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Abstract

We investigate the following modification of a problem posed by Karoński,
 Luczak and Thomason [J. Combin. Theory, Ser. B 91 (2004) 151-157]. Let us
assign positive integers to the edges and vertices of a simple graph G. As a result
we obtain a vertex-colouring of G by sums of weights assigned to the vertex and its
adjacent edges. Can we obtain a proper colouring using only weights 1 and 2 for an
arbitrary G?

We know that the answer is yes if G is a 3-colourable, complete or 4-regular
graph. Moreover, it is enough to use weights from 1 to 11, as well as from 1 to
bχ(G)

2 c + 1, for an arbitrary graph G. Here we show that weights from 1 to 7 are
enough for all regular graphs.
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1 Introduction

A k-total-weighting of a simple graph G is an assignment of an integer weight, w(e), w(v) ∈
{1, . . . , k} to each edge e and each vertex v of G. A k-total-weighting is neighbour-
distinguishing (or vertex colouring, see [1, 2]) if for every edge uv, w(u) +

∑

e3u w(e) 6=
w(v) +

∑

e3v w(e). If such a weighting exists, we say that G permits a neighbour-
distinguishing k-total-weighting.

A similar parameter, but in the case of an edge (not total) weighting, was introduced
and studied in [3] by Karoński,  Luczak and Thomason. They asked if each simple con-
nected graph that is not simply a single edge permits a neighbour-distinguishing 3-edge-
weighting, and showed that this statement holds for 3-colourable graphs. Then Addario-
Berry, Dalal and Reed showed that it is enough to use numbers from 1 to 16 to construct
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a neighbour-distinguishing edge-weighting for an arbitrary graph (not containing a single
edge as a component), see [2].

In [4] we conjectured that numbers 1 and 2 in turn are enough to distinguish neighbours
of each graph by a total-weighting. We verified this conjecture for some classes of graphs
and established the following upper bounds.

Theorem 1 ([4]) All complete, 3-colourable and 4-regular graphs permit neighbour-dis-
tinguishing 2-total-weightings.

Theorem 2 ([4]) Each simple graph permits a neighbour-distinguishing 11-total-weigh-

ting and a neighbour-distinguishing (bχ(G)
2

c + 1)-total-weighting.

Note that a graph permits a neighbour-distinguishing 1-total weighting iff every two neigh-
bours have distinct degrees in this graph. Here we deal then with the most difficult, in
a way, case and show that the weights 1, . . . , 7 are enough for each regular graph, see
Theorem 7.

2 Lemmas

To prove our main result we shall need the following lemmas. Then Corollary 6 will provide
us with a construction of a neighbour-distinguishing total-weighting of each regular graph
by weights from 1 to 8, which will be then reduced to 7 by Lemma 4.

Given a sequence of numbers (a1, . . . , ak), we shall call (b1, . . . , bl) a block of this
sequence iff there exists 0 6 j 6 k − l such that bi = aj+i, i = 1, . . . , l.

Lemma 3 Assume that s = (a1, . . . , ak) is a sequence of nonnegative integers such that
a1+. . .+ak 6 k. Then there is an element aj = 0 of that sequence such that aj−1+aj+1 6 3
(where a0, ak+1 := 0), unless s consists exclusively of blocks (1, 0, 3, 0, 1) and (1, . . . , 1).

Proof. Let us call the sequences consisting of blocks (1, 0, 3, 0, 1) and (1, . . . , 1) (which
may intersect) forbidden. The lemma is obvious for k 6 3. It is also easy to verify it for
k = 4, hence let us argue by induction on k. Take k > 5 and assume the proposition
does not hold for some (not forbidden) sequence s = (a1, . . . , ak), hence if ai = 0, then
ai−1 + ai+1 > 4. If there are two consecutive elements ar, ar+1 of s that are either both
positive or both equal to 0, then either the sequence (a1, . . . , ar) or (ar+1, . . . , ak) is not
forbidden and complies with the assumptions of the lemma, hence, by induction, there is
an element aj = 0 such that aj−1 + aj+1 6 3, a contradiction.

Therefore, we may assume every second element of s is positive and every second one
equals 0. Let at be the second element that is equal to 0 in the sequence s (hence t = 3
or 4). By the inequality ai−1 + ai+1 > 4 for the first of such elements, a1 + . . . + at > 4.
Therefore the sequence (at+1, . . . , ak) complies with the assumptions of the lemma (and
is not a forbidden one), hence we again obtain a contradiction by induction.
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Let a k-vertex-colouring of G = (V, E) be a proper vertex-colouring c : V → C (i.e.
c(u) 6= c(v) if uv ∈ E) by the colours from a colour set C with |C| = k. Note that we do
not require c to be surjective, hence not all the colours have to be used.

Lemma 4 Let G be a k-regular graph which is neither a complete graph nor an odd cycle.
There is a k-vertex-colouring with colour classes V1, . . . , Vk such that dVi

(v) 6 3 for each
v ∈ Vi−1, i = 2, . . . , k.

Proof. Let E(U, W ) denote the set of edges between subsets U , W of the vertex set of
G. Let also e(U, W ) = |E(U, W )|. By Brooks’ Theorem, there is a k-vertex-colouring
of G. Let us choose such a k-vertex-colouring and such an ordering of its colour classes
V1, . . . , Vk that minimizes the sum

∑k

l=2 e(Vl−1, Vl). We argue that it complies with our
requirements.

Assume it is not so; hence there is 2 6 i 6 k and v ∈ Vi−1 such that dVi
(v) > 4.

Denote al = dVl
(v), l = 1, . . . , k (a0, ak+1 := 0). Then ai > 4 (ai−1 = 0) and, since G

is k-regular, a1 + . . . + ak = k. By Lemma 3, there is 1 6 j 6 k such that aj = 0 and
aj−1 + aj+1 6 3, hence dVj

(v) = 0 and we may move v from Vi−1 to Vj, and thus at the
same time reduce the minimized sum by at least four and add to it at most three (since
v has at most three neighbours in Vj−1 ∪ Vj+1), a contradiction.

Led δ(G) denote the minimal degree of a vertex in a graph G. We make use of the
following Theorem 5 by Addario-Berry, Dalal and Reed (see [2]) to obtain a similar to
their Corollary 6.

Theorem 5 ([2]) Given a graph G = (V, E) and for all v ∈ V , integers a−
v , a+

v such that

a−
v 6 bd(v)

2
c 6 a+

v < d(v), and

a+
v 6 min

(d(v) + a−
v

2
+ 1, 2a−

v + 3
)

, (1)

there exists a spanning subgraph H of G such that dH(v) ∈ {a−
v , a−

v + 1, a+
v , a+

v + 1} for all
v ∈ V .

Corollary 6 Given a graph G = (V, E) with δ(G) > 4, and for each v ∈ V , integers

a−
v ∈ [bd(v)

4
c, 2bd(v)

4
c] and a+

v := a−
v + bd(v)

4
c + 1, there exists a spanning subgraph H of G

such that dH(v) ∈ {a−
v , a−

v + 1, a+
v , a+

v + 1} for all v ∈ V .

Proof. We have a−
v 6 2bd(v)

4
c 6 bd(v)

2
c, bd(v)

2
c 6 2bd(v)

4
c + 1 6 a+

v and a+
v 6 3bd(v)

4
c + 1 <

d(v), hence, by Theorem 5, it is enough to prove (1) for all v ∈ V . Note then that

a+
v = a−

v

2
+ a−

v

2
+bd(v)

4
c+1 6

a−

v

2
+bd(v)

4
c+bd(v)

4
c+1 6

a−

v

2
+ d(v)

2
+1 and a+

v = a−
v +bd(v)

4
c+1 6

a−
v + a−

v + 1, thus (1) holds.
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3 Main Result

For a given total-weighting w of G, let cw(v) := w(v) +
∑

e3v w(e) (or c(v) for short if the
weighting w is obvious), define the resulting colouring for each v ∈ V (G). We shall call
c(v) a colour or a total weight of v. Our aim, in fact, is to find such a weighting that this
vertex-colouring is proper.

Theorem 7 Each regular graph admits a neighbour-distinguishing 7-total-weighting.

Proof. Let G be a k-regular graph. By Theorem 1, we may assume that G is not a
complete graph and, by Theorem 2 (and Brooks’ Theorem), that k > 14. By Lemma 4
there is a k-vertex-colouring with colour classes V1, . . . , Vk such that dV4i

(v) 6 3 for each
v ∈ V4(i−1), i = 2, . . . , bk

4
c. We shall make use of this fact in the second part of the proof.

Let si = k + 4bk
4
c + 4 + i and bi = k + 8bk

4
c + 8 + i, and let Li = {si, bi} be a list

of admissible colours (total weights) assigned to the vertex set Vi, i = 1, . . . , k. In the
first part of the proof we construct an 8-total-weighting such that cw(v) ∈ Li for each
v ∈ Vi, i = 1, . . . , k. This way, since s1 < . . . < sk < b1 < . . . < bk, this weighting
will be neighbour-distinguishing. In fact we will use only weights 1 and 5 for the edges.
In the second part of the proof we will reduce the weights of some vertices and increase
some of the edge weights, so that w(e) ∈ {1, 2, 5, 6} and 1 6 w(v) 6 7 for all e ∈ E

and v ∈ V , and so that the lists of admissible colours remained the same for all colour
classes but those of the form V4j, 1 6 j 6 bk

4
c. In these classes, we will admit colours

in L′
4j = {s4j − 4, s4j , b4j − 4, b4j} instead of L4j , j = 1, . . . bk

4
c. Since s4j − 4 = s4(j−1)

and b4j − 4 = b4(j−1), the total weights of the vertices in V4j, j = 1, . . . bk
4
c, will have to

be constructed carefully, so that the weighting remains neighbour-distinguishing. Note in
particular that s4 − 4 < s1 and sk < b4 − 4 < b1, hence colouring with L′

4 (instead of L4)
does not produce any new conflicts.

Let us then first weight all the edges of G with 1 and set a temporary weight 0 for
each vertex of this graph. This way, each vertex gets a temporary colour k. Now for each
v ∈ V4j+l set a−

v = bk
4
c + j and a+

v = a−
v + bk

4
c + 1, j = 0, . . . , bk

4
c, l = 1, . . . , 4, (hence

a−
v ∈ [bk

4
c, 2bk

4
c]). Then by Corollary 6 there exists a spanning subgraph H of G such

that dH(v) ∈ {a−
v , a−

v + 1, a+
v , a+

v + 1} for all v ∈ V . Let us then add 4 to the weight of
each edge of this subgraph (hence w(e) ∈ {1, 5} for e ∈ E). Now each vertex v ∈ V4j+l

has a temporary colour in the set {k + 4b k
4
c+ 4j, k + 4bk

4
c+ 4j + 4, k + 8bk

4
c+ 4j + 4, k +

8bk
4
c+ 4j + 8} = {s4j+l −4− l, s4j+l− l, b4j+l −4− l, s4j+l − l}. Therefore by setting either

w(v) = l + 4 or l, we obtain c(v) ∈ Li and 1 6 w(v) 6 8 for all v ∈ Vi, i = 1, . . . , k. This
finishes the first part of the proof.

Note that we may have w(v) = 8 only for vertices in V4j, j = 1, . . . , bk
4
c. We shall

reduce these weights in the following manner. Process the vertex sets of the form V4j one
after another in the reversed order, starting from V4b k

4
c and ending at V4. For a given

V4j , process all its vertices in an arbitrary order. We introduce some changes only if
v ∈ V4j is weighted with 8. Namely, if it has any neighbour in V4(j−1), we choose one
such neighbour arbitrarily (call it u), and reduce the weights of u and v by 1 (it is each
time possible since u has at most 3 neighbours in V4j, and had a weight 4 or 8 after the
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first part of the construction), and add 1 to the weight of the edge uv (changing it to 2
or 6), hence the total weights of v and u remain unchanged. On the other hand, if v has
no neighbour in V4(j−1) (or (j = 1)), we reduce the weight of v by 4, hence c(v) ∈ L′

4j .
Since v has no neighbour in V4(j−1) (for j > 1) and s4 − 4 < s1, sk < b4 − 4 < b1, no
conflict will appear. After processing all the vertices as described, we therefore obtain a
neighbour-distinguishing 7-total-weighting.
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