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Abstract

Rodriguez Villegas expressed the Mahler measure of a polynomial in terms of
an infinite series. Lück’s combinatorial L

2-torsion leads to similar series expressions
for the Gromov norm of a knot complement.

In this note we show that those formulae yield interesting power series expansions
for the logarithm function. This generalizes an infinite series of Lehmer for the
natural logarithm of 4.

1 The abelian case: the Mahler measure

For a Laurent polynomial P in the group ring C[Zr] let the conjugate P ∗ be defined by
sending every g ∈ Zr to g−1 and every coefficient ag to its complex conjugate ag.

The (logarithmic) Mahler measure (see e.g. [EW99]) of P is given by:

m(P ) =

∫

1

0

· · ·
∫

1

0

ln |P (e2πit1 , . . . , e2πitr)|dt1 · · ·dtr.

The following theorem is due to Rodriguez Villegas [RV99]. Independently, it also
appears in the study of the combinatorial L2-torsion due to Lück. Further discussions are
given in [DL08]. We include a proof along the lines of [RV99] for completeness.

Theorem 1.1 ([RV99], see also [Lüc02, Den06]). For k greater than the l1-norm of
the coefficients of P we have

2m(P ) = m(PP ∗) = 2 ln(k) −
∞
∑

n=1

1

n

[(

1 − 1

k2
PP ∗

)n]

0

, (1)

where [P ]0 denotes the constant coefficient of the Laurent polynomial P .
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Proof. Since

PP ∗ = k2

(

1 −
(

1 − 1

k2
PP ∗

))

we have

m(PP ∗) = 2 ln(k) + m

(

1 −
(

1 − 1

k2
PP ∗

))

.

Set Q := 1 − 1

k2 PP ∗ and let

u(Q, x) :=

∫

1

0

· · ·
∫

1

0

1

1 − xQ(e2πit1 , . . . , e2πitr)
dt1 · · ·dtr

=

∞
∑

n=0

xn

∫

1

0

· · ·
∫

1

0

Q(e2πit1 , . . . , e2πitr)ndt1 · · ·dtr

=
∞
∑

n=0

xn [Qn]
0

The choice of k ensures convergence.
Now

m(1 − xQ) =

∫

1

0

· · ·
∫

1

0

ln |1 − Q(e2πit1 , . . . , e2πitr)|dt1 · · ·dtr

=

∫

1

0

· · ·
∫

1

0

ln(1 − Q(e2πit1 , . . . , e2πitr))dt1 · · ·dtr

= −
∫ x

0

(u(Q, z) − 1)
dz

z

= −
∞
∑

n=1

1

n
xn[Qn]0

setting x := 1 yields the result.

2 A power series for the natural logarithm

Here we study an application of Equation (1) which leads to an interesting identity. For
the polynomial 1 + a the right-hand side of Equation (1) yields:

2 ln(k) −
∑

n≥1

1

n
trCG

(

1 − 1

k2
(1 + a)(1 + a−1)

)n

(2)

= 2 ln(k) −
∑

n≥1

1

n
trCG

(

n
∑

j=0

(

n

j

)(

− 1

k2

)j

(2 + a + a−1)j

)
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Hence, with a formal
√

a:

= 2 ln(k) −
∑

n≥1

1

n
trCG

(

n
∑

j=0

(

n

j

)(

− 1

k2

)j (√
a +

1√
a

)2j
)

= 2 ln(k) −
∑

n≥1

1

n

n
∑

j=0

(

n

j

)(

− 1

k2

)j (
2j

j

)

On the other hand we know by Theorem 1.1 that the right-hand side of Equation (1)
equals the logarithm of the Mahler measure of (1 + a) which is 0. This shows:

Theorem 2.1. For x ≥ 4 a power series for the logarithm is given by:

ln x =
∑

n≥1

n
∑

j=0

1

n

(

n

j

)(

2j

j

)(

−1

x

)j

The case x = 4 is somewhat special. Equation (2) at x = k2 = 4 equals:

2 ln 2 −
∑

n≥1

1

n
trCG

(

a − 2 + a−1

−4

)n

= 2 ln 2 −
∑

n≥1

1

n
trCG

(

(−1)n (
√

a − 1/
√

a)2n

4n

)

= 2 ln 2 −
∑

n≥1

1

n

(

2n

n

)

1

4n

Thus, we recover an identity which is well-known to Mathematica [Wol99] and was
derived by Lehmer in [Leh85]:

ln 4 =

∞
∑

n=1

1

n

(

2n

n

)

1

4n
. (3)

The function also converges at x = k2 = 2 and yields:

ln 2 =
1

2
ln 4 =

∞
∑

n=1

1

2n

(

2n

n

)

1

4n
.

2.1 A generating function

It is interesting to look at the series for the natural logarithm in Theorem 2.1 from a
generating function point of view:

Let

fn(y) =

n
∑

j=0

1

n

(

n

j

)(

2j

j

)

yj
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and
F (x, y) =

∑

n≥1

fn(y)xn

its generating function.
Similar to Example 5, Section 4.3 in [Wil94] we have:

F (x, y) =
∑

n≥1

n
∑

j=1

1

n

(

n

j

)(

2j

j

)

yjxn +
∑

n≥1

1

n
xn

=
∞
∑

j=1

(

2j

j

)

yj

∞
∑

n=j

1

n

(

n

j

)

xn − ln(1 − x)

=

∞
∑

j=1

(

2j

j

)

yj 1

j

(

x

1 − x

)j

− ln(1 − x)

=
∞
∑

j=1

(

2j

j

)

1

j

(

xy

1 − x

)j

− ln(1 − x)

= ln 4 − 2 ln

(

1 +

√

1 − 4
xy

1 − x

)

− ln(1 − x)

= ln 4 − 2 ln(
√

1 − x +
√

1 − x − 4xy)

Here we make use of the identity [Leh85]

∞
∑

j=1

1

j

(

2j

j

)

zj = 2 log

(

1 −
√

1 − 4z

2z

)

2.2 Triple Sum Series

By working with the polynomials 1+a+a2 + · · ·+an in Equation (1) one readily obtains
other infinite series for the logarithm. For example if 1 + a + a2 and we see for k ≥

√
3:

2 ln k =
∑

n≥1

1

n
trCG

(

1 − 1

k2
(1 + a + a2)(1 + a−1 + a−2)

)n

=
∑

n≥1

1

n
trCG

(

n
∑

j=0

(

n

j

)(

− 1

k2

)j

(a−1 + 1 + a)2j

)

=
∑

n≥1

1

n

n
∑

j=0

(

n

j

)(

− 1

k2

)j j
∑

l=0

(

2j

2j − 2l, l, l

)

,

where the terms in the inner most sum are multinomial coefficients.
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3 Motivations: L2-torsion of knot complements

To generalize the setting and to explain our original motivation we need to fix some
notations. Let K be a knot and

G = π1(S
3 − K) = 〈x1, . . . , xg|r1, . . . , rg−1〉

be a presentation of the fundamental group of the knot complement. For a square matrix
M with entries in CG the trace trCG(M) denotes the coefficient of the unit element in
the sum of the diagonal elements. The matrix A∗ = (āj,i) is the conjugate transpose of
A = (ai,j) with conjugation

∑

g∈G

cgg =
∑

g∈G

cgg
−1.

Let

F =







∂r1

∂x1

. . . ∂r1

∂xg

...
. . .

...
∂rg−1

∂x1

. . .
∂rg−1

∂xg







be the Fox Jacobian (e.g. [BZ85]) of the presentation. We obtain a (g−1)×(g−1)-matrix
A by deleting one of the columns of F .

Theorem 3.1 (Lück [Lüc02]). Suppose the deleted column in the Fox Jacobian does
not correspond to a generator xi of G that represents a trivial element in G. Then for a
hyperbolic knot K and for k sufficiently large it holds:

1

3π
Vol(S3 − K) = 2(g − 1) ln(k) −

∞
∑

n=1

1

n
trCG

(

(1 − k−2AA∗)n
)

(4)

The value of k can be chosen to be the product of (g − 1)2 and the maximum of the
1-norm of the entries in A (see [Lüc94]).

In case of a non-hyperbolic knot, the right-hand side of (4) is proportional to the
Gromov norm of the knot complement.

In the abelian case Theorem 1.1 generalizes to:

Theorem 3.2 ([Lüc02], see also [Den06]). Let A have entries in C[x1, . . . , xr]. Then
the right-hand side of (4) equals:

2m(det(A)),

where, again, m(p) =
∫

1

0
. . .
∫

1

0
ln |p(e2πit1 , . . . , e2πitr)|dt1 · · ·dtr is the (logarithmic) Mahler

measure of the polynomial p(x1, . . . , xr).

Remark 3.3. Let K = T (p, q) be the (p, q)-torus knot. It is well-known (e.g. [BZ85])
that a presentation for the knot group of T (p, q) is given by:

G = π1(S
3 − T (p, q)) = 〈a, b|ap = bq〉.
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Hence, the Fox Jacobian for G is

F = (1 + a + a2 + · · · + ap−1,−1 − b − · · · − bq−1)

and we can chose A to be the 1 × 1 matrix:

A = (1 + a + · · ·+ ap−1) and thus A∗ = (1 + a−1 + · · · + a−p+1).

Theorems 3.1 and 3.2 now express the fact that the Gromov norm of the torus knot
complements is 0.

3.1 Covering spaces

For a given knot the terms in Lücks formula (4) are by no means simple to compute.
A single term depends on the chosen presentation. Furthermore, the convergence of the
series is slow. An indirect approach via covering spaces of the knot complement gives more
flexibility for computational simplifications. We illustrate it on the example K being the
trefoil knot. It is well-known that the fundamental group of its knot complement is
isomorphic to the braid group B3 on three strands:

B3 = 〈σ1, σ2|σ1σ2σ1 = σ2σ1σ2〉.

A direct application of Formula (4) to this presentation would lead to a somewhat
messy series. However, the group B3 has a natural homomorphic image in the symmetric
group S3 and its kernel is the pure braid group P3 of index 6 in B3. By an application
of Newworld’s lemma [DM01] P3 is isomorphic to the direct product of its center C3

∼= Z

and a free group of rank 2. More precisely:
With t = (σ1σ2)

3 and a = σ2
1 , b = σ2

2 a presentation for P3 is given by

P3 = 〈t, a, b|ta = at, tb = bt〉.

Thus, by deleting the column corresponding to t from the Fox Jacobian, the reduced
matrix A is:

A =

(

t − 1 0
0 t − 1

)

.

By Theorem 1.1 the right-hand-side of Lücks formula (4) equals the logarithmic Mahler
measure of det(A) = (t − 1)2, which is 0.

Now, since P3 has index 6 in S3 −K, for K the trefoil, we know [Lüc02] that Formula
(4) applied to the complement of the trefoil must be 1

6
of this and thus also 0.
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