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Switzerland, {friedrich.eisenbrand,thomas.rothvoss}@epfl.ch
2Courant Institute, NYU and City College, CUNY , USA, pach@cims.nyu.edu
3School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel,

sopherni@post.tau.ac.il

Submitted: Dec 14, 2007; Accepted: Mar 17, 2008; Published: Mar 20, 2008

Mathematics Subject Classification: 52C10, 52A10

Abstract

Let P and Q be finite sets of points in the plane. In this note we consider the
largest cardinality of a subset of the Minkowski sum S ⊆ P ⊕ Q which consist
of convexly independent points. We show that, if |P | = m and |Q| = n then
|S| = O(m2/3n2/3 + m + n).

1 Introduction

In connection with a class of convex combinatorial optimization problems (Onn and Roth-
blum, 2004), Halman et al. (2007) raised the following question. Given a set X of n points
in the plane, what is the maximum number of pairs that can be selected from X so that
the midpoints of their connecting segments are convexly independent, that is, they form
the vertex set of a convex polygon? In the special case when the elements of X themselves
are convexly independent, they found a linear upper bound, 5n−6, on this quantity. They
asked whether there exists a subquadratic upper bound in the general case. In this note,
we answer this question in the affirmative by establishing an upper bound of O(n4/3).

We first reformulate the question in a slightly more general form. Let P and Q be sets
of size m and n in the plane. The Minkowski sum of P and Q is P ⊕ Q = {p + q | p ∈
P, q ∈ Q}.

What is the maximum size of a convexly independent subset of P ⊕ Q ?
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More precisely, we would like to estimate the function M(m, n), which is the largest
cardinality of a convexly independent set S, which is a subset of the Minkowski sum of
some planar point sets P and Q with |P | = m and |Q| = n.

Notice that the set of all midpoints of the connecting segments of an n-element set P

can be expressed as 1
2
(P ⊕P ), so that M(n, n) is an upper bound on the quantity studied

by Halman et al.
Let S be a convexly independent subset of P ⊕Q. Consider the bipartite graph G on

the vertex set P ∪ Q, in which p ∈ P and q ∈ Q are connected by an edge if and only if
p + q ∈ S. It is easy to check that G cannot contain K2,3 as a subgraph. Applying the
forbidden subgraph theorem (Kővári et al., 1954), see also (Pach and Agarwal, 1995), it
follows that |S| = O(

√
m · n + m).

Our next result provides a better bound.

Theorem 1. Let P and Q be two planar point sets with |P | = m and |Q| = n. For any

convexly independent subset S ⊆ P ⊕ Q, we have |S| = O(m2/3n2/3 + m + n).

2 Proof of Theorem 1

We reduce the problem to a point-curve incidence problem in the plane. A closed set
K ⊆ R

2 is strictly convex, if for each a, b ∈ K the interior of the line-segment conv({a, b})
is contained in the interior of K. A closed curve C is strictly convex if it is the boundary
of a strictly convex set. Consider now n translated copies C + t1, . . . , C + tn of C, and
m points p1, . . . , pm. Let I(m, n) denote the maximum number of point-curve incidences
which occur in such a configuration. Notice that C + ti and C + tj intersect in at most
two points for i 6= j. Furthermore, for any two distinct points pµ and pν, there exist at
most two curves C + ti incident to both pµ and pν. We can apply the following well known
upper bound on the number I(m, n) of incidences between m points and n “well-behaved”
curves with the above properties, see (Pach and Sharir, 1998).

I(m, n) = O(m2/3n2/3 + m + n). (1)

Thus, to establish Theorem 1, it remains to prove

Theorem 2. For any positive integers m and n, we have M(m, n) 6 I(m, n).

Proof. Let P = {p1, . . . , pm}, Q = {q1, . . . , qn}, and assume that S is a convexly indepen-
dent subset of P ⊕ Q. Clearly, there is a strictly convex closed curve C passing through
all points in S. Consider the n translates C − q1, . . . , C − qn of C. Count the number
of incidences between these curves and the elements of P . Notice that if the point p + q

belongs to S, then p is incident to C−q. Since no two distinct points p1 +q1 6= p2 +q2 ∈ S

are associated with the same incidence, the result follows.
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Unit distances

Theorem 1 can also be deduced from the known upper bounds on the number of unit-
distance pairs induced by n points in a normed (Minkowski) plane. For this, notice that
one can replace C by a centrally symmetric strictly convex curve C ′ such that the number
I ′ of incidences between the curves C ′ − q1, . . . , C

′ − qn and the points in P is at least half
of the number I of incidences between the curves C − q1, . . . , C − qn and the points in P .
The curve C ′ defines a norm, and thus a metric, in the plane, with respect to which the
unit circle is a translate of C ′. Therefore, I ′ can be bounded from above by the number
of unit-distance pairs between the set of centers of the curves C ′ − q1, . . . , C

′ − qn and the
elements of P , which is known to be O(m2/3n2/3 + m + n).

In particular, for m = n, this number cannot exceed the maximum number u(2n)
of unit-distance pairs in a set of 2n points in a normed plane with a strictly convex
unit circle. It is known that u(2n) = O(n4/3) (see e.g. (Brass, 1996)), and a gridlike
construction shows that this bound can be attained for certain norms (Brass, 1998;
Valtr, 2005). Note that in the Euclidean norm, the number of unit-distance pairs induced
by n points is neΩ(log n/ log log n), and this estimate is conjectured to be not far from best
possible (Erdős, 1946).

The question arises whether any of the examples establishing the tightness of the
upper bounds on I(m, n) and u(n) can be used to show that Theorem 1 is also optimal.
Unfortunately, in all known constructions, most elements of P ⊕ Q can be written in the
form p + q (p ∈ P, q ∈ Q) in many different ways. Therefore, any element of a convexly
independent subset of P ⊕ Q may be associated with several incidences between a curve
C − q and a point of P . This suggests that the maximum size of a convexly independent
subset of P ⊕ Q can be much smaller than I(m, n). For m = n, we do not know any
example for which P ⊕ Q has a convexly independent subset with a superlinear number
of elements.
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