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Abstract

In this paper we give an easy combinatorial description for the base partition B of
a skew character [A], which is the intersection of all partitions α whose corresponding
character [α] appears in [A].

This we use to construct the cover partition C for the ordinary outer product as
well as for the Schubert product of two characters and for some skew characters,
here the cover partition is the union of all partitions whose corresponding character
appears in the product or in the skew character.

This gives us also the Durfee size for arbitrary Schubert products.

Key words: Base Partitions, skew characters, symmetric group, skew Schur func-
tions, Schubert Calculus

1 Introduction

In this paper we give upper and lower bounds for partitions α such that the corresponding
character [α] can appear in a given outer product or Schubert product of two characters
or in a skew character.

We give in Remark 3.5 an easy combinatorial description for the base partition B of
a skew character [A], which is the intersection of all partitions α whose corresponding
character [α] appears in [A].

Using [Gut1, Theorem 4.2] and the base partition we construct the cover partition C
for the ordinary outer product as well as for the Schubert product of two characters and
for some skew characters. Here the cover partition is the union of all partitions whose
corresponding character appears in the product or in the skew character.
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2 Notation and Littlewood Richardson Symmetries

We mostly follow the standard notation in [Sag]. A partition λ = (λ1, λ2, . . . , λl) is a
weakly decreasing sequence of non-negative integers, λi called the parts of λ. For the
length we write l(λ) = l and the sum |λ| =

∑

i λi. With a partition λ we associate a
diagram, which we also denote by λ, containing λi left-justified boxes in the i-th row and
we use matrix style coordinates to refer to the boxes. Sometimes we will use the short
notation λ = (λl1

1 , λl2
2 , . . .) which means λ has l1 times the part λ1, l2 times the part λ2

and so forth.
The conjugate λc of λ is the diagram which has λi boxes in the i-th column.
For µ ⊆ λ we define the skew diagram λ/µ as the difference of the diagrams λ and

µ defined as the difference of the set of the boxes. Rotation of λ/µ by 180◦ yields a
skew diagram (λ/µ)◦ which is well defined up to translation. A skew tableau T is a skew
diagram in which the boxes are replaced by positive integers. We refer with T (i, j) to the
entry in box (i, j). A semistandard tableau of shape λ/µ is a filling of λ/µ with positive
integers such that the following inequalities hold for all (i, j) for which they are defined:
T (i, j) < T (i +1, j) and T (i, j) ≤ T (i, j + 1). The content of a semistandard tableau T is
ν = (ν1, . . .) if the number of occurrences of the entry i in T is νi. The reverse row word
of a tableau T is the sequence obtained by reading the entries of T from right to left and
top to bottom starting at the first row. Such a sequence is said to be a lattice word if for
all i, n ≥ 1 the number of occurrences of i among the first n terms is at least the number
of occurrences of i + 1 among these terms. The Littlewood Richardson (LR-) coefficient
c(λ; µ, ν) equals the number of semistandard tableaux of shape λ/µ with content ν such
that the reverse row word is a lattice word. We will call those tableaux LR-tableaux. The
LR-coefficients play an important role in different contexts (see [Sag]).

The irreducible characters [λ] of the symmetric group Sn are naturally labeled by
partitions λ ` n. The skew character [λ/µ] to a skew diagram λ/µ is defined by the
LR-coefficients:

[λ/µ] =
∑

ν

c(λ; µ, ν)[ν].

If c(λ; µ, ν) 6= 0 we say that [ν] appears in [λ/µ] and write [ν] ∈ [λ/µ]. If c(λ; µ, ν) = 0
we write instead [ν] /∈ [λ/µ].

There are many known symmetries of the LR-coefficients (see [Sag]).
We have that c(λ; µ, ν) = c(λ; ν, µ). The translation symmetry gives [λ/µ] = [α/β] if

the skew diagrams of λ/µ and α/β are the same up to translation while rotation symmetry
gives [(λ/µ)◦] = [λ/µ]. Furthermore the conjugation symmetry c(λc; µc, νc) = c(λ; µ, ν) is
also well known.

Furthermore rearranging the parts of skew diagram λ/µ gives a partition α with [α]
appearing in [λ/µ]. This follows for example easily by writing into the conjugated skew
diagram (λ/µ)c into each column the entries 1 to the length of this column. This means
[αc] appears in [(λ/µ)c] and conjugating again gives that [α] appears in [λ/µ]. We will
use this fact later on.

We say that a skew diagram D decays into the disconnected skew diagrams A and B
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if no box of A (viewed as boxes in D) is in the same row or column as a box of B. We
write D = A⊗ B if D decays into A and B. A skew diagram is connected if it does not
decay.

A skew character whose skew diagram D decays into disconnected (skew) diagrams
A,B is equivalent to the product of the characters of the disconnected diagrams induced
to a larger symmetric group. We have

[D] = ([A]× [B]) ↑
Sn+m

Sm×Sn
=: [A]⊗ [B]

with |A| = m, |B| = n. If D = λ/µ and A,B are proper partitions α, β we have:

[λ/µ] =
∑

ν

c(λ; µ, ν)[ν] =
∑

ν

c(ν; α, β)[ν] = [α]⊗ [β]

In the cohomology ring H∗(Gr(l, Cn), Z) of the Grassmannian Gr(l, Cn) of l-dimen-
sional subspaces of C

n the product of two Schubert classes σα, σβ is given by:

σα · σβ =
∑

ν⊆((n−l)l)

c(ν; α, β)σν

In [Gut1, Section4] we established a close connection between the Schubert product
and skew characters. To use this relation later on we define the Schubert product for
characters in the obvious way as a restriction of the ordinary product:

[α] ?(kl) [β] :=
∑

ν⊆(kl)

c(ν; α, β)[ν]

The Durfee size d(λ) of a partition λ is d if (dd) ⊆ λ is the largest square contained
in λ. The Durfee size of a character χ is the biggest Durfee size of all partitions whose
corresponding character appears in the decomposition of χ:

d(χ) = max(d(ν) | [ν] ∈ χ).

3 The Base Partition

In this section we give in Remark 3.5 an easy combinatorial description for the base
partition B of a skew character [A], which is the intersection of all partitions α whose
corresponding character [α] appears in [A]. Since we have that skew characters [A] whose
skew diagram decays into two partitions A = µ⊗ ν satisfies [A] = [µ]⊗ [ν] this gives us
also a combinatorial description for B([µ]⊗ [ν])

Definition 3.1. We say that a partition α is contained in A if there is a subdiagram of
A which is α or α◦.
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For example the skew diagram A = (11, 6, 53, 4)/(32)

contains the partitions α1 = (8, 3, 23, 1), α2 = (53, 4), α3 = (53, 22), α4 = (44, 12):

α1 :

X X X X X X X X
X X X
X X
X X
X X
X

α2 : X X X X X
X X X X X
X X X X X
X X X X

α3 :

X X
X X

X X X X X
X X X X X
X X X X X

α4 :

X
X

X X X X
X X X X
X X X X
X X X X

All other partitions contained in A are subdiagrams of some αi.

Definition 3.2. For a skew diagram A define the union partition Υ(A) as the union of
all partitions α which are contained in A. So:

Υ(A)i = max(αi | α is contained in A).

Since an arbitrary partition α is the union of the rectangles ((αi)
i) (for example we have

that α = (5, 3, 3, 2, 1) is the union of the five rectangles (51), (32), (33), (24) and (15)), it is
sufficient for Υ to restrict the union to all rectangles α which are contained in A but are
not contained in a larger rectangle β contained in A.

So in the above example we have Υ(A) = (8, 5, 5, 4, 2, 1) and there are 6 of those
maximal rectangles.

Definition 3.3. For a character χ we define the base partition B(χ) as the intersection
of all α with [α] ∈ χ. So:

B(χ)i = min(αi | [α] ∈ χ).

Theorem 3.4. Let A be a skew diagram.
Then: Υ(A) = B([A]).
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Proof. From the LR-rule follows that if a rectangle (ml) is contained in A then (ml) is
contained in every partition ν with [ν] ∈ [A]. So we have Υ ⊆ B = B([A]).

We will show by induction on the biggest length of a column contained in A that the
lower bound for the rows of B is reached for some partitions α with [α] ∈ [A].

Let us assume that the biggest length of a column in A is 1. Then A decomposes into
disconnected rows and Υ is the biggest row contained in A.

We have a character [α] ∈ [A] such that α contains the parts of [A] and so α1 = Υ1

which gives Υ1 = B1.
On the other hand if we place 1s into every box of A we obtain a LR-tableau and so

we have [n] ∈ [A] with n = |A| which gives us B2 = 0 and so Υ = B.
Let us now assume that Υ = B holds for all skew diagrams which have columns of

length not larger than n− 1 and let A be a skew diagram which has one or more columns
of length n.

Rearranging the parts of A gives again a partition α whose corresponding character
satisfies [α] ∈ [A] and α1 = Υ1 and so again Υ1 = B1.

We will now prove that Υi = Bi holds also for i ≥ 2.
We have a 1 − 1-relation between the LR-tableaux A of shape A and 1s in the top

boxes of every column and arbitrary LR-tableaux D of shape D, where D is the skew
diagram A with the top boxes of every column removed, simply by removing all 1s from
A and replacing the entry i in A with i− 1.

If we have for example A = (63, 5, 42)/(42, 12) and some arbitrary LR-filling we get
with the above construction:

A = A =

1 1
2 2

1 1 1 3 3
2 2 2 4

1 3 3 5
2 4 4 6

←→ D =

1 1
2 2

1 1 1 3
2 2 4

1 3 3 5

Removing the top boxes of each column fromA reduces each of the maximal rectangles
αi by one row and gives α̂i which is then one of the maximal rectangles in D. So we get
Υ(A)i+1 = Υ(D)i.

In the above example we have the following rectangles αi in A and α̂i in D:

α1 :

X X
X X
X X α2 :

X
X
X
X

α3 : X X X X X
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α̂1 :

X X
X X

α̂2 :

X
X
X α̂3 :

α4 : X X X X
X X X X

α5 : X X X
X X X
X X X
X X X

α6 :

X X X X
X X X X

α̂4 : X X X X α̂5 : X X X
X X X
X X X

α̂6 :

X X X X

Since the biggest length of columns in D is n− 1 we have Υ(D) = B([D]). For i ≥ 1
let [β̂i] ∈ [D] with β̂i

i = B([D])i. Since the characters [β̂i] ∈ [D] correspond to characters
[βi] ∈ [A], with βi = (j, β̂i) and j equal to the number of columns in A, we have in [A]
characters [βi] with:

βi
i+1 = β̂i

i = Υ(D)i = Υ(A)i+1

This gives Υ(A) = B([A]).

The previous proof also gives us the following description for the base partition B([A]).

Remark 3.5. Let ρi(A) be the skew diagram obtained from A by removing in every column
the top i− 1 boxes.

Then we have that the i-th part Bi of the base partition B is the maximal part of ρi(A),
and so for A = λ/µ we have Bi = maxj|λi+j−1 − µj|+ with |x|+ = max(0, x).

Also ρi(A) is the i-row overlap composition defined in [RSW]. There it was also proved
that equality of [A1] = [A2] for skew diagrams A1,A2 requires that ρi(A1) and ρi(A2) must
have the same parts in the same quantity for every i. This follows easily from the 1 − 1
correspondence used also in the proof of Theorem 3.4. In [McN] these ρi(A) are used to
get necessary conditions for positivity of [A1]− [A2].

4 The Cover Partition

In this section we use Remark 3.5 and [Gut1, Theorem 4.2] to determine for the ordinary
and the Schubert product of two characters and for some special skew characters the
cover partition C, which is the partition which contains all partitions whose corresponding
character appears in the product or the skew character.

[Gut1, Theorem 4.2] states the following:
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Theorem 4.1. Let µ, λ be partitions with µ ⊆ λ ⊆ (kl) with some fixed integers k, l. Set
λ−1 = (kl)/λ.

Then: The coefficient of [α] in [λ/µ] equals the coefficient of [α−1] = [(kl)/α] in
[µ] ?(kl) [λ−1].

We will use that for k ≥ µ1 + ν1, l ≥ l(µ)+ l(ν) the Schubert product [µ] ?(kl) [ν] is the
ordinary product [µ]⊗ [ν].

Let us associate a skew diagram A =
(

(kl)/µ
)◦

)/ν to partitions µ, ν. Here for the
Schubert product k, l are fixed by [µ] ?(kl) [ν] and for the ordinary product chosen as
k = µ1 + ν1, l = l(µ) + l(ν). To obtain A we remove from the rectangle (kl) the partition
ν as usual and the partition µ rotated by 180◦ from the lower right corner.

We know by definition that if the box (i, j) is in the base partition B([A]) then it is
also in every partition α with [α] ∈ [A]. So if we remove α from (kl) to get α−1 this box
will be removed every time and so by Theorem 4.1 there cannot be a partition β (which
would be a rotated α−1) with [β] ∈ [µ] ?(kl) [ν] containing the box (k − i, l − j).

On the other hand if the box (i, j) is not in the base partition then there is a partition
α with [α] ∈ [A] without this box. So if we now remove α from (kl) to get α−1 this box
is in α−1 and so there is a partition β (the rotated α−1) with [β] ∈ [µ] ?(kl) [ν] which does
contain the box (k − i, l − j).

So we get the following theorem:

Theorem 4.2. Let µ, ν be partitions and for fixed integers k, l define the skew diagram
A =

(

(kl)/µ
)◦

)/ν.

Then: C([µ] ?(kl) [ν]) =
(

(kl)/B([A])
)◦

Remark 4.3. Since the Durfee size of the cover partition of the product is also the Durfee
size of the product itself we can now easily read off the Durfee size of an arbitrary Schubert
product. In [Gut2] we calculated the Durfee size only for some special kinds of Schubert
products.

As noted above for the right choice of k, l this gives us also the cover partition C for
the ordinary product.

We will give a short Example and calculate for µ = (4, 3, 1) and ν = (5, 2, 2) the cover
partition for the ordinary product [µ]⊗ [ν] and the Schubert product [µ] ?(74) [ν].

In the case of the ordinary product we first construct the skew diagram

A1 = (93, 72, 4)/(4, 3, 1) =

Using Remark 3.5 we get the base partition B([A1]) = (8, 7, 6, 4, 3) and so for the cover
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partition

C([µ]⊗ [ν]) = ((96)/B([A1]))◦ =

B B B
B B B B

B B B B B B
B B B B B B B

B B B B B B B B

= (9, 6, 5, 3, 2, 1)

where the boxes labeled B form the partition B([A1]).
Since we have B([µ] ⊗ [ν]) = (5, 3, 2) we now have that if [α] ∈ [µ] ⊗ [ν] then α has

to satisfy (5, 3, 2) ⊆ α ⊆ (9, 6, 5, 3, 2, 1). These upper and lower bounds are strict in the
sense that there are no better bounds.

In the case of the Schubert product the skew diagram is:

A2 = (7, 5, 5, 2)/(4, 3, 1) =

Using Remark 3.5 we get the base partition B([A2]) = (4, 2, 1) and so for the cover
partition

C([µ] ?(74) [ν]) = ((74)/B([A2]))◦ = B
B B

B B B B

= (7, 6, 5, 3)

where the boxes labeled B form the partition B([A2]). From this we can also read off the
Durfee size of the Schubert product as d([µ] ?(74) [ν]) = d(C([A2])) = 3.

Since we have (5, 3, 2) = B([µ]⊗[ν]) ⊆ B([µ]?(74)[ν]) we now have that if [α] ∈ [µ]?(74)[ν]
then α has to satisfy (5, 3, 2) ⊆ α ⊆ (7, 6, 5, 3). Here the lower bound is not strict and
explicit calculations show B([µ] ?(74) [ν]) = (5, 4, 2).

In the same way we can also construct the cover partition C of skew characters if we
restrict the skew diagram in the way that the associated Schubert product is in fact an
ordinary product. If the skew diagram does not satisfy the constraints of the following
theorem then we would only get a trivial upper bound for the cover partition.

Theorem 4.4. Let A = λ/µ be a skew diagram with λ = (λn
1 , λn+1, . . . , λl), µ1 ≤ λl, l(µ) ≤

n and set λ−1 = (λl
1)/λ

Then: C([A]) =
(

((λ1)
l)/B([µ]⊗ [λ−1])

)◦
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