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Abstract

We give a short proof that for any fixed integer k, the maximum number size of a
K, j-cross free family is linear in the size of the groundset. We also give tight bounds
on the maximum size of a Kj-cross free family in the case when F is intersecting
or an antichain.

Introduction
Let F 2", Two sets A, B € F cross if

1. AN B # 0.
2. Bg Aand A¢ B.

F c 2" is said to be Kj-cross free if it does not contain k sets A, ..., Ay such that A,
cross A; for every 7 # j. Karzanov and Lomonosov conjectured that for any fixed &, the
maximum size of a Kj-cross free family F C 2" is O(n) [5], [1]. The conjecture has
been proven for kK = 2 and k = 3 [7], [4]. For general k, the best known upperbound is
2(k — 1)nlogn, which can easily be seen by a double counting argument on the number
of sets of a fixed size. We say that F is K} ;-cross free if it does not contain 2k sets
Ay, ..., Ay, By, ..., By € F such that A; crosses B, for all 7, j. In this paper, we prove the
following;:

Theorem 1: Let F C 21" be a Ky j-cross free family. Then |F| < (2k —1)%n.
In this section, we give upperbounds on the maximum size of certain classes of K-

cross free families. By applying Dilworth’s Theorem [2], one can obtain a tight bound
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for intersecting k-cross free families. Recall a family F C 2[" is intersecting if for every
A BeF, AnB #0.

Theorem 2: Let F C 2" be a family that is k-cross free and intersecting. Then |F| <
(k — 1)n, and this bound is asymptotically tight.

We also obtain tight bounds for Kj-cross free families that is an antichain. Recall F is
an antichain if no set in F is a subset of another.

Theorem 3: For k > 3, let F C 2" be a family that is k-cross free and an antichain.
Then |F| < (k —1)n/2, and this bound is asymptotically tight.

We define sub(A) to be the number of subsets of A in F. Our next Theorem gives a
non-trivial upperbound on a Kj-cross free family based on the number of subsets in each
set of our family.

Theorem 4: Let F C 2™ be a Kj-cross free family and let m be defined as

Z sub(A)
m = | AEF 4l
|7

Then |F| < 4(k —1)m - n.

Hence if sub(A) = c|A| for all A € F and some constant ¢, then |F| = O(n). Now we
define the geometric mean of F as

1(F) = (H A>1/F

AeF
As an easy corollary to theorem 4, we have
Corollary 5: Let F C 2" be a Kj-cross free family. Then
|71 < 8(k — 1)*nlog((F)).

For simplicity we omit floor and ceiling signs whenever these are not crucial and all
logarithms are in the natural base e.

K} j-cross free family

Proof of Theorem 1: Induction on n. BASE CASE: n = 1 is trivial. INDUCTIVE STEP:
For z € [n], let
Fi={AeF:2€A and A\z € F}
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and
Fo={A\z:AecF}

Now notice that there does not exists 2k sets Ay, ..., Aox € Fq such that A; C Ay C --- C
Ay, since otherwise in F, A; crosses A; \ « for each ¢ < k and j > k + 1. Hence the
longest chain in F7 is 2k — 1 and since F; is intersecting, the largest antichain in F; is
2k — 1. By Dilworth’s Theorem [2], this implies

|| < (2k —1)%
Since F, C 2"~ is a K j-cross free family, by the induction hypothesis, we have
\F| = |Fi| + |Fo| < (2k —1)*(n — 1) + (2k — 1)* < (2k — 1)*n.

O

For the lower bound of a K}, ;-cross free family, One can consider the edges of a (k—1)/2
regular graph on n vertices plus the singletons. Here we have a family with (k + 1)n/2
sets, and each set crosses at most k — 1 other sets. Hence this family is K}, j-cross free

with (k —1)/2 sets.

On the maximum size of certain K-cross free families

In this section, we will prove Theorems 2,3,4, and Corollary 5.

Proof of Theorem 2: Notice that the largest anitchain must be of size at most £ — 1.
Hence by Dilworth’s Theorem [2], we can decompose (F,C) into (k — 1) chains. Since
each chain has length at most n, this implies |F| < (k — 1)n. Notice that this bound is
asymptotically tight. For i < j, let [i, j] € 2I"] denote the set [j] \ [i — 1], and let C; be a
chain of n — 1 sets defined as

n -1
G = < U r+14u {1}> U <U[l+ Ln]u [Lﬂ) U
=41 j=1
k
for [ > 2. Then the family F = <U C’l) U[n] is Kj-cross free intersecting family with
1=2
(k—1)(n —2) + 2 sets and is intersecting.
O

Proof of Theorem 3: Induction on n. BASE CASE: n = 1 is trivial. INDUCTIVE STEP:
(case 1) suppose there is a singleton set {z} € F. Then define ' = {A: x ¢ A}. Then
notice

Fl =147

Since F' is a K, -cross free family and an antichain, by the induction hypothesis we have

Fl=1+|F| <1+ (k-D)n—-1)/2=1+ (k- n/2— (k—1)/2 < (k—1)n/2.
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Since k > 3. (case 2) Now we can assume all sets in F has size at least 2. Recall that
the fractional chromatic number x;(G) of a graph G is defined as the minimum of the
fractions a/b such that V(G) can be covered by a indepdendent sets in such a way that
every vertex is covered at least b times [6]. Let G = (V, E) be the non-crossing graph of
F.le. V(G)=F and (A, B) € E(G) if A and B do not cross. Then for each set A € V,
we will assign any two number (a,b) C A to A. This is possible since all sets in F have
size at least 2. Since F is an antichain, this implies that x;(G) < n/2. Hence by using
the 1nequahty |) < xf(G), we have

(k—1)n

Ll L F< -

k-1~ 2

Notice that this bound is tight since we can consider the edges of a (k—1) regular bipartite
graph. Clearly this family has (k — 1)n/2 sets and is an antichain since every set is of size
2. By Hall’s Theorem [8], the edges of this graph decomposes into k—1 perfect matchings,
which implies this family is Kj-cross free.

O

Proof of Theorem 4: We will start by blowing up each vertex by a factor of 2m, i.e. each
vertex x € [n] is replaced by 2m vertices {z1, za, ..., Tom } such that for every A € F such
that z € A, all x4, ..., x9,, € A. Now let G be the non-crossing graph of F. Then we will
assign a random color to A by picking a vertex x € A. Then for any B € F such that

B C A,
1 1 1

Sa2mIBl = o ——r
2m|A| 2m|B|

2m|A|
Let X denote the number of monochromatic edges in G. Then

P

AeF BCA

P[B and A are the same color] =

by definition of m, we have

- S g -

AeF BCA AeF

Now we delete one set from each monochromatic edge to obtain a Kj-cross free family F’
with at least | F|/2 sets and is properly colored. Hence by the inequality |G|/a(G) < x(G),
we have

|71/2

<om
p—1 =

Hence |F| < 4(k — 1)mn
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Proof of Corollary 5: Since sub(A) < 2(k — 1)|A|log(]A|), this implies

> 3T 2%k — 1) log(|A])
AeF

AeF
= 7 = 2(k — 1) log((F)).

By Theorem 4, we have
|71 < 8(k — 1)*nlog(+(F)).

Cross versus strongly-cross

In other places, two sets cross are defined a bit differently. To avoid confusion, we say that
two sets A, B € 2" strongly-cross if ANB # 0, A¢ B, B¢ A, and AU B # [n] (This
is how cross is defined in [4]). However one can obtain asymptotically similar results for
strongly-crossing by the next Theorem. Let GG be a graph on k vertices vy, ..., vx. Then F
is a G-strongly-cross free family if there does not exist k sets Ay, ..., Ay € F such that A;
strongly crosses A; if and only if v; is adjacent to v; in G. Likewise F is a G-cross free
family if there does not exist k sets Ay, ..., Ay € F such that A; crosses A; if and only if
v; is adjacent to v; in G.

Theorem 6: Let F C 21" be a mazimum G-strongly-cross free family and H C 2" be a
mazimum G-cross free family. Then

[H| < |F| < 2H|

Proof: Clearly |H| < |F|. Now let F; = {A € F:|A| < |n/2]} and Fy = F \ F;. Then
notice that if A, B € F; intersect, then AU B # [n]. Hence F; is a G-cross free family,
which implies |F;| < |H|. Now define F§ = {A°: A € F,}, where A° = [n] \ A. Then
notice that A, B € F; strongly-cross if and only if A°, B¢ € F§ strongly-cross. Also notice
for A¢, B¢ € Fs such that A°N B¢ # (), then A°U B° # [n]. Hence F% is a G-cross free
family, which implies |F,| = |F§| < |H|. Therefore |F| = |Fi| + | Fo| < 2|H].

U
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