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Abstract

The border correlation function attaches to every word w a binary word ((w) of
the same length where the ith letter tells whether the ith conjugate w’ = vu of w =
wv is bordered or not. Let [u] denote the set of conjugates of the word w. We show
that for a 3-letter alphabet A, the set of S-images equals B(A™) = B*\ ( [ab"‘l] U D)
where D = {a"} if n € {5,7,9,10,14,17}, and otherwise D = (). Hence the number
of B-images is By = 2" —n —m, where m =1 if n € {5,7,9,10,14,17} and m = 0
otherwise.

Keywords: combinatorics on words, border correlation, binary words, square-free, cycli-
cally square-free, Currie set,

1 Introduction

The border correlation function of a word was introduced by the present authors in [4],
where the binary case was considered in detail. In this paper we consider the case for
alphabets of size s > 3. The border correlation function is related to the auto-correlation
function of Guibas and Odlyzko [3], as well as to the border-array function of Moore,
Smyth and Miller [7]. Border correlation of partial words have been recently considered
by Blanchet-Sadri et al. [1].

A word w € A* is said to be bordered (or self-correlated [8)), if there exists a nonempty
word v, with v # w, such that w = uyv = vus for some words uy, us. In this case v is a
border of w. A word that has a border is called bordered; otherwise it is unbordered.

Let 0: A* — A* be the (cyclic) shift function, where o(zw) = wzx for all w € A* and
x € A, and o(e) = ¢ for the empty word . Let B = {a,b} be a special binary alphabet.
The border correlation function 3: A* — B* is defined as follows. For the empty word,
let B(e) = €. For a word w € A* of length n, let f(w) = cycy ... c—1 € B* be the binary
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word of the same length such that

S if o'(w) is unbordered,
‘)b if o' (w) is bordered.

Example 1. (1) Assume the word w is not primitive, i.e., w = u* (= uu...u), for some
power k > 2. Then all words o(w) are bordered, and thus 3(w) = b", where n is the
length of w.

(2) Consider the alphabet A = {a, b, c}, and let w = bacaba € A*. Then

i | o'(w) | border | i | o'(w) | border
0 | bacaba ba 3 | ababac -
1 | acabab - 4 | babaca -
2 | cababa - 5 | abacab ab

and hence G(w) = baaaab. Note that a border need not be unique.

For an alphabet A, let A* denote the monoid of all finite words over A including the
empty word . Also, let A™ denote the set of words w € A* of length n. In the binary
case, where we can choose A = B (= {a,b}), it was shown in [4] that the image 3(w) of
w € B* does not have two consecutive a’s except for some trivial cases. Hence, if o'(w)
is unbordered, then o**!(w) is necessarily bordered. Also, in the binary case, there are
other ‘exceptions’ , e.g., for no binary word w, it is the case that f(w) = abababbababb.
It is an open problem to characterize the set of the images f(w) for w € B*.

The words zy and yx are called conjugates of each other. We denote by [w] the set
of all conjugates of the word w. Note that if u and v are conjugates then v = o*(u) for
some i, and hence, for all words w,

Alw]) = [B(w)]. (1)

Let B(A™) = {B(w) | w € A"} be the set of the S-images of the words of length n,
and denote by B} the cardinality of 5(A"™) where A is a k-letter alphabet. In the present
paper we prove the following result, where

C={5,7,9,10,14,17}
is the Clurrie set of integers.

Theorem 1. Let A be an alphabet of three letters, and let n > 2. Then

B*\ [ab"!] ifn ¢ C,

) = {B* \ ([a" U {a™)) ifneC.

In particular, BY = 2" —n —m, where m =1 if n € C and m = 0 otherwise.
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We end this section with some definitions and notation needed in the rest of the paper.
We refer to Lothaire’s book [6] for more basic and general definitions of combinatorics on
words.

We denote the length of a word w by |w|. A word w is a factor of a word w € A*, if
w = wiuws for some words w; € A* and wy € A*. A word w € A* is said to be square-free,
if it does not have a factor of the form vv where v € A* is nonempty. Moreover, w is
cyclically square-free, if all its conjugates are square-free.

2 The proof

This section let A = {a, b, c} be a ternary alphabet. Let T' denote the Thue word obtained
by iterating the substitution ¢: {a,b, c}* — {a, b, c}* determined by ¢(a) = abc, p(b) = ac
and ¢(c) = b. Therefore T is the infinite word starting with

T = abcacbabcbacabeacbacabeba . . .

As was shown by Thue [9, 10] (see also Lothaire [5]), the word 7' is square-free, i.e., it
does not contain any nonempty factors of the form vv.

Recall that [w] denotes the conjugacy class of the word w. By the next lemma, each
primitive word has at least two unbordered conjugates.

Lemma 1. For alln > 2, [ab"™ '] N B(A™) = 0.

Proof. Assume a occurs in f(w) for a word w with |w| > 2. Hence w is primitive. A
conjugate v of w is a Lyndon word if it is minimal in [w] with respect to some lexicographic
order of A*. It is well known (see, e.g., Lothaire [6]), that each primitive word w has a
unique Lyndon conjugate with respect to a given order and that each Lyndon word is
unbordered. Hence, there exists at least two Lyndon words in [w] for a given order of A
and its inverse order, respectively. These two words imply that a occurs at least twice in

pw). O
The following result is due to Currie [2].

Theorem 2 (Currie). There exists a cyclically square-free word w € A™, if and only if
ng C=1{570910,14,17}.

A square vv is called simple if v € a* with v # €. Let w;, denote the i-th letter of w.
Lemma 2. Let w be a square-free word. Then w' = wff)wéz) o -w?g) contains only simple
squares for all 1 <i<mn and k; > 1.

Proof. Suppose on the contrary that w’ contains a nonsimple square vv, say

v = b]?z‘+1 i+2 bpi+jf1bl'?i+j
7

+1 Y42 " Vi —1 Y4y
__ pPiti+1pPiti+2 g Pit2j-17Pi+2j
— Yitg+1 V542 i+25—1"i+25
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with 0 <7 < n — 25 and pjy1 < ki1 and piyy = kipe = Kipjae—n, for all 2 < £ < j, and
Pitj + Ditjr1 = kiyj and pip; < Kijoj1 and by = by = biyoj = W(itj) = W(it2i—1) and
bive = biyjre = W(ite) = W(itjte—1)s forall 1 </ <.

Observe that we obtain a square (b;11b;12- - biyj—1)* from vo when all powers in vv
are reduced to 1 and the last letter is deleted. But now, we have that b;10i42 - biyj—1 =
Wit ) W(i42) * * * W(ij—1) = W(ip)W(itj+1) * * - W(i+2j—2) implies a square in w; a contradiction.

O

Lemma 3. Let w be a cyclically square-free word of lengthn > 2. Then for each nonempty
u € {a,b}* that has exactly n occurrences of a, there exists a word w' such that f(w') = w.

Proof. By (1), we can assume without loss of generality that u begins with the let-
ter a. Let u = abfab .. ab where k; > 0, for all 1 < i < n. By Lemma 2,

w' = wfll)ﬂwé%ﬂ = -w%ﬂ and all its conjugates contain only simple squares. That is,
if a conjugate wéi)ﬂwéiﬁ;rl > -w%“wff)“ > wéj;r " of w’ that starts and ends in differ-

ent letters is bordered then wg w1y -+ - W wa)y - - wi—1) is bordered contradicting the
fact that w is cyclically square-free. This means that every conjugate of w’ that starts and
ends in a different letter is unbordered and all other conjugates are, of course, bordered
by a border of length one. Hence, we have f(w’) = w which completes the proof. O

Lemma 4. Let n € C. Then u = ab* ab® - - - ab*» € B(A*) whenever u & a*.

Proof. Consider the following six words with lengths in C which have a unique border v
of length two or three (the borders are underlined):

5: abcab

7: abcbabe

9: abcacbcab

10: abcacbacab

14: abcbacabacbabe

17: abcabacbcabebacab

It is straightforward to check that for every word w in the list, each z € [w] with x # w
is unbordered, i.e., there exists only one bordered word w in the conjugacy class [w] and
w has a unique border. This also implies that these words are square-free.
Let
u=ab"ab® .. ab*

as in the statement of the lemma.

We proceed by case distinction on |v| to show that for every n there exists a word w’
such that S(w') = u except if ky = ky = -+ = k, for n equal to 5, 7, 9, 14, or 17, and
ki = ks = ks = ky = kg and ky = ky = kg = kg = k19 for n = 10. The exceptional cases
are handled at the end of the proof.
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Let w € A* be any square-free word having a unique border v such that each word
in [w] \ {w} is unbordered. Write w = wywg) . .. W), where again w; denotes the ith
letter of w.

Suppose first that |v| = 3 as in the case for 7 and 14. We can assume that v = abc
(possibly by renaming the letters); otherwise v would not be a unique border. Hence
WayWRyWE) = abt = W(n—2)W(n—1)We). Consider w' = wkll+1wk22+1 .- -w%ﬂ. Since exactly
one conjugate of w is bordered, the number of the letter a in the (-image equals n, if
w’ is unbordered. Now, w’ is unbordered if ky # k,_;, and in this case B(w’) = u.
Note that, by (1), it is enough to show that G(w’) = «’ for any conjugate v’ of u. In

particular, we are done if the powers k; can be cycled so that, for some j, the word

w' = wfli)ﬂwéé)ﬂ . ~wfé’)+1, where k] = kitjmodn, is unbordered. It follows that, for the
border length 3, the only cases left in n € C are when ky = ko = --- = k,. (Note that the

case n = 9, where n is divisible by 3, is treated below.)

Suppose then that |v] = 2 as in the case for 5, 9, 10, and 17. We can assume that
v = ab (possibly after renaming of the letters), i.e., wywe) = ab = wp_1)wr). Consider
w' = wfll)ﬂwff)ﬂ x ~wf;)+1. We recall that w is the unique bordered word in its conjugacy
class. Now, w’ is unbordered if k; > k,,_; or ko < k,. Analogously to the above case with
|v| = 3 we can consider shifts of the indices modulo n. We conclude that w’ is bordered
for all possible shifts of k1, ks, ..., k, only if ky = ky = --- =k, or n is even; a case that
is avoided for |v| = 2 except for n = 10. If n = 10 then we are left with the case where
ki =ks=---=kg and ky = ky = - -+ = k19, where possibly k; = k».

It remains to be shown that u is a f-image if ki =ky=---=k,or ki =ky3=---=ky
and kg = ky = --- = k,, if n =10, with &, > 1 forall 1 <i <n. Let t = k1 +1 and
s = ko + 1. The following list gives a word for every n € C such that the [-image is
(abt=H)™ or (ab'~tab*~')® in the case n = 10.

5: a'bictalbe ™!

7:a'b' bt albtebt ™!

9: atc'balb ctblal b1

10: c'v*atcta’bicta’ctba’™!

14: bictbtalbicdtalblalcdalbicth! ™ a

17: da'v'datctbtalbt i aldalbtctabt ™!
This last claim can easily be verified by hand after noting that s,¢t > 1. This concludes
the proof. 0

We now show that almost all binary words of length n are S-images.

Proof of the main Theorem 1. Let u € {a,b}* be a nonempty binary word of length n.
We proceed by a case distinction on the number £, of occurrences of the letter a in wu.
Note that 3(a™) = 0" for the case k, = 0 and the case k, = 1 does not exist; see Lemma 1.

Suppose k, > 2. If k, ¢ C then there exists a cyclically square-free word w in A*
of length k, by Theorem 2, and Lemma 3 shows how to construct a word w’ such that

fw') = u.
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In the remaining case, where k, € C, we have a” ¢ ((A") which explains the value
of m; otherwise a cyclically square-free word of length n € C would contradict Theorem 2.
Lemma 4 shows that u is a #-image in the remaining cases.

Finally, by counting, we obtain the number of S-images: Bj = 2" —n — m, where
m =1if n € C and m = 0 otherwise. O

3 The case of four and more letters

The exceptions in the Currie set disappear when the alphabet has at least four letters.
Theorem 3. B! =2" —n for allk > 3 and n > 2.

Proof. 1t is sufficient to prove the claim for the alphabet of four letters, A = {a,b,c,d},
since B} = 2" —n implies B} = 2" —n for all k > 3. The n exceptions are the binary
words of length n with only one letter a; see Lemma 1. We show that any binary word u
of length n, except ab” ! and its conjugates, is the S-image of a word over A. Note that
B(a™) = b". Let then u ¢ [ab™'], and suppose u has k, = m > 2 occurrences of a. Let w
be the prefix of the square-free Thue word T of length m where the last letter is replaced
by d, that is, w = vd, where v is the prefix of T of length m — 1. Note that w is cyclically
square-free because no square occurs in the prefix v, and no square can contain the letter
d, since d occurs only once in u. Now, Lemma 3 implies the claim. O
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