2)n tn

n!
= (−2) ln | cos(t) + sin(t)|. (4)

Now, by differentiating twice both sides of equation (4) we conclude that

∑

n≥0

Jn+2(−1)(−2)n tn

n!
=

1

(cos(t) + sin(t))2
. (5)

Taking x = 2 and y = −1 in Equation (3), we get the following identities

1 +
∑

n≥1

(−2)nTn(2,−1)
tn

n!
=

(

∑

n≥0

(−1)(
n

2) tn

n!

)−2

=
1

(cos(t) + sin(t))2
. (6)

Therefore, from Equations (5) and (6),

1 +
∑

n≥1

Tn(2,−1)
(−2)ntn

n!
=
∑

n≥0

Jn+2(−1)
(−2)ntn

n!
.

As T0(2,−1) = 1, we obtain the result by equating the corresponding coefficients.

It is known that Tn(1, y) = Jn(y), see [7]. Thus, Theorem 1 follows by the previous
result.

A permutation σ ∈ Sn is an up-down permutation if σ(1) < σ(2) > σ(3) < . . .. Let an

be the number of up-down permutation in Sn for n ≥ 1 and set a0 = 1. The sequence an

has a nice exponential generating function, namely

∑

n≥0

an

tn

n!
= tan(t) + sec(t) .

The result is originally from [1] but a proof may also be found in [7]. The fact that
the value Jn+1(−1) equals an is mentioned in [6] but a proof of this together with other
evaluations of Jn(x) is given in [7]. As a corollary we obtain

Corollary 3. For n ≥ 0, Tn(2,−1) = an+1 and

∑

n≥0

Tn(2,−1)
tn

n!
= sec(t)(tan(t) + sec(t)).
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3 The Tutte polynomial and increasing trees

A spanning tree in Kn with root at 1 is said to be increasing whenever its vertices increase
along the paths away from the root. A 0–1–2 increasing tree is an increasing tree where all
the vertices have at most 2 edges going out. A remarkable result stated in [4] and proved
in [5] (see also a bijective proof in [3]) is that an equals the number of 0–1–2 increasing
trees on n vertices. By using Corollary 3 we get

Corollary 4. Tn(2,−1) equals the number of 0–1–2 increasing trees on n + 1 vertices.

Thus, the number of 0–1–2 increasing trees on n vertices corresponds two different eval-
uations of the Tutte polynomial of a complete graph, that is Tn−1(2,−1) and Tn+1(1,−1).

A similar situation occur for the number of permutations on n letters. The quantity
T (G; 2, 0) equals the number of acyclic orientations of G while T (G; 1, 0) equals the num-
ber of acyclic orientations of G with a unique predefined source, see [2]. If we use this
combinatorial interpretation with Kn, clearly we get that Tn+1(1, 0) = Tn(2, 0). In fact, it
is easy to find the exact values, Tn(2, 0) = n! and Tn(1, 0) = n − 1!. That is, the number
of permutations on n letters occurs as two different evaluations of the Tutte polynomial
of a complete graph, Tn(2, 0) and Tn+1(1, 0).

Increasing spanning trees correspond to spanning trees with no inversions. Thus,
Jn(0) = Tn(1, 0) equals the number of increasing trees in Kn. By deleting the vertex 1 in
Kn+1 we get a bijection between increasing trees in Kn+1 and increasing spanning forests
in Kn. Here a forest is increasing if it is increasing in each component. Therefore, we get
the interpretation of Tn(2, 0) as the number of increasing spanning forests in Kn.

Using the same technique we get a bijection between 0–1–2 increasing trees on n + 1
vertices and 0–1–2 increasing forests on n vertices with at most 2 components. Thus we
get

Corollary 5. Tn(2,−1) equals the number of 0–1–2 increasing forests on n vertices with

at most 2 components.

There are several combinatorial interpretations for evaluations of T (G; x, y) when
x, y ≥ 0, and even when x, y ≤ 0 probably because of the relationship of the Tutte
polynomial with the partition function of the Potts model of statistical mechanics. But
the situation is quite different when y < 0 < x or x < 0 < y. I would like to think that
Corollary 5 is just the tip of the iceberg and that more combinatorial interpretations for
T (G; x, y) in these regions exist.
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