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Abstract

We analyze a variant of the coupon collector’s problem, in which the proba-

bilities of obtaining coupons and the numbers of coupons in a collection may be

non-uniform. We obtain a finite expression for the generating function of the prob-

abilities to complete a collection and show how this generalizes several previous

results about the coupon collector’s problem. Also, we provide applications about

computational complexity and approximation.

1 Introduction

Soft drink manufacturers have popularized the “under-the-cap game,” in which they im-
print a letter of a payoff word (usually the name of the manufacturer itself) underneath
bottle caps and dispense bottles of the soft drink randomly. Consumers then buy bottle
after bottle of the soft drink, hoping to collect enough letters to spell out the payoff word.
Discerning consumers might wonder how many bottles they would expect to purchase in
order to spell out the payoff word and win the game. If the letters in the payoff word
are distinct, like in Spriter, and the letters are distributed uniformly, this problem is the
same as the classic coupon collector’s problem, in which coupons of d kinds are randomly
dispensed, and collectors ask how many coupons they must obtain on average to form a
complete set of at least one of each kind. A classic argument shows that on average a
collector must obtain d(1 + 1

2
+ · · · + 1

d
) coupons to form a complete set.

Generalizations of the coupon collector’s problem date back to at least 1934, when
von Schelling in [6] (and re-published in [7]) computed the expected number of coupons
to obtain a complete collection under the condition that the probabilities of obtaining a
coupon could be non-uniform. Then in 1960, Newman and Shepp in their well-known
“The Double Dixie Cup Problem” [4] generalized the coupon collector’s problem to find
the expected number of coupons to obtain an arbitrary number of complete sets, but
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with a uniform distribution of the coupons. Wilf and Myers in [3] re-derived the result
of Newman and Shepp, but with a generating function of just one variable instead of
several. Further generalizations of the coupon collector’s problem are still a fruitful source
of contemporary research (see for instance [1] or [2]). Surely, one reason for the problem’s
continued popularity is the uncanny way in which infinite series related to the problem
turn out to be expressible in finite terms. This note continues on that theme.

We consider the under-the-cap game with a payoff word having repeated letters, for
example, as in Dr. Pepperr. Each of the letters D, E, P, and R must be collected a certain
number of times, called its quota, which in general may be greater than one and may vary
from letter to letter. Also, the probabilities of obtaining the letters may be non-uniform.
For example, we could model an “under-the-cap” game for Dr. Pepper as follows:

Letter Quota Probability
D 1 .25
E 2 .25
P 3 .15
R 2 .35

The general problem that we solve, the “coupon collector’s problem with quotas,” is for
a payoff word with letters in the set L which appear with probabilities ~p = 〈p` : ` ∈ L〉
and quotas ~q = 〈q` : ` ∈ L〉 to find the expected number 〈T~p,~q〉 of bottles a consumer
must purchase in order to spell out the payoff word, i.e., to obtain at least q` copies of `
for each letter ` in L. The only assumptions about the succession of letters are that the
letters on the bottles are independent and that probabilities of letters under each bottle
are identically distributed.

To fix notation, for non-negative integers n and r let
(

n
r

)

denote the binomial coef-

ficient n(n−1)···(n−r+1)
r!

. Likewise, if D is a linear operator, let
(

D
r

)

denote the operator
D(D−1)···(D−r+1)

r!
. If ~r is a k-tuple of non-negative integers with sum n, let

(

n
~r

)

denote the

multinomial coefficient n!
r1!r2!···rk!

. Lastly, let Tn(x) be 1+x+ x2

2!
+ · · ·+ xn−1

(n−1)!
, the nth order

Taylor polynomial of the exponential function.

2 A Generating Function for Winning the Game

In this section we find an expression with finitely many terms for the generating function
of the sequence of probabilities an that a collection of letters is completed on the nth

bottle. This calculation closely follows the style of section 3 of [3], but generalizes the
main result there (Theorem 2, equation 35) to non-uniform probabilities and quotas. For
an excellent primer on generating functions, whose basic results are used here, see [9].

To win the under-the-cap game on the nth bottle for a collection whose letters L have
probabilities 〈p` : ` ∈ L〉 and quotas 〈q` : ` ∈ L〉, one letter ` must meet its quota q` on the
nth bottle, meaning that exactly q` − 1 appearances of ` must have occurred somewhere
among the first n− 1 bottles, and the rest of the letters must have met or exceeded their
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quotas on the other n − q` bottles. Evidently,

an =
∑

`∈L

p`

(

n − 1

q` − 1

)

p`
q`−1

∑

~r∈Q
n−q`
L−{`}

(

n − q`

~r

)

∏

k∈L−{`}
pk

rk ,

where Qi
M consists of the finite sequences ~r of integers indexed by the letters in M such

that the sum of the integers in ~r is i and rm ≥ qm for each m in M . We define the
ordinary generating function of this sequence of probabilities, P~p,~q(x) =

∑

n≥0 anxn. The
goal of this section is to find a finite sum for this generating function.

As an intermediate step, consider the ordinary generating function

O`(x) =
∑

n≥0

xn
∑

~r∈Qn
L−{`}

(

n

~r

)

∏

k∈L−{`}
pk

rk

and the corresponding exponential generating function

E`(x) =
∑

n≥0

xn

n!

∑

~r∈Qn
L−{`}

(

n

~r

)

∏

k∈L−{`}
pk

rk .

In terms of the O`’s we can rewrite the original generating function as

P~p,~q(x) =
∑

`∈L

p`
q`

(

x ∂
∂x

− 1

q` − 1

)

[

xq`O`(x)
]

. (1)

By the exponential formula, we can write each E` as a finite product, namely

E`(x) =
∏

k∈L−{`}

(

epkx − Tqk
(pkx)

)

. (2)

As usual, O` can be obtained from E` by taking a Laplace transform, specifically

O`(x) =
1

x

∫ ∞

0

e−t/xE`(t) dt. (3)

Substituting equation 2 into equation 3 and then into equation 1, we have

P~p,~q(x) =
∑

`∈L

p`
q`

∫ ∞

0

(

x ∂
∂x

− 1

q` − 1

)

xq`−1e−t/xE`(t) dt.

Noting that
(

x ∂
∂x

−1
q`−1

)[

xq`−1e−t/x
]

= tq`−1

(q`−1)!
e−t/x, we get a convenient form for the generating

function

P~p,~q(x) =
∑

`∈L

p`
q`

(q` − 1)!

∫ ∞

0

tq`−1e−t/x
∏

k∈L−{`}

(

epkt − Tqk
(pkt)

)

dt, (4)

which is a sum with at most |L| ·
∏

`∈L(q` + 1) terms, as desired.
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3 Reduction to Previous Results

Equation 4 generalizes Theorem 2 of section 3 in [3], which describes the generating
function of the coupon collector’s problem for n copies of d coupons distributed uniformly
to non-uniform probabilities and quotas. One immediate consequence of equation 4 is an
expression with finitely many terms for the expected number of bottles 〈T~p,~q〉 needed to
win the under-the-cap game,

〈T~p,~q〉 = P ′
~p,~q(1)

=
∑

`∈L

p`
q`

(q` − 1)!

∫ ∞

0

tq`e−t
∏

k∈L−{`}

(

epkt − Tqk
(pkt)

)

dt. (5)

By expanding the product of sums in equation 5 and noting
∫ ∞
0

tqe−pt dt = q!/pq+1, we
have

〈T~p,~q〉 =
∑

M∈P ′(L)

(−1)|M |+1
∑

~r∈Q<
M

(

P

`∈M r`

~r

)(
∏

`∈M pr`

`

)

(
∑

`∈M p`

)
1+

P

`∈M

r`
, (6)

where P ′(L) denotes the collection of non-empty subsets of letters in L and Q<
M denotes the

collection of finite sequences ~r of integers indexed by the letters in M such that 0 ≤ r` < q`

for each ` ∈ M . This generalizes von Schelling’s result in [6] about the expected number
of coupons to obtain a collection of at least one coupon in the non-uniform probability
case to non-uniform quotas. A numerical calculation based on equation 6 yielded that
the expected number of bottles to win the Dr. Pepper under-the-cap game described in
the introduction is approximately 21.156 bottles and to win twice is 40.625 bottles.

For the remainder, we concentrate on the special case of uniform probabilities and
quotas. In other words, we suppose the payoff word consists of d distinct letters distributed
uniformly and that a collector must obtain n copies of each letter. We let 〈Td,n〉 be the
expected number of bottles necessary to obtain this collection. Then, equation 5 reduces
to

〈Td,n〉 =
d

(n − 1)!

∫ ∞

0

e−xxn
(

1 − e−xTn(x)
)d−1

dx. (7)

For the case of only two letters (d = 2) equation 7 further reduces to

〈T2,n〉 = 2n
(

1 +

(

2n

n

)

4−n
)

,

which is equivalent to a result of Nishi and Nomakuchi in [5].

4 Computational Complexity

Numerical computation of 〈Td,n〉 based on equation 7 is computationally infeasible since
direct expansion of the integrand in this equation leads to O(nd) terms. However, there is
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a more efficient algorithm to compute 〈Td,n〉, which we now describe. First, by applying
integration by parts d − 1 times to the integral in equation 7, we get

〈Td,n+1〉 =
d(n + 1)

(d!)n

n+1
∑

m2=0

(

n + m2

n

) (

1

2

)m2

. . .

n+mr−1
∑

mr=0

(

n + mr

n

) (

r − 1

r

)mr

. . .

n+md−1
∑

md=0

(

n + md

n

) (

d − 1

d

)md

. (8)

The form of the nested sum in equation 8 is special because the terms in the rth sum
only depend on mr, not the previous m2, . . . , mr−1. Therefore, the entire sum can be
computed in

∑d
r=2 max(mr) ≤

∑d
r=2 nr = O(nd2) steps. For example, using equation 8 a

numerical computation showed that to the nearest integer 〈T100,100〉 is 12690, whereas a
computation of 〈T100,100〉 from equation 7 with 10200 terms would be infeasible.

5 Asymptotic Approximation of Expectation

Asymptotic approximation of the expectation 〈Td,n〉 for large d or large n is useful for both
computational and theoretical reasons. We derive an asymptotic approximation of 〈Td,n〉
beginning with its representation in equation 7 and making a sequence of four estimates:

〈Td,n+1〉 = d2

∫ ∞

0

xe−zd dz (9)

≈ d2

∫ ∞

0

(

n +
√

2n erfc−1(z)
)

e−zd dz (10)

≈ d2

∫ ∞

0

(

n +
(

−2n log(z
√

2π)
)

1

2

)

e−zd dz (11)

≈ d
(

n +
(

2n log(d/
√

2π)
)

1

2

)

. (12)

In equation 9 we make the substitution e−z = 1 − e−xTn+1(x) into the integral from
equation 7. Equation 10 follows from an application of Laplace’s method to approximate
∫ x

0
e−ttn dt = n!(1 − Tn+1(x)). As a consequence, we have a result first due to Szegö

in [8] that an asymptotic approximation for large n of a solution for x in this substitution
is x ≈ n +

√
2n erfc−1(z), where erfc denotes the complementary error function x 7→

2√
π

∫ ∞
x

e−t2dt. To get equation 11, we use the first-order approximation erfc(x) ≈ e−x2

√
π x

so that erfc−1(z) ≈
(

− log(z
√

2π)
)

1

2 . In equation 12, we use an approximation of the

Laplace transform of a power of a logarithm,
∫ c

0
(− log x)µe−kx dx ≈ (log k)µ

k
for large k,

(see, for instance, theorem II.2.2 of [10]). As a comparison of results, the asymptotic
approximation in equation 12 adds a term proportional to

√
n that is not included in a
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Figure 1: Comparison of approximate (×) and exact (◦) values of 〈Td,n〉 for d = 30 letters
and n = 1 to n = 40 copies.

similar calculation in [3] (equation 43). For a numerical example, our approximation gives
〈T100,100〉 ≈ 12601, less than one percent off the exact figure computed from equation 8.
Also, figure 1 shows nice agreement between exact and approximate results.

Due to the factor of
√

n in equation 12, for each d the graph of n 7→ 〈Td,n〉 is convex
down, as intuition about the expected number of bottles would suggest. More gener-
ally, the forward differences of 〈Td,n〉 with d fixed, defined by 40〈Td,n〉 = 〈Td,n〉 and
4r+1〈Td,n〉 = 4r〈Td,n+1〉−4r〈Td,n〉, depend only on the parity of r, namely sign(4r〈Td,n〉)
= sign(4r

√
n) = (−1)r+1 for r ≥ 1. Oddly enough, this property does not always hold

in the non-uniform case. Consider the number of bottles 〈T~p,n~q0
〉 needed to collect the

payoff word n times, i.e., q` is n times the number of occurrences of letter ` in the payoff
word. In the Dr. Pepper under-the-cap game described in the introduction, a numerical
calculation showed that n 7→ 〈T~p,n~q0

〉 is not even convex, contrary to the pattern in the
uniform case even for r = 2.
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