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Abstract

An interesting integral originally obtained by Tefera (“A multiple integral eval-
uation inspired by the multi-WZ method,” Electron. J. Combin., 1999, #N2) via
the WZ method is proved using calculus and basic probability. General recursions
for a class of such integrals are derived and associated combinatorial identities are
mentioned.

1 Background

The integral in question reads
∫

[0,∞)k

(e2(x))m(e1(x))ne−e1(x) dx =
m!(2m + n + k − 1)!(k/2)m

(2m + k − 1)!

(

2(k − 1)

k

)m

Tk(m),

(1)
where k is a positive integer, m and n are nonnegative integers, x = (x1, . . . , xk), e1(x) =
∑k

i=1 xi, e2(x) =
∑

1≤i<j≤k xixj, (y)m =
∏m−1

i=0 (y + i), and Tk(m) is defined recursively by

Tk(m) − Tk(m − 1) =
(k(k − 2))m((k − 1)/2)m

(k − 1)2m(k/2)m

Tk−1(m), m ≥ 1, k ≥ 2, (2)

and

T1(m) = 0, m ≥ 0,

Tk(0) = 1, k ≥ 2.

Note that we are using an uncommon convention 00 = 0 for the case m = n = 0, k = 1.
In [1], Tefera gave a computer-aided evaluation of (1), demonstrating the power of the

WZ [2] method. It was also mentioned that a non-WZ proof would be desirable, especially
if it is short. This note aims to provide such a proof.
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2 A short proof

This is done in two steps – the first does away with the integer n using properties of the
exponential distribution, while the second builds a recursion using integration by parts.
In this section we denote the left hand side of (1) by I(n, m, k).

Proposition 1. For n ≥ 1 we have I(n, m, k) = (2m + n + k − 1)I(n − 1, m, k).

Proof. Let Z1, . . . , Zk be independent random variables each having a standard expo-
nential distribution, i.e., the common probability density is p(z) = e−z, z > 0. Denoting
Z = (Z1, . . . , Zk) we have

I(n, m, k) = E(e2(Z))m(e1(Z))n

= E(e1(Z))2m+n

(

e2(Z)

(e1(Z))2

)m

= E(e1(Z))2m+nE

(

e2(Z)

(e1(Z))2

)m

=
(2m + n + k − 1)!

(k − 1)!
E

(

e2(Z)

(e1(Z))2

)m

where we have used two properties of the exponential distribution: (i) e1(Z) is indepen-
dent of (Z1, . . . , Zk)/e1(Z) and hence independent of e2(Z)/(e1(Z))2, and (ii) e1(Z) has
a gamma distribution Gam(k, 1) whose jth moment is (j + k − 1)!/(k − 1)!. The claim
readily follows.

Proposition 2. For k ≥ 2 and m ≥ 1 we have

I(0, m, k) = I(0, m, k − 1) +
m(k − 1)(k + 2(m − 1))

k
I(0, m − 1, k). (3)

Proof. Denote x−1 = (x2, . . . , xk). Using integration by parts and exploiting the
symmetry we obtain

I(0, m, k) =

∫ ∫

(e2(x))me−e1(x)dx1dx−1

=

∫

−e−e1(x)(e2(x))m
∣

∣

∞

x1=0
dx−1 +

∫ ∫

me−e1(x)(e2(x))m−1e1(x−1)dx1dx−1

=

∫

e−e1(x
−1)(e2(x−1))

mdx−1 +
m(k − 1)

k

∫

e−e1(x)(e2(x))m−1e1(x)dx

= I(0, m, k − 1) +
m(k − 1)

k
I(1, m − 1, k)

where the limits of integration are omitted to save space. The claim now follows by
Proposition 1.

To finish the proof of (1), we note that (i) by Proposition 1 it suffices to prove (1)
for n = 0, (ii) if we denote the right hand side of (1) by J(n, m, k), then based on (2),
after simple algebra J(0, m, k) satisfies the recursion (3) as I(0, m, k) does, and (iii) the
boundary values of I(0, m, k) and J(0, m, k) match, i.e., I(0, m, 1) = J(0, m, 1) = 0 for
m ≥ 0 and I(0, 0, k) = J(0, 0, k) = 1 for k ≥ 2. Thus I(n, m, k) ≡ J(n, m, k).
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3 General recursions

This argument applies to a general class of integrals involving elementary symmetric
functions. Specifically, let ej(x) =

∑

1≤i1<...<ij≤k xi1 . . . xij , j = 1, . . . , k, and consider the
integral

Ik(n1, . . . , nk) =

∫

[0,∞)k

e−e1(x)

k
∏

j=1

(ej(x))njdx (4)

for nj ≥ 0, 1 ≤ j ≤ k, k ≥ 1. Relation (1) corresponds to n1 = n, n2 = m and
n3 = . . . = nk = 0. The following recursions are obtained by trivial modifications in the
proofs of Propositions 1 and 2.

Proposition 3. For n1 ≥ 1 we have

Ik(n1, n2, . . . , nk) =

(

k − 1 +

k
∑

j=1

jnj

)

Ik(n1 − 1, n2, . . . , nk).

Proposition 4. For k ≥ 2 we have

Ik(0, n2, . . . , nk) =δkIk−1(0, n2, . . . , nk−1)

+ n2
k − 1

k

(

k + 2(n2 − 1) +
k
∑

j=3

jnj

)

Ik(0, n2 − 1, n3, . . . , nk)

+
k
∑

j=3

nj

k − j + 1

k
Ik(0, . . . , nj−1 + 1, nj − 1, nj+1, . . . , nk)

where δk = 1 if nk = 0 and δk = 0 if nk > 0.

Note that Ik(n1, . . . , nk) is given an arbitrary value if some nj < 0; this does not affect
the recursion in Proposition 4.

Together with the boundary condition Ik(0, . . . , 0) = 1, k ≥ 1, Propositions 3 and
4 determine Ik(n1, . . . , nk) for all k ≥ 1 and nj ≥ 0, 1 ≤ j ≤ k. It is doubtful
whether these recursions are solvable in a simpler form. At any rate, we may calcu-
late Ik(0, n2, . . . , nk), k ≥ 2, by building up a table of Il(0, m2, . . . , ml) for values of l and
mi’s that satisfy l ≤ k,

∑l

j=2 mj ≤
∑k

j=2 nj, and mk ≤ nk if l = k; this range can be
further restricted if the largest j for which nj 6= 0 is less than k. We omit the details but
include some values of I3(0, n2, n3) calculated this way in Table 1.

It is reassuring to see that Table 1 contains only integer entries. This is not obvious
from Proposition 4 but is so from (4), after expanding the product

∏k

j=1(ej(x))nj inside
the integral. Alternatively, Ik(n1, . . . , nk) is a sum of products of various moments of the
standard exponential distribution, and these moments are all integers.
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Table 1: Values of I3(0, n2, n3) for n2 + n3 ≤ 4.

n2\n3 0 1 2 3 4
0 1 1 8 216 13824
1 3 12 216 10368
2 24 252 8640
3 372 8208
4 9504

4 Associated combinatorial identities

It would be interesting to know whether there exists a direct combinatorial interpretation
of Ik(n1, . . . , nk) as defined by (4). In this direction we mention two associated binomial
sum identities.

Let Z1, Z2, . . . , be independent standard exponential random variables. For n, m ≥ 0
we have

I2(n, m) = E(Z1 + Z2)
n(Z1Z2)

m

=

n
∑

k=0

E

(

n

k

)

Zk+m
1 Zn−k+m

2

=

n
∑

k=0

(

n

k

)

(k + m)!(n − k + m)!.

On the other hand, (1) gives

I2(n, m) =
(2m + n + 1)!

(2m + 1)!
(m!)2.

Thus we obtain a familiar looking identity

(

2m + n + 1

n

)

=
n
∑

k=0

(

k + m

m

)(

n − k + m

m

)

, m, n ≥ 0. (5)

Another instance of (1) is

I3(0, m, 0) =
(2m + 1)!

3m

m
∑

k=0

3k(k!)2

(2k + 1)!
, m ≥ 0.
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We also have

I3(0, m, 0) = E(Z1Z2 + Z1Z3 + Z2Z3)
m

=
∑

0≤i, 0≤j, i+j≤m

E
m!

i!j!(m − i − j)!
(Z1Z2)

i(Z1Z3)
j(Z2Z3)

m−i−j

=
∑

0≤i, 0≤j, i+j≤m

m!(i + j)!(m − j)!(m − i)!

i!j!(m − i − j)!
,

and after rewriting we get a less familiar but interesting identity

(2m + 1)!

3m(m!)2

m
∑

k=0

3k(k!)2

(2k + 1)!
=

∑

0≤i, 0≤j, i+j≤m

(

m − j

i

)(

m − i

j

)(

m

i + j

)−1

, m ≥ 0. (6)

Of course, (5) and (6) can be derived via alternative methods, for example the WZ
method; the purpose of presenting them is mainly to draw attention to the potential of
Ik(n1, . . . , nk) as combinatorial entities.
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