
On the non–existence of certain hyperovals in
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Abstract

No regular hyperoval of the Desarguesian affine plane AG(2, 22h), with h > 1, is
inherited by a dual André plane of order 22h and dimension 2 over its kernel.

1 Introduction

The general question on existence of ovals in finite non–Desarguesian planes is still open
and appears to be difficult. It has been shown by computer search that there exist some
planes of order 16 without ovals; see [11]. On the other hand, ovals have been constructed
in several finite planes; one of the most fruitful approaches in this search has been that
of inherited oval, due to Korchmáros [5, 6].

Korchmáros’ idea relies on the fact that any two planes π1 and π2 of the same order
have the same number of points and lines; thus their point sets, as well as some lines,
may be identified. If Ω is an oval of π1, it might happen that Ω, regarded as a point set,
turns also out to be an oval of π2, although π1 and π2 differ in some (in general several)
point–line incidences; in this case Ω is called an inherited oval of π2 from π1; see also [2,
Page 728].

In practice, it is usually convenient to take π1 to be the Desarguesian affine plane
AG(2, q) of order a prime power q. The case in which π2 is the Hall plane H(q2) of order
q2 was investigated in [5], and inherited ovals were found. For q odd, this also proves the
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existence of inherited ovals in the dual plane of H(q2), which is a Moulton plane M(q2)
of the same order.

Moulton planes have been originally introduced in [10], by altering some of the lines
of a Desarguesian plane constructed over the real field, while keeping the original point
set fixed. In particular, each line of the Moulton plane turns out to be either a line of the
original plane or the union of two half–lines of different slope with one point in common.

This construction, when considering planes of finite order q2, may be carried out as
follows. Let || · || denote the norm function

|| · || :

{

GF(q2) → GF(q)

x 7→ xq+1

Take a proper subset U of GF(q)? and consider the following operation defined over the
set GF(q2)

a � b =

{

ab if ||b|| 6∈ U

aqb if ||b|| ∈ U.

The set (GF(q2), +,�) is a pre-quasifield which is a quasifield for U 6= {1}. Every pre-
quasifield coordinatizes a translation plane; see [4, Section 5.6]. In our case this translation
plane is an affine André plane A(q2) of order q2 and dimension 2 over its kernel; see [8].
In the case in which U consists of a single element of GF (q2) the translation plane is the
affine Hall plane of order q2 and its dual plane is the affine Moulton plane of order q2.
For details on these planes see [3, 8].

Write MU(q2) = (P,L) for the incidence structure whose the point–set P is the same
as that of AG(2, q2), and whose lines in L are either of the form

[c] = {P (x, y) : x = c, y ∈ GF(q2)}

or
[m, n] = {P (x, y) : y = m � x + n}.

The affine plane MU(q2) is the dual of an affine André plane A(q2) of order q2. Completing
MU(q2) with its points at infinity in the usual way gives a projective plane MU(q2) called
the projective closure of MU(q2).

Write Φ = {P (x, y) : ||x|| 6∈ U} and Ψ = {P (x, y) : ||x|| ∈ U}. Clearly, P = Φ ∪ Ψ.
If an arc A of PG(2, q2) is in turn an arc in MU(q2) then, A is an inherited arc of

MU(q2).
Any hyperoval of the Desarguesian projective plane PG(2, q2) obtained from a conic

by adding its nucleus is called regular. Let consider the set Ω of the affine points in
AG(2, q2) of a regular hyperoval. If Ω ⊆ Φ, that is for each point P (x, y) ∈ Ω the norm
of x is an element of GF(q) \ U , then Ω is clearly an inherited hyperoval of MU(q2).

In [1, Theorem 1.1], it is proven that for q > 5 an odd prime power, any arc of the
Moulton plane Mt(q

2) with t ∈ GF (q), obtained as C? = C ∩ Φ, where C is an ellipse in
AG(2, q2) is complete.

In this paper the case where q is even and |U | < q

4
− 1 is addressed. We prove the

following.
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Theorem 1. Suppose Ω to be the set of the affine points of a regular hyperoval of the

projective closure PG(2, 22h) of AG(2, 22h), with h > 1. Then, Ω∗ = Ω ∩ Φ is a complete

arc in the projective closure of MU(22h).

Theorem 2. The arc consisting of the affine points of a regular hyperoval of PG(2, 22h)
with h > 1 is not an inherited arc in the projective closure of MU(22h).

We shall also see that any oval arising from a regular hyperoval of AG(2, 22h) by
deleting a point cannot be inherited by MU(22h). The hypothesis on Ω being a regular
hyperoval cannot be dropped; see [11] for examples of hyperovals in the Moulton plane of
order 16.

2 Proof of Theorem 1

We begin by showing the following lemma, which is a slight generalisation of Lemma 2.1.
in [1].

Lemma 3. Let q be any prime power. A pencil of affine lines L(P ) of MU(q2) with

centre P (x0, y0), either consists of lines of a Baer subplane B of PG(2, q2), or is a pencil

in AG(2, q2) with the same centre, according as ||x0|| ∈ U or not. In particular, in the

former case, the q2 + 1 lines in L(P ) plus the q vertical lines X = c with ||c|| = xq+1

0 and

c 6= x0 are the lines of B.

Proof. The pencil L(P ) consists of the lines

rm : y = m � x − m � x0 + y0,

with m ∈ GF (q2), plus the vertical line ` : x = x0. First suppose ||x0|| ∈ U . In this case
m � x0 = mqx0 and the line rm of L(P ) corresponds to the point (m, mqx0 − y0) in the
dual of MU(q2), which is an André plane.

As m varies over GF (q2) we get q2 affine points of the Baer subplane B′ in PG(2, q2)
represented by y = xqx0 − y0. The points at infinity of B′ are those points (c) such that
cq+1 = ||x0||. As the dual of a Baer subplane is a Baer subplane, it follows that the lines
in L(P ) are the lines of a Baer subplane B in PG(2, q2). More precisely, the lines in L(P )
plus the q vertical lines x = c, ||c|| = ||x0||, with c 6= x0, are the lines of B.

In the case in which ||x0|| /∈ U the line rm : y = m�x−mx0 +y0 in L(P ) corresponds
to the point

(m, mx0 − y0)

in the dual of MU(q2). As m varies over GF (q2) we get q2 affine points in AG(2, q2) on
the line y = x0x− y0. Finally, the dual of infinite point of y = x0x− y0 is the vertical line
through P (x0, y0). The result follows.

Let Ω denote a regular hyperoval in AG(2, q2), q = 2h, h > 1. It will be shown that for
any point P (x0, y0) with ||x0|| ∈ U there is at least a 2–secant to Ω? = Ω ∩ Φ in MU(q2)
through P .
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Assume B to be the Baer subplane in PG(2, q2) containing the lines of the pencil L(P )
in MU(q2) and the q vertical lines X = c with ||c|| = xq+1

0 , c 6= x0. Write ∆ for the set of
all points of Ω not covered by a vertical line of B and also let n = |∆| and m = q2 +2−n.
The vertical lines of B cover at most 2(q + 1) points of Ω; thus, q2 − 2q ≤ n ≤ q2 + 2. We
shall show that there is at least a line in B meeting ∆ in two points.

Let T ∈ ∆; since T 6∈ B, there is a unique line `T of B through T . Every point
Q ∈ Ω \∆ lies on at most q + 1− (m − 1) = q − m + 2 lines `T with T ∈ ∆. Suppose by
contradiction that for every T ∈ ∆,

`T ∩ Ω = {T, Q}, with Q ∈ Ω \ ∆.

The total number of lines `T obtained as Q varies in Ω \∆ does not exceed m(q−m+2).
So, n = q2 −m + 2 ≤ m(q −m + 2). As m is a non–negative integer, this is possible only
for q = 2.

Since `T is not a vertical line, it turns out to be a chord of Ω∗ in MU(q2) passing
through P (x0, y0). This implies that no point P (x0, y0) ∈ Ψ may be aggregated to Ω? in
order to obtain an arc.

This holds true in the case P (x0, y0) ∈ Φ. In AG(2, q2) there pass (q2 + 2)/2 secants
to Ω through a point P (x0, y0) /∈ Ω and, hence, N = (q2 + 2)/2 − s secants to Ω∗, where
s ≤ 2(q + 1)|U |. So by the hypothesis |U | < q/4 − 1, we obtain N > 0; this implies that
no point P (x0, y0) ∈ Φ may be aggregated to Ω? in order to obtain a larger arc. The
same argument works also when P is assumed to be a point at infinity. Theorem 1 is thus
proved.

3 Proof of Theorem 2

We shall use the notion of conic blocking set ; see [7]. A conic blocking set B is a set
of lines in a Desarguesian projective plane met by all conics; a conic blocking set B is
irreducible if for any line of B there is a conic intersecting B in just that line.

Lemma 4 (Theorem 4.4,[7]). The line–set

B = {y = mx : m ∈ GF(q)} ∪ {x = 0}

is an irreducible conic blocking set in PG(2, q2), where q = 2h, h > 1.

Lemma 5. Let Ω be a regular hyperoval of PG(2, q2), with q = 2h, h > 1. Then, there

are at least two points P (x, y) in Ω such that ||x|| ∈ U .

Proof. To prove the lemma we show that the set Ψ′ = Ψ ∪ Y∞, is a conic blocking set.
We observe that the conic blocking set of Lemma 4 is actually a degenerate Hermitian
curve of PG(2, q2) with equation xqy − xyq = 0. Since all degenerate Hermitian curves
are projectively equivalent, this implies that any such a curve is a conic blocking set.
On the other hand, Ψ′ may be regarded as the union of degenerate Hermitian curves of
equation xq+1 = czq+1, as c varies in U . Thus, Ψ′ is also a conic blocking set. Suppose
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now Ω = C ∪ N , where C is a conic of nucleus N . Take P ∈ Ψ′ ∩ C. If P = Y∞ then at
most one of the vertical lines X = c, with ||c|| ∈ U , is tangent to C; hence there are at
least q points P ′(x, y) ∈ Ω with ||x|| ∈ U and thus |Ψ ∩ Ω| ≥ q.

Next, assume that P = P (x, y) ∈ Ψ. If the line [x] is secant to C the assertion
immediately follows. If the line [x] is tangent to C then the nucleus N lies on [x]. Now,
either N is an affine point in Ψ or N = Y∞. In the former case we have |Ψ ∩ Ω| ≥ 2; in
the latter, the lines X = c with ||c|| ∈ U are all tangent to C; hence, there are at least
other q + 1 points P ′(x, y) ∈ Ω such that ||x|| ∈ U .

Now, let Ω be a regular hyperoval in AG(2, q2), with q = 2h and h > 1. From Lemma
5 we deduce that |Ω∗ ∩Φ| ≤ q2; furthermore, Theorem 2 guaranties that Ω∗ is a complete
arc in the projective closure of MU(q2), whence Theorem 2 follows.

Remark 1. The largest arc of MU(q2) contained in a regular hyperoval of AG(2, q2), with
q = 2h, has at most q2 points; in particular any oval which arises from a hyperoval of
AG(2, q2) by deleting a point cannot be an oval of MU(q2). For an actual example of a
q2–arc of MU(q2) coming from a regular hyperoval of AG(2, q2) see [9]. This also shows
that the result of [5] cannot be extended to even q.
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